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On a Stochastic Model in Insurance

S Ramasubramanian

Basic aspects of the classical Cramer—Lundberg
insurance model are described.

Introduction

Recent cataclysmic events like the tsunami, torrential
downpour, floods, cyclones, earthquakes, etc. under-
score the fact that everyone would like to be assured
that there is some (non-supernatural) agency to bank
upon in times of grave need. If the affected parties are
too poor, then it is the responsibility of the government
and the “haves” to come to the rescue. However, there
are also sizeable sections of the population who are will-
ing to pay a regular premium to suitable agencies during
normal times to be assured of insurance cover to tide
over crises. Insurance has thus become an important
aspect of modern society. In such a set-up, a significant
proportion of the financial risk is shifted to the insur-
ance company. The implicit trust between the insured
and the insurance company is at the core of the inter-
action. A reasonable mathematical theory of insurance
can possibly provide a scientific basis for this trust.

Certain types of insurance policies have been prevalent
in Europe since the latter half of the 17th century. But
the foundations of modern actuarial mathematics were
laid only in 1903 by the Swedish mathematician Filip
Lundberg, and later in the 1930’s by the famous Swedish
probabilist Harald Cramer. Insurance mathematics to-
day is considered a part of applied probability theory,
and a major portion of it is described in terms of con-
tinuous time stochastic processes.

This article should be accessible to anyone who has taken
a course in probability theory. At least statements of the
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Insurance
mathematics today
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part of applied
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insurance business,
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premiums are to be

charged to avoid ruin

of the insurance
company.

various results and the heuristics can be appreciated.
While proofs of some of the basic results are given, for
some others only partial proofs or heuristic arguments
are indicated; of course, in a few cases we are content
with just citing an appropriate reference. [1,2] are very
good books where an interested reader can find more
information. It is inevitable that a bit of jargon of basic
probability theory is assumed. One may look up [3-6] for
elucidation of terms like random variable, distribution,
density, expectation, independence, independent identi-
cally distributed (i.i.d.) random variables, etc. (Some
of the earlier articles in Resonance compiled in [7] also
contain a few introductory accounts).

Collective Risk Model

We shall mainly look at one model, known as the Cramer-
Lundberg model; it is the oldest and the most important
model in actuarial mathematics. This model is a par-
ticular type of a collective risk model. In a collective
risk model there are a number of anonymous but very
similar contracts or policies for similar risks, like insur-
ance against fire, theft, accidents, floods or crop dam-
age/failure, etc. The main objectives are modelling of
claims that arrive in an insurance business, and decide
how premiums are to be charged to avoid ruin of the
insurance company. Study of probability of ruin and
obtaining estimates for such probabilities are also some
of the interesting aspects of the model.

There are three main assumptions in a collective risk
model:

1. The total number of claims, say N, occurring in a
given period is random. Claims happen at times {7;}
satisfying 0 < Ty, < Ty < ---. We call them claim
arrival times (or just arrival times).

2. The i-th claim arriving at time 7; causes a payment
X;. The sequence {X;} is assumed to be an i.i.d.
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sequence of nonnegative random variables. These ran-
dom variables are called claim sizes.

3. The claim size process {X;} and the claim arrival
times {7} are assumed to be independent. So {X;}
and N are independent.

The first two assumptions are fairly natural, whereas the
third one is more of a mathematical convenience.

Take Ty = 0. Define the claim number process by

N(t) =max{i >0:T; <t}

= number of claims occurring by time ¢, ¢ > 0.

(1)
Also define the total claim amount process by

N(t)
S(t)=X1+Xo+ -+ Xy =Y Xt >0 (2)
=1

These two stochastic processes will be central to our
discussions. Note that a sample path of N and the cor-
responding sample path of S have jumps at the same
times T}, by 1 for N and by X; for S.

A function f(-) is said to be o(h) if ]llir% % = 0; that is,
if f decays at a faster rate than h.

Poisson Processes

We first consider the claim number process {N(t) : ¢t >
0}. For each t > 0, note that N (¢, -) is a random variable
on the same probability space (2, F,P). We list be-
low some of the obvious/desired properties of N (rather
postulates for N), which may be taken into account in
formulating a model for the claim number process.

e (N1): N(0) = 0. For each t > 0, N(t) is a non-
negative integer-valued random variable.
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(N2): If 0 < s < t then N(s) < N(t). Note
that N () — N(s) denotes the number of claims in
the time interval (s,t]. So N is a nondecreasing
process.

(N3): The process {N(t) : t > 0} has independent
increments; that is, if 0 <ty <ty < --- <t, < o
then N(t1), N(t2) — N(t1), - ,N(tn) — N(tn-1)
are independent random variables, for any n =
1,2,---. In other words, claims that arrive in dis-
joint time intervals are independent.

(N4): The process {N(t)} has stationary incre-
ments; that is, if 0 < s < t, h > 0 then the ran-
dom variables N (t)— N (s) and N (t+h)—N(s+h)
have the same distribution (probability law). This
means that the probability law of the number of
claim arrivals in any interval of time depends only
on the length of the interval.

(N5): Probability of two or more claim arrivals in
a very short span of time is negligible; that is,

P(N(h) > 2) =o0(h),as h|O0. (3)

(N6): There exists A > 0 such that
P(N(h)=1)=Ah+o(h),as h | 0. (4

The number A is called the claim arrival rate.
That is, in very short time interval the probability
of exactly one claim arrival is roughly proportional
to the length of the interval.

Remark 1. The first two postulates are self evident.
The hypothesis (N3) is quite intuitive; it is very reason-
able at least as a first stage approximation to many real
situations. (N5), (N6) are indicative of the fact that be-
tween two arrivals there will be a gap, but may be very
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small; (note that bulk arrivals are not considered here).
(N4) is a time homogeneity assumption; it is not very
crucial.

Remark 2. In formulating a model it is desirable that
the hypotheses are realistic and simple. Here ‘realistic’
means that the postulates should capture the essential
features of the phenomenon/problem under study. And
‘simple’ refers to the mathematical amenability of the
assumptions; once a model is chosen, theoretical prop-
erties and their implications should be considerably rich
and obtainable with reasonable ease. These two aspects
can be somewhat conflicting; so success of a mathemat-
ical model depends very much on the optimal balance
between the two. 0

To see what our postulates (N1)-(N6) lead to, put
P,(t)=P(N(t)=mn), t>0, n=0,1,2,--- (5)

Observe that

Py (t + h)
P(N(t) = 0,N(t +h) = N(t) = 0) (by (N1),(N2))
P(N(t) = ) P(N(t+h) = N(t) =0) (by (N3))
= Po( )- P(N(h) =0) (by (N4),(N1))
= Py(t) - [1 — Ah 4+ o(h)] (by (N5),(N6))
whence we get (as 0 < Py(t) < 1),
%po( £ = —APy(t), 0. (6)

By (N1), note that Py(0) = P(N(0) = 0) = 1. So the
differential equation (6) and the above initial value give

Py(t) =P(N(t)=0)=P(N(t+s)— N(s)=0)
=exp(—At), t>0, s >0. (7)

Similarly for n > 1, using (N3)-(N6), we get

In formulating a
model it is
desirable that the
hypotheses are
realistic and
simple.

Once a model is
chosen, theoretical
properties and
their implications
should be
considerably rich
and obtainable
with reasonable
ease.
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The assumptions
(N1)—(N6) are
qualitative,
whereas the
conclusion is
quantitative.

where
I =P(N(t)=n,N(t+h)— N(t) =0),
Io=P(N(t)=n—1,N(t+h)— N(t) =1),
Is=P(N(t)<n—2,N(t+h)— N(t) > 2),

and hence
Py(t + h) = Py(t)[1 — A + o(h)] + Po_1(t)[AR + o(h)]

+ o(h).
We now get as before

%pn(t) = —AP,(t) + APp_1(t), t>0. (8)

Using the initial values P,(0) = P(N(0) = n) = 0,
n > 1 it is fairly easy to inductively solve (8) and get

AL
P,(t) = e_)‘t%, n=0,1,2,---, t>0.
n!
Thus we have proved the following theorem.
Theorem 1. Let the stochastic process {N(t) : t >
0} satisfy the postulates (N1)-(N6). Then for any t >
0,s>0,k=0,1,2,---

P(N(t+s)— N(s) = k) = P(N(t) = k)

(A0
TR

exp(—At). 9)

The stochastic process {N(t)} is called a time homo-
geneous Poisson process with arrival rate A > 0.

Remark 3. The assumptions (N1)-(N6) are qualita-
tive, whereas the conclusion is quantitative. Such a
result is usually indicative of a facet of nature; that
is, phenomena observed in different disciplines, in un-
related contexts may exhibit the same law/pattern. In
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fact, Poisson distribution and Poisson process do come
up in diverse fields like physics, biology, engineering, and
economics. See [3-5]. d

The Poisson arrival model owes its versatility to the fact
that many natural (and, of course, useful) quantities
connected with the model can be explicitly determined.
We give a few examples which are relevant in the context
of insurance as well.

Interarrival and Waiting Time Distributions

Let {N(t) : t > 0} be a Poisson process with arrival
rate A > 0. Set Tp = 0. For n = 1,2,--- define T,, =
inf{t > 0: N(t) = n} = time of arrival of n-th claim
(or waiting time until the n-th claim arrival). Put A, =
Tw—Tp_1,n=1,2,--- so that A,, = time between (n —
1)-th and n-th claim arrivals. Recall from our initial
comments that we had in fact defined the process { N (¢)}
starting from {T;}. The random variables Ty, T, Ts, - - -
are called claim arrival times (or waiting times); the
sequence {A, : n = 1,2,---} is called the sequence of
interarrival times.

For any s > 0 note that {7} > s} = {N(s) = 0}; hence
by (9)

P(Ay > s)=P(Ty > s) = P(N(s) =0) = exp(—A\s).
(10

So P(A; <s)=1-— e s > 0. Therefore the random
variable A; has an Exp(\) distribution (= exponential
distribution with parameter A > 0); that is,

b
Pmlemm»:/}ehw, 0<a<b<oo. (11)
Next let us consider the joint distribution of (77, T2). Let

F(r, 1) denote the joint distribution function of (7', T5);
that iS, F(Tl,T2)<t17t2) = P(Tl S tl,TQ S tQ) As 0 S

Poisson
distribution and
Poisson process
do come up in
diverse fields.
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Ty < Ty it is enough to look at Fip z,)(t1,t2) for 0 <
t1 < to. It is clear that for 0 < t; < tq,

{T) <t1,Ty < to} = {N(t1) > 1, N(t2) > 2}
={N(t1) =1,N(t2) — N(t1) > 1} U{N(t1) > 2},

where the r.h.s. is a disjoint union. So using properties
(N3), (N4) and equation (9) we get

F(Tl,Tz)(t1>t2)

= P(N(t1) = 1, N(t2) = N(t1) > 1) + P(N(t1) > 2)
= Atye M1 — e M) L1 (€7 4 My M)
= —Mtie M2 4+ H(ty),

where H is a function depending only on t¢;. Conse-
quently the joint probability density function fn 1)
of (T, Ty) is given by
92
fer (b, t2) = e TRAGEAIGRE)
Ne ™Mz if 0 <t <ty < 00
- { 0, otherwise. }
(12)

To find the joint distribution of (A;, As) from the above,
note that

()= (0 )= () () w

The linear transformation given by the (2 x 2) matrix
in (13) has determinant 1, and transforms the region
{(t1,t3) : 0 < t; < ty < oo} in 1 — 1 fashion onto
{(ay,a2) : a; > 0,as > 0}. So the joint probability den-
sity function f(a, a,) of (A1, Az) is given by

f(Al,Az)(CLl; CLQ)
= fr 1) (a1, a1 + az)

B (Ae ) (Ner2) if a; > 0,a9 > 0
- 0, otherwise.
(14)
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Thus Aq, Ag are independent random variables each hav-
ing an exponential distribution with parameter .

With more effort one can prove the following theorem.

Theorem 2. Let {N(t):t > 0} be a time homogeneous
Poisson process with arrival rate A > 0. Let Ay, Ag,---
denote the interarrival times. Then {A, :n =1,2,---}
15 a sequence of independent, identically distributed ran-
dom wvariables (or in other words an i.i.d. sequence)
having Exp(\) distribution. O

Note: As A; has Exp(\) distribution, its expectation is
given by E(A;) = ; so 5 is the mean arrival time. Thus
the arrival rate being \ is consistent with this conclusion.

Note: It is an easy corollary of the theorem that T, =
Ay + As+ - - -+ A, has the gamma distribution I'(n, ).

Remark 4. One can also go in the other direction.
That is, let 0 = Ty < T7 < Ty < --- be the claim ar-
rival times; let A, = T,, — T,—1,n > 1. Suppose {A,}
is an ii.d. sequence having Exp(A) distribution. De-
fine {N(t)} by (1). Then the stochastic process { N (t) :
t > 0} can be shown to be time homogeneous Poisson
process with rate A. In the jargon of the theory of sto-
chastic processes, Poisson process is the renewal process
with i.i.d. exponential arrival rates.

Order Statistics Property

This is another important property of the Poisson process.

Recall that for events G, H, the conditional probability

of G given H is defined by P(G | H) £ P;,nglf). We first

prove
Theorem 3. Notation as earlier. For 0 < s <'t,
P(A1<s | N(t)=1)=—; (15)

that s, given that exactly one arrival has taken place
in [0,t], the time of the arrival is uniformly distributed

The interarrival
times are
independent
random variables
having exponential
distribution.

Order statistics
property is crucial
in explicit
computations
involving Poisson
processes.
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over (0,1).

Proof. As the Poisson process has independent incre-
ments,

P(Ai<s | N(t)=1) =

PN = 1)
_ P(N(s)=1,N(t) — N(s) =0)
P(N(t)=1)
_ P(N(s)=1)-P(N(t)— N(s)=0)
P(N(t)=1)
Ase )\se—)\(t—s) 3
B Ate—M T
completing the proof. O

A natural question is: If N(¢) = n, what can one say
about the conditional distribution of Ty, Ty,--- , 1,7

Theorem 4. Let {N(t):t > 0},T1,T2,--- be as before.
For any t > 0, and any n = 1,2,--- the conditional
density of (Ty,Ts,---,T,) given N(t) =n is

1
le,T2,---,Tn((slv 82, vsn) | N(t) = n) =n!- t_”’ (16)

for 0 < sy <s9< - <5, <t

Proof. For notational simplicity we take n = 2; the gen-
eral case is similar. Let 0 < s1 < so < t; take hy, ho > 0
small enough that 0 < s; < s1+hy < 59 < 59+ hg < t.
Then again using the independent increment property
and (9), we get

P(Sl<T1<Sl+h1,82<T2<82+h2 | N(t)ZQ)

N(s1) =0,N(s;y+ hy)— N(s1) =1,
P N(Sz)—N(81+h1):0,
N(82+h2)—N(82):1,N(t)—N(82—|—h2):0
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1
N2/ 2!
'{67/\81/\hle7/\(51+h1751)67/\(827(81+h1))

'/\hzef/\(52+h2782)6*/\(15*(52+h2))}

2!
= t_2h1h2
Dividing by hiho and letting hq, ho | 0 we get the desired
result. ]
Remark 5. Let Vq,Vs,--- V, be ii.d. random vari-

ables each having a uniform distribution over (0, t), where
t > 0 is fixed. Note that the probability density function
of each V; is

, if 0<s<t

fvi(s) =

1
t
0, otherwise.

Let V1) < V() < - -+ < V() denote the order statistics of
Vi, Va,--+ V. That is, Vig)(w), Vigy(w), -+, Vip)(w) de-
notes Vi(w), Va(w),- -+, V,(w) arranged in increasing or-
der for any w € Q. It is not difficult to show that the
joint probability density function of V{1, Vi), -+, Viy) is
given by the r.h.s. of (16). So the preceding theorem
means that

d
((Ty,To,---,Tn) | N(t)=n)= V),V Vi),
(17)

where £ denotes that two sides have the same proba-
bility distribution. If Uy, Us,--- ,U, are ii.d. U(0,1)
random variables (that is, having uniform distribution
over (0,1)), then (17) can be expressed as

d
(Th,To,--- .\ T,) | N(t)=n)= (tU(l)th@)v"' th(n)>'
(18)

OJ
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An important consequence of Theorem 4 and Remark 5
is the following result whose proof is quite involved; see

[1].

Theorem 5. Let {N(t):t > 0} be a time homogeneous
Poisson process with rate A\ > 0; let 0 < T7 < Ty < ---
denote the claim arrival times corresponding to N (-).
Let {X;:i=1,2,---} be an i.i.d. sequence indepen-
dent of the process {N(t)}. Then there exists a sequence
{Uj :j=1,2,---} such that (i) {U;} is a sequence of
i.i.d. random variables having U(0,1) distribution, (ii)
the families {U;},{X;},{N(t)} are independent of each
other, (iii) for any reasonable function g of two variables

N(t) N(t)
ST X)) 2 Ui X)), t=0. (19)
=1 =1

g

The basic strategy for proving Theorem 5 can be easily
stated. Conditioning the Lh.s. of (19) by {N(t) = n},
we use Theorem 4 to replace T; by tUg). Then invok-
ing independence of the families {U;}, {X;} and the fact
that X;’s are i.i.d.’s, we permute X, Xy, -+, X,, suit-
ably to facilitate the desired conclusion. Mathematical
justification requires measure theoretic machinery.

Cramer—Lundberg Model

This is the classical and very versatile model in insur-
ance. The claim arrivals {T;} happen as in a time homo-
geneous Poisson process with rate A > 0. The claim sizes
{X;} are ii.d. nonnegative random variables. The se-
quences {X;},{T;} are independent of each other. The
total claim amount upto time ¢ in this model is given

by

N@©)
Sit)=X1+Xo+ -+ Xy :ZXi, t > 0.
i—1
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which is the same as (2). Note that {S(¢) : ¢ > 0} is an
example of a compound Poisson process.

We now look at the discounted sum corresponding to
the above model. Let r > 0 denote the interest rate.
Define

N (1)
So(t) =) e iX;, t>0. (20)

=1

This is the “present value” (at time 0) of the cumulative
claim amount over the time horizon [0, ¢]. By Theorem 5
for any t > 0

N(t)

So(t) =) e X, (21)

=1

where {U,} isani.i.d. U(0,1) sequence as in the theorem.
Therefore using the independence of the three families
of random variables we get

E(So(t))
N(t)
= ZeiTtUZX
=B YN [ N = n| - PN () =)
_ Z” E [efrtUl] -E(X1)-P(N(t) =n)

So we have proved the following theorem.
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Equation (22) gives
the average amount

needed to take care of

claims over an initial

period, when premium

income might not be
sizable.

Theorem 6. With the notation as above

N(t)

1
r
=1

That is, in the Cramer—Lundberg model, the average/
expected amount needed to take care of claims over [0, t]
is given by (22). O

Next let p(t) denote the premium income in the time
interval [0,¢]. In the Cramer-Lundberg model it is as-
sumed that p(-) is a deterministic linear function; that
is, p(t) = ct, t > 0 where ¢ > 0 is a constant called the
premium rate. With the total claim amount S(-) defined
by (2), put for t > 0,

N(t)
Ut)=u+p(t) = St)=u+tct—> X, (23)

The process {U(t) : t > 0} is called the risk process (or
surplus process) of the model; here u is the initial cap-
ital. Note that U(t) is the insurance company’s capital
balance at time ¢. Letting » | 0 in (22) or otherwise,
note that E(S(t)) = ME(X;) and hence

E(U#) =u+ct — B(S{t)) = u+ct — ME(X)). (24)

By (24), a minimal requirement in choosing the premium
rate may be taken to be

¢ > AE(X1) (25)

so that on the average, claim payments are taken care
of by premium income. This somewhat simple criterion
can be justified by other considerations also, as we shall
see later. A more prudent condition is to require that
c¢> (14+p)AE(X1), where p > 0 is called a safety loading
factor.
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Ruin Problem in the Cramer—Lundberg Model

As mentioned earlier, in an insurance set-up the finan-
cial risk is shifted to the insurance company to a large
extent. There have been many instances when insurance
companies have gone bankrupt unable to cope up with
claims during major catastrophes. So a theoretical un-
derstanding of conditions leading to ruin of the company,
probability of ruin, severity of ruin, etc. will help at least
in avoiding certain pitfalls. Study of ruin problems has,
therefore, a central place in insurance mathematics.

The event that the surplus U(+) falls below zero is called
ruin. Set

T =inf{t >0:U(t) < 0}; (26)

T is called the ruin time; it is the first time the surplus
falls below zero. The probability of ruin is then

Y(u) = P(T < oo | U(0) = u) (27)

for u > 0; it is considered as a function of the initial
capital u. Note that ¢ (-) depends on the premium rate
c as well. A very natural question is: For what premium
rates ¢ and initial capital u can it happen that ¢ (u) = 17
That is, when is ruin certain?

By the definition of U(-), note that U(-) increases in the
intervals [T, Ty,+1),n > 0. Therefore ruin can occur only
at some 7T,,. Now for n > 1,

U(T,) =u+cT, — ZXi (because N (T),) =n)
i=1

=u+ Z(CAZ' — X;) (because T, = ZAZ)
i=1 i=1
(28)
Put Zz = XZ—CAZ,Z Z 1,50 = O,Sn = ZZ“TL Z 1.
i=1
Then (28) is just U(T,) = u— S,,n > 1. Since “ruin”

A theoretical
understanding of
conditions leading to
ruin of the company,
probability of ruin,
severity of ruin, etc.
will help at least in
avoiding certain
pitfalls.
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In the Cramer—

Lundberg model, ruin

is certain if equation
(25) is not satisfied.

The condition (25) is

called the net profit
condition.

= {U(T,) < 0 for some n}, it is now easy to see that
Y (u) = P(sup Sp > u). (29)
n>1

Since the families {A;} and {X} are mutually indepen-
dent, and each is a sequence of i.i.d.’s, note that {Z;} is
a sequence of i.i.d.’s and hence {S,, : n > 0} is a random
walk on the real line R. The following result concerning
random walks on R is known.

Theorem 7. Let {Z;},{S,} be as above; assume that
Z; is not identically zero, and E(Z;) exists.

(a) If E(Zy) >0, then P(lim S, =+o00)=1.

n—oo

(b) If E(Z;) <0, then P(lim S, =—00)=1.

(¢c) If E(Z1)=0, then
P(limsup S,, = 400, liminf S, = —00) = 1.

n—o0 n—oo

g

Note: While (a), (b) above are immediate consequences
of the strong law of large numbers, assertion (c) requires
a lengthy proof; see [2,3]. O

From (29) and the above theorem it follows that ¢ (u) =
1 for all w > 0, if E(X;) — cE(A;) > 0; note that
E(A)) = % as Ay has an exponential distribution with
parameter \; so in the Cramer—Lundberg model ruin is
certain if (25) is not satisfied. The condition (25) is called
the net profit condition, which is generally assumed to

be satisfied.

If (25) holds, the above does not imply that ruin is
avoided; it only means that one may hope to have ¢ (u) <
1,u > 0. In this direction we have the following result.

Theorem 8. In the Cramer-Lundberg model assume
that the net profit condition (25) holds. Assume also
that there exists r > 0 such that

Elexp(rZ,)] = Elexp(r(X; — cA4y))] = 1. (30)

64
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Then
Y(u) < exp(—ru), for wu>0. (31)

g

The constant r in (30) is called the adjustment coeffi-
cient; in the Cramer-Lundberg model, this coefficient
exists if (25) holds and X; has moment generating func-
tion (or Laplace transform) in a neighbourhood of 0. The
inequality (31) is known as Lundberg inequality. See [2]
for proof and extensions.

Note: An elegant way of proving Theorem 8 is through
martingale methods. Martingale theory is a powerful
tool in a probabilist’s kit. One may see [6,8] for some of
the elementary aspects and applications of martingales,
and [2] for applications to insurance.

Remark 6. In addition to the above bound one can
also derive an integral equation for the ruin probability.
Suppose E(X;) < oo and that the net profit condition
holds. Then one can get a distribution function G (ex-
plicitly in terms of the distribution function of X;) such
that

o) = 22501 = o)+ 225 e - ac)

(32)

Equation (32) is a renewal type equation; however it
is a defective renewal equation because AE(X;)/c < 1
(as the net profit condition holds). Still following the
methods of renewal theory one can get a series solution
0 (32). See [1,2] for details. d

Claim Size Distribution

The common distribution of the i.i.d. sequence {X;} is
called the claim size distribution. With the exception
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Risks regarding
insurance of
airplanes,
skyscrapers,
dams, bridges, etc.
are very high.
Companies have
also faced ruin due
to a very small
number of very
huge claims.

of Theorem 8, we have not made any specific reference
to the claim size distribution so far. A conventional as-
sumption is that X, have an exponential distribution.
In such a case P(X; > z) = e, z > 0, where A\ > 0;
that is, the (right) tail of the claim size distribution
decays at an exponential rate. Most of the distribu-
tions used for modelling in statistics have this property.
The ubiquitous normal (or Gaussian) distribution de-
cays even at a faster rate. Such distributions are called
light tailed distributions; for these distributions the mo-
ment generating functions exist in a neighbourhood of 0.

An important development of late is to consider claim
sizes that are not necessarily light tailed. Risks regard-
ing insurance of airplanes, skyscrapers, dams, bridges,
etc. are very high. In recent years, companies have also
faced ruin or near ruin due to a very small number of
very huge claims; in some instances, a single massive
claim has done the damage. There are quite a few no-
tions of heavy tailed distributions; invariably the mo-
ment generating function does not exist in any neigh-
bourhood of 0 for these distributions. A versatile notion
of heavy-tailedness in the insurance context is given be-
low.

Let F be a distribution function supported on (0, c0);

(this corresponds to a positive random variable). Let

X1,Xs, -+ be an i.i.d. sequence with common distrib-
n

ution function F. Set S, = >  X;, M, = max{Xy, X,
=1

1=

LX) IE

P(S,
lim (Sn > 7)

——= =1, f > 2, 33
z—oo P (M, > x) or = (33)

then F' is said to be subexponential. If F is subexpo-
nential then it can be shown that e*P(X > z) — oo,
for any a > 0, where X is a random variable with distri-
bution function F. So moment generating function does
not exist in any neighbourhood of 0 for such distribu-
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tions. Two classes of subexponential distributions are

given below.

(i) Weibul distribution: In this case F(z) =1 — F(z) =
exp(—cz™), if z > 0, and F(z) = 0, if z < 0, where
¢ > 0,7 > 0 are constants. This family of distributions
has been useful in reliability theory, besides insurance.
If 0 < 7 < 1, then F is subexponential. See [1,2].

(ii) Pareto distribution: Again it is convenient to de-
fine in terms of the right tail of the distribution; here
F(z) 21— F(z) = k*/(k +2)% 2 > 0, where x,a > 0
are constants. This class is subexponential; (even expec-
tation exists only when « > 1.) This family has also
been used in economics to describe income distributions.

As the moment generating function does not exist for
heavy tailed distributions, note that Theorem 8 is not
applicable. In fact, when the claim size distribution be-
longs to an appropriate subclass of subexponential dis-
tributions, it can be established that the ruin probabil-
ity decays only at a power rate, viz. ¥ (u) behaves like
Ku~? for large u, where K, 6 > 0 are suitable constants.
Contrast this to the exponential rate e™", where r > 0
in Theorem 8. So ruin is much more formidable if the
claim size distribution is heavy tailed. See [1,2].

Assorted Comments

We have dealt with a few elementary aspects of just one
model. Comments below are meant to give a flavour of
some other aspects/models.

1. A more general model is the renewal risk model (also
called Sparre Andersen model). In this model, the in-
terarrival times Aj, Ao, --- are just i.i.d. nonnegative
random variables (not necessarily exponentially distrib-
uted). The net profit condition is given by an analogue
of (25), viz. ¢ > E(X;)/E(A;). Lundberg inequality
holds provided that the net profit condition is satisfied
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and that the adjustment coefficient exists. Renewal risk
model with subexponential claim sizes continue to be
objects of research.

2. Life insurance/pension insurance models are gen-
erally described in terms of continuous time Markov
processes with state space having only a finite number
of elements; at least one state is absorbing, and cer-
tain transitions may be disallowed. For example, in the
simplest life insurance model there are only two states,
one signifying “alive” and the absorbing state indicating
“dead”, reflecting the status of the insured.

3. In addition to the basic insurance aspects, more com-
plex models can be considered. For example, an insur-
ance company can invest part of its surplus in bonds
giving returns at fixed rates, and another part in stocks
which are subject to the volatility of the market. Some
problems of interest are how optimally should these in-
vestments be made so that the ruin probability is mini-
mized, or so that the dividend payment by the company
is maximized.

4. We have not touched upon any statistical aspect like
estimation of claim arrival rate, parameters of the claim
size distribution, or when does claim size data indicate
heavy tailed behaviour, etc.

[1,2] and the references therein deal with the above is-
sues and more.
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