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The Normal Distribution

2. Some Roles of Normality

T

S Ramasubramanian

The computational aid of part 1 of this series turns
out to be a basic feature of nature, thanks to the
central limit theorem. The role of normal distribu-
tion in statistics, velocity distribution of an ideal gas,
and the phenomenon of Brownian motion is briefly
illustrated.

Introduction

To compensate for the hard work done in part I of this series,
we basically pontificate in this article. Mathematical details
are side-stepped and we indulge in a lot of ‘hand-waving’,
especially in the section on Brownian motion.

It is pointed out that the DeMoivre-Laplace theorem is just
a special case of a far reaching general result known as ‘the
central limit theorem’ in probability theory. Consequently
our convenient computational aid turns out to be actually
a basic principle of nature. To illustrate this point we cite
three instances where the normal distribution plays a major
role. First, we indicate how the central limit theorem pro-
vides a mathematical framework for the bulk of Statistics.

Next, we show that the normal distribution in a sense gov-
erns the velocity distribution of an ideal gas, and the phe-
nomenon of Brownian motion; in both these cases one starts
out with reasonable qualitative assumptions which are com-
patible with experience. (In our presentation the constants
involved are either suppressed or standardised - something
a physicist will justifiably disapprove of. However, as the
present author is incapable of understanding physics, he may
be excused!)
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Central Limit Theorem

The discussion in part 1 of this article raises the question: Is
it possible to have reasonable approximations for other ran-
dom phenomena so that computations may become simple?
To indicate an answer we rephrase the De Moivre-Laplace
theorem as follows.

Theorem : Let X, X5,--- be independent random vari-
ables each having a Bernoulli distribution with expectation
p and variance p(1 — p). Let S, = X1+ Xo+ --- + X,

and Z, = %‘%,n = 1,2,---. Then for any a < b,

. _ b 1 i
nll)ngo Prob (a < Zn <b) = [ Wil dz.

It is a deep result in probability theory that the above con-
clusion holds not just for Bernoulli distribution but for any
distribution.

Central limit theorem: Let X;, Xo---, be independent
random variables having the same distribution, with com-
mon finite expectation ¢ and common finite nonzero vari-

ance o2. Set Sp, = X1+Xo+ - -+X, and Z, = VEJ._lS”_E Sn Jn=
Var(Sn)

1,2,.--. Then for any a < b,

) b 1 _12
Jim Prob (a < Zp, <) =/a \/2_;6 2% dx . (1)

Remark : The hypotheses of the above result can be weak-
ened considerably. In fact it is enough to assume that X1, Xo,
.- are independent with finite expectations and finite nonzero
variances satisfying certain mild technical conditions; even
with such an assumption the conclusion (1) of the above
theorem holds; (see Feller or Parthasarathy in Suggested
Reading). (In the sequel when we talk about CLT we mean
the above theorem along with the generalization alluded to
in this remark.)

Before making a few comments concerning CLT, let us point
out that the fight side of (1) gives a probability distribution,
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viz. one can have a random variable Z such that

b
Prob (Z takes value in(a,b]) = / ~3% g4z | (2)
a

1
Var
Such a probability distribution is called the standard normal
distribution or the standard Gaussian distribution (in honour
of Gauss who encountered it in ‘the theory of errors’). The
integrand in (2) is called the standard normal density. It
can be shown that for such a Z,

o0

1 1,2
E(z) = /9: e 2 dz =0
s V2r

Var(Z) = E(2Z%) - (E(2))?

(e o)
= /;oo 2 \/:;_We“%z?dx =1. (3)
(These can be proved using gamma integrals); so any ran-
dom variable Z whose probability law is given by (2) is said
to be normally distributed with mean 0 and variance 1. This
suggests how one may define normal distribution with mean
u and variance o?; indeed this can be done by putting

fame®) = p=—exp{-gale-w @

for —o0 < = < 00, and the corresponding distribution is
denoted as the N (u,o?) distribution. (Justify the notation!
o0

For any nonnegative function g such that [ g(x)dz = 1,
OO0

one can define a probability law corresponding to that. How?)

Unlike the De Moivre-Laplace theorem, in the CLT we do
not specify the distribution of X;. In fact the assumption
on the distribution of X; is basically qualitative and very
general; however, the conclusion is quantitativel Thus the
CLT implies the following interpretation.

Interpretation : Suppose the randomness in a phenomenon
is due to the cumulative effects of randomness (or error in
measurement) in a large number of parameters; further sup-
pose that these parameters are taken to be independent of
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Suppose the
randomness in a
phenomenon is
due to the
cumulative effects
of randomness in a
large number of
parameters;
suppose that these
are taken to be
independent of
each other. In such
a case the random
phenomenon
follows a normal
(or Gaussian)
distribution.

each other. In such a case the random phenomenon follows
a normal (or Gaussian) distribution.

So, what began essentially as a computational aid has turned
out to be a basic principle of nature, because as a well known
text book in physics says “.. the generality of the result
accounts for the fact that so many phenomena in nature
obey approximately a Gaussian distribution”; (see Reif in
Suggested Reading).

The proof of CLT is quite involved. One method uses the
Fourier transforms; an interested reader may refer to Feller
or Parthasarathy (Suggested Reading).

To appreciate the significance of the normal distribution we
present three situations where it plays a major role. But be-
fore that, let us mention that vector valued random variables
can also be defined. For example, we say that (X,Y,Z) is a
random vector with probability density function g if

Prob ((X,Y,Z) takes valuein 4 x B x C)

= / 9(z,y, z)drdydz , (5)
AxBxC

where the integral is a 3-dimensional integral. Note that
X,Y, Z are one dimensional random variables; also X,Y, Z
are said to be independent if

9(z,y, z) = g1(z)g2(v)g3(z) for all z,y, 2 (6)

where g1, g2, g3 respectively are the probability density func-
tions of X,Y and Z.

Statistics

An important objective.of the discipline of Statistics is to
be able to draw reasonable conclusions from incomplete in-
formation, like predicting the outcome of an election from
an opinion poll, forecasting the future demand/prices based
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on the past data, and so on. As statisticians are not blessed
with clairvoyant powers (and as they are likely to be held
accountable for their predictions), it is desirable to be able
to ascertain the margin of error/uncertainty in their fore-
casts! In principle this is a slightly tricky situation for the
following reason.

When one draws a conclusion about the entire population
based on a sample, or predicts the future based on the
past, etc., one resorts to inductive logic. Bulk of science
is basically governed by inductive logic. If several repe-
titions of an experiment lead to the same observable pat-
tern/products/conclusion, one infers a cause-effect relation-
ship between the constituents. However, rules of deductive
logic would not permit that; even if 10 million repetitions
of an experiment obey the same pattern, there is no guar-
antee that the next trial would follow suit. As opposed to
Science, Mathematics is firmly anchored in deductive logic.
Now, if we want to indicate the degree of uncertainty in the
predictions, such quantitative measures can be defined in a
meaningful way only if there is a mathematical framework.

And the CLT provides a way out in many many situations. If
the randomness/ uncertainty in the situation under consid-
eration can be attributed to the cumulative effect of a large
number of uncertain factors, then CLT says that a Gaussian
model is justified. For example, uncertainty in price levels of
foodgrains next year can be taken to be the cumulative effect
of uncertainties in climatic conditions, political situation,
prices of auxiliary commodities like fertilisers, etc. over the
year; each of these factors in turn depends on a large number
of other factors; (see P K Das in Suggested Reading concern-
ing Gaussian assumption in weather prediction). In such a
case the underlying phenomenon can be assumed to obey a
Gaussian law with unknown mean g and unknown variance
o?; various procedures for estimating these parameters or for
testing hypotheses concerning these parameters (along with
the degree of uncertainty in the procedures) can be outlined
using mathematical/deductive principles. A large chunk of
the discipline of Statistics is based on the normality assump-

An important
objective of the
discipline of
Statistics is to
draw reasonable
conclusions from
incomplete
information.

Bulk of science is
basically governed
by inductive logic.
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tion; no wonder the bell shaped curve of the normal density
adorus the cover of many books on statistics.

A word of caution is in order. There are situations when
normality assumption would be untenable, as for example,
if the hypotheses of CLT are far from reasonable to assume.
Even in the context of De Moivre-Laplace theorem, if p is
very close to 0 or 1, the so called ‘Poisson approximation’ is
more suitable,

Nevertheless it will not be an exaggeration to say that CLT
has provided a ‘raison d'étre’ for Statistics!

Velocity of an Ideal Gas

Let V = (V1, V3, V3) denote the velocity of a particle of an
ideal gas. (An ideal gas basically means a collection of a large
number of particles in motion whose interaction is so weak
that it may be disregarded; such an idealisation is mean-
ingful when one considers ‘dilute gas media’, especially at
low pressures and/or high temperatures, when the good old
Boyle’s law holds!) As there are a large number of par-
ticles, V may be considered a 3-dimensional random vari-
able; for the sake of mathematical simplicity let us assume
that V has a probability density function f(vy,vs,vs), with
(v1,v9,v3) € RA.

We make the following qualitative assumptions:

o The three components of V ie. V3, V3, V3 are indepen-
dent (one dimensional) random variables; let g; denote
the probability density function of V;,i= 1,2, 3.

e Velocity depends only on kinetic energy; that is, f is
a function only of v? + v3 + v2,

Note that the above assumptions mean that

91(v1)g2(v2) g3(vs) = f(v1,v2,03) = h(v} + v +03)  (7)
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for some function A. From (7), by freezing some variables,
it is easy to see that go(v) = (%) g1(v) for all —o0 <
v < 00, where vg is a fixed point such that g;(vo) # 0. As

O o0
[ gi(v)dv = [ go(v)dv = 1 (why?) we now get g1 = go.
Q0 - OO

Similarly g1 = g3 = g (say). So (7) implies that
log g(v1) + log g(v2) + log g (v) = log A(v] + v + v3).

Differentiating the above with respect to vy, vo, v3 separately
we get

g(w) _ g'(wa) _ g'(vs) _ 20(r) (8)
vig(v)  vag(ve)  wag(va)  hlr)

for any (vi,v2,v3) # 0 (r denoting v? + o2 + v2). This is
possible only if [r'(r)/h(r)] is a constant. (Why?) Thus we
get the differential equation

!
M-—kv, —00 < v < 00; 9)
g9(v)
(luckily one doesn’t need to know anything about differential

equations to solve (9)). Observe that (9) is just <L logg(v) =

kv and hence log g(v) = kv? + ¢; therefore g(v) = Cekv’
for some constants C and k. As g should be nonnegative
and integrable we should have C > 0 and k < 0. Writing
k= ———2;1;5 for some o > 0, as [ g(v)dv = 1 we get

1 v?
glv) = o exP{—Q_oE}’ —00 < v < 00

and hence

3
1
fos,v0) = (=) expl=goalef +of+4)} - (10)

Thus each V; has N(0,02) distribution and V = (V1, V2, V3)
has a 3-dimensional normal distribution. (In physics lit-
erature the 3-dimensional distribution given by (10) is also
called the Mazwell distribution, in honour of James Maxwell
who first derived the velocity distribution. In the case of an
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ideal monatomic gas, the parameter ¢ can be expressed in
terms of absolute temperature, mass of a molecule of gas,
Avogadro’s number, etc; see A M Vasilyev in Suggested
Reading).

Regarding the assumptions, the second hypothesis holds if
the system is invariant under rotations. It seems that the
first assumption is not tenable at velocities close to that of
light.

Mathematically speaking, the above discussion implies: if
V4, Va, V3 are independent random variables such that their
joint distribution is invariant under rotations, then each V;
has N(0,0?) distribution. (The Gaussian distribution has
many such interesting characterizations).

Brownian Motion

The last example highlighting the importance of Gaussian
distribution concerns the phenomenon of Brownian motion.
This phenomenon (as most readers would be aware) is a
ceaseless chaotic movement encountered in colloidal solu-
tions; (such a movement has been observed whenever mi-
croscopic particles are suspended in liquids/gases). For ex-
ample, a pollen grain suspended in water executes such a
motion and this can be observed through a microscope; (this
was observed first by Robert Brown, a botanist, and hence
the name). For a lucid, non-mathematical account of the
role and importance of Brownian motion in physics, see Al-
bert Einstein and Leopold Infeld in Suggested Reading.

A pollen grain is ‘too big’ compared to the water molecule,
but not big enough to be sedimented at the bottom of the
container; on the other hand the water molecules are too nu-
merous. Since all the particles are in motion, the pollen grain
is kicked around by the bombardment of water molecules re-
sulting in Brownian motion. We now present a heuristic ac-
count of Brownian motion suppressing a lot of mathematical
details. We assume that no external force is acting on the
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system, the medium is homogeneous and that the motion of
the Brownian particle (that is, pollen grain) is purely due to
the fluctuations caused by the bombarding water molecules.
Also for the sake of simplicity we consider only one coor-
dinate of the Brownian particle, that is, one-dimensional
Brownian motion. Further there are no boundaries and the
particle can move anywhere on the real axis.

Let X (t) denote the position of the Brownian particle at
time t. As the motion is haphazard and unrelenting, the
following assumptions can be taken to be reasonable and
based on experimental observations:

e For each t >0, X (t) is a random variable; let X (0) ==
be the initial position of the Brownian particle.

e X (t) is continuous in .

e For 0 < s < t, the displacement X (t) — X (s) during
the time interval (s,t) is independent of the ‘history’
upto time s.

The first and the third assumptions imply that even after
observing the Brownian particle for some time one cannot
predict its future course; at best one can hope to make
some probabilistic statements. The third hypothesis means
that for 0 < t;] < t2 < --- < tg, the random variables
X(tk) - X(tk._l), X(tk_l) —_ X(tk_.g), KRN X(tl) - X(O) are
independent. The second assumption, though very crucial,
is just a physical reality concerning continuity of motion.

Now let t > 0 be fixed. For any positive integer n, as X(0) =
x, note that

n—2

n

t)

X(t)— 3= X(t) - X(—n——;-—-l—t) + X(E-g——l—t) ~ x(

o4 X(20) = X(0).

W
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By the third assumption X () is thus a sum of n independent
random variables. Since this happens for any n, we have

x@-o=m Y xCy-xEly @
k=1

that is, X (t) is a limit of sums of independent random vari-
ables. This rings a belll However one has to be careful. Note
that right side of (11) is not expressed as a limit of partial
sums of a sequence of independent random variables; that is,
summands occurring in (11) are different for different values
of n. Fortunately, because of continuity in the time variable,
it can be shown that the conclusion of CLT is still valid in
this case; (intuitively, continuity keeps things under control
and the behaviour of (11) is like the limit of partial sums
of a sequence of independent random variables.) This is a
far reaching generalization of CLT (see L Breiman in Sug-
gested Reading). Thus X (t) can be taken to have a normal
distribution for each ¢t > 0.

(Without the continuity assumption, the conclusion is false,
as anyone who is familiar with Poisson distribution and Pois-
son processes can easily see.)

Having come this far, it is a bit tempting to go a little
further. Note that a normal distribution is completely de-
termined once the mean and variance are known. As the
medium is homogeneous and there is no preferred direction
(because of the absence of external forces), the particle is as
likely to move to the left as to the right at any instant. As ex-
pectation denotes the ‘mean’ position and X (0) = «, we can
take E(X (t)) = z for all . Next, the particle is more likely
to wander farther from its mean position as time goes by.
Since variance gives a measure of dispersion, it follows that
Var(X (t)) should be an increasing function of t. The sim-
plest increasing function one can think of is Var(X (¢)) = t;
this just means that we are choosing a convenient scale. So
we may take that X (¢) has N(z,t) distribution whose prob-
ability density function is

zZ— 2 2
p(62,2) = mexp (J—Qt—)——) (12)
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for t > 0,z,z € IR. Note that [p(t,z,z)dz denotes the
A

probability that the Brownian particle is in A at time ¢ if
it has started from z at time 0. It is easily checked that p
satisfies

.;I_)(t’ T, z) = %——E(t,x,z) (13)

which is the well known heat equation (or diffusion equa-
tion), one of the trinity in the theory of ‘basic partial differ-
ential equations’. In fact p is called the fundamental solution
of the heat equation as any solution of that equation can be
got from p. This shows a connection between probability
theory and the theory of partial differential equations; and
what we have indicated is just the proverbial tip of the ice-
berg.
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