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Abstract

Exact solutions of the Caldeira-Leggett Master equation for the reduced density
matrix 〈x′|ρ(t)|x〉 for a free particle and for a harmonic oscillator system coupled to
a heat bath of oscillators are obtained for arbitrary initial conditions. The solutions

prove that the Fourier transform of ρ(t) with respect to (x+x′)
2 factorizes exactly into

a part depending linearly on ρ(0) and a part independent of it. The theorem yields
the exact initial state dependence of ρ(t) and its eventual diagonalization in the energy
basis.
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I. Introduction – Feynman and Vernon[1] pioneered the ‘influence functional technique’
in which a quantum system of interest and its environment are represented by a single
Hamiltonian and the time development of the reduced density matrix ρ of the system is
computed by tracing out the degrees of freedom of the environment. Using this technique
on the total Hamiltonian

H =
p2

2m
+ V (x) + x

∑

k

ckRk +
∑

k

( p2
k

2M
+

1

2
Mω2

kR
2
k

)

, (1)

in which the environment is modeled as a thermal bath of oscillators with co-ordinate co-
ordinate coupling to the system coordinate x, Caldeira and Leggett[2] derived the following
high-temperature master equation for the reduced density operator:

∂ρ

∂t
= − i

h̄

[

HR, ρ
]

− iγ

h̄

([1

2
{p, x}, ρ

]

+
[

x, ρp
]

−
[

p, ρx
])

− D

4h̄2

[

x,
[

x, ρ
]]

, (2)

where HR is the renormalized system Hamiltonian, γ is the relaxation rate and

D = 8mγkBT, (3)

where kB is the Boltzmann constant and T is the temperature of the bath. The same master
equation has also been derived from completely different approaches and approximations[3,
4]. In particular, for

HR =
p2

2m
+

1

2
mω2x2, (4)

Agarwal’s approximations yield Eq(2) with

D = 8mγh̄ω(n̄ +
1

2
), (5)

where

n̄ =
[

exp

(

h̄ω

kBT

)

− 1
]−1

, (6)

which has been used even at zero temperature by some authors[5]. In that case, at all
temperatures,

D ≥ 4mγh̄ω. (7)

For an open system, coupling with this environment may lead to near diagonalization of the
reduced density matrix in some preferred basis. Such decoherence has obvious conceptual
interest in understanding the transition from quantum to classical behaviour[6]. In addition,
advances of technology have increased the propsects of tests of decoherence by producing
superpositions of macroscopically distinguishable states[7]. On the other hand, maintenance
of quantum coherence is crucial to the success of quantum computation, cryptography and
teleportation[8].

The purpose of the present work is a rigorous study of quantum decoherence by means
of exact solutions of the Caldeira-Leggett equation. Some interesting questions which have
been stimulated by the work of Zurek, Habib and Paz[9] in the weak coupling approximation
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are: which initial states are least susceptible to loss of quantum coherence, and which are the
likely end states.We are able to give precise answers to these questions without making the
weak coupling approximation due to a factorization property of the initial state dependence
of the exact solutions of the master equation. We begin by proving the factorization theorem.

II. Exact Solution of the Master Equation

A. Oscillator case – In the position representation we denote

〈x′|ρ(t)|x〉 = ρ(R, r, t), (8)

where

R =
x + x′

2
, r = x − x′ (9)

The master equation then becomes:

∂ρ(R, r, t)

∂t
=

[

− ih̄

2m
(

∂2

∂x2
− ∂2

∂x′2
) − γ(x − x′)(

∂

∂x
− ∂

∂x′
) − D

4h̄2 (x − x′)2 (10)

+
mω2

2ih̄
(x′2 − x2)

]

ρ(R, r, t)

= −
[ih̄

m

∂2

∂r∂R
+ 2γr

∂

∂r
+

Dr2

4h̄2 +
mω2rR

ih̄

]

ρ(R, r, t).

A Fourier transform with respect to R reduces it to a first order partial differential equation.
Defining

ρ(R, r, t) =
∫

dpdp′

2π
exp (i(p′ − p)R − i(p + p′)r/2)〈p′|ρ(t)|p〉 (11)

≡ 1√
2π

∫ ∞

−∞
dKeiKRρ̃(K, r, t), K = p′ − p,

we obtain

∂ρ̃(K, r, t)

∂t
+
[

(2γr − h̄K

m
)

∂

∂r
+

mω2r

h̄

∂

∂K
+

Dr2

4h̄2

]

ρ̃(K, r, t) = 0. (12)

To integrate this by Lagrange’s method (of characteristics) note that on a curve K =
K(s), t = t(s), r = r(s), the equation becomes

dρ̃

ds
+

Dr2

4h̄2 ρ̃ = 0, (13)

with

ds =
dt

1
=

dr

2γr − h̄K
m

=
dK

rmω2/h̄
=

dρ̃

(−Dr2/(4h̄2))ρ̃
(14)

We readily obtain the three integrals

U± = C±, U3 = C3, (15)
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where C± and C3 are integration constants and

U± = (K − r

λ±

) exp (
−h̄t

mλ±

), (16)

U3 = ρ̃(K, r, t) exp [
D

32mh̄ (γ2 − ω2)

(

λ+(K − r

λ+

)2 (17)

− 2h̄

mγ
(K − r

λ+

)(K − r

λ−

) + λ−(K − r

λ−

)2
)

],

and λ± are constants defined by

λ± =
h̄

mω2
(γ ±

√

γ2 − ω2). (18)

If (K, r, t) and (K ′, r′, 0) are points on the curve (15), Eqs. (16) yield K ′, r′ in terms of U±

K ′ =
U+λ+ − U−λ−

(λ+ − λ−)
, r′ = (U+ − U−)

λ+λ−

λ+ − λ−

. (19)

Eq. (17) then yields the general solution,

ρ̃(K, r, t) = ρ̃(K ′, r′, 0) exp (αZ), (20)

where

α =
D

16m2(γ2 − ω2)
, (21)

and

Z =
1

γ
(K − r

λ+

)(K − r

λ−

)(1 − e−2γt) (22)

−mλ+

2h̄
(K − r

λ+

)2(1 − e
− 2h̄t

mλ+ )

−mλ−

2h̄
(K − r

λ−

)2(1 − e
− 2h̄t

mλ
− ).

Eq. (20) is the factorization theorem: the exact solution at an arbitray time is equal to the
initial reduced density operator with shifted arguments (K ′, r′) times the function exp (αZ)
which is independent of the initial conditions. It may be verified by direct substitution
that the expression (20) solves Eq.(12). With ρ̃(K, r, t) known, a Fourier transform yields
ρ(R, r, t) explicitly.

B. Free Particle Case – Starting from Eq. (10) with ω = 0, or by taking the ω → 0 limit
of Eqs(20)-(22), we obtain,

ρ̃(K, r, t) = ρ̃(K ′, r′, 0)

(

exp− D

16m2γ2

[

K2t +
m(r − r′)

h̄

(

(r + r′)
mγ

h̄
+ K

)]

)

(23)
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where,

K ′ = K, r′ =
h̄K

2mγ
+ (r − h̄K

2mγ
)e−2γt. (24)

The general solution (23) valid for arbitrary initial conditions agrees with the particular
solution for an initial Gaussian wavepacket obtained earlier in Ref [11] except that γ should
be replaced by 4γ in the solution quoted there.

III. Energy Basis Via Decoherence

A. Oscillator case – The decoherence mechanism during the system-bath interaction is
known to suppress the off-diagonal elements of the reduced density matrix of the system in
an appropriate basis, making all information on the system classically interpretable in that
basis. For simplified models where the self-Hamiltonian of the system has either been ignored
or considered co-diagonal with the interaction Hamiltonian, the preferred basis in which the
density matrix becomes nearly diagonal has been believed to be the one that commutes with
the interaction Hamiltonian. In the Caldeira-Leggett Model studied here, the coupling to
the bath is a coordinate-coordinate coupling. Consider the solutions, Eq(20) and Eq(23)
for the oscillator and the free particle, respectively, at long times (γt >> 1) [12]. For the
oscillator the solution at t → ∞ for the overdamped case (γ >> ω) is:

ρ̃(K, r,∞) = ρ̃(0, 0, 0) exp
[

− D

16m2ω2γ

(

K2 +
m2ω2r2

h̄2

)]

. (25)

This limiting density matrix is actually independent of the initial density matrix ρ(0) pro-
vided that ρ(0) is normalized, because then

ρ̃(0, 0, 0) =
Trρ(0)√

2π
= 1/

√
2π.

The final density matrix is not diagonal in the position basis or momentum basis. For
example, in the position basis we find,

〈x′|ρ(∞)|x〉 = A exp(−α+(x2 + x′2) − 2α−xx′), (26)

where

A = 4mw

√

γ

4πD
, α± =

m2w2γ

D
± D

16h̄2γ
. (27)

Since ρ(∞) is Hermitian, we seek an orthonormal complete set of states |φn〉 s.t.

ρ(∞)|φn〉 = λn|φn〉, (28)

and
ρ(∞) =

∑

n

λn|φn〉〈φn|. (29)

Using the relation [13],

∫ ∞

−∞
e−(x−y)2Hn(αx)dx =

√
π(1 − α2)n/2Hn

(

αy√
1 − α2

)

, (30)
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we find the solutions φn of (28) to be,

〈x|φn〉 = Ane−x2(mw

2h̄
)Hn

(

x

√

mw

h̄

)

, (31)

where Hn(x) are the Hermite Polynomials, and An are normalization constants. We also
find the eigenvalues

λn =
8mγh̄w

D + 4mγh̄w

(

D − 4mγh̄w

D + 4mγh̄w

)n

. (32)

Thus the final density matrix is diagonal in the basis of energy eigenstates of the oscillator
(Eq. (31)). The eigenvalues λn form a convergent geometric series due to the inequality (7)
and yield Trρ(∞) = 1.

The Wigner function corresponding to the final density matrix is easily seen to be of
Gaussian form (in agreement with a theorem of Tegmark and Shapiro [14]),

W (x, p, t = ∞) =
∫ ∞

−∞

dy

2πh̄
〈x − y

2
|ρ(∞)|x +

y

2
〉eipy/h̄

=
4mγw

πD
exp

(

−x2 4m2γw2

D
− p2 4γ

D

)

. (33)

It yields the position and momentum uncertainties

∆x =

√

D

8m2γw2
, ∆p =

√

D

8γ
, (34)

and

∆x∆p =
D

8γmw
>

1

2
h̄. (35)

The linear entropy corresponding to the final density matrix is,

S = Tr(ρ(∞) − ρ2(∞)) = 1 − 4mγh̄w

D
> 0. (36)

Since the density matrix for t → ∞ is independent of the initial state, the final uncertainty
product ∆x∆p and the entropy production (36) are also independent of the initial state.
At intermediate times the exact density matrix (20) shows a factorized dependence on the
initial density matrix which we hope to study in detail later.

B. Free Particle Case – Eq. (23) shows that due to the factor exp(−Dk2t/(16m2γ2)) on
the right-hand side, the density matrix is driven to a diagonal matrix in momentum space
for t → ∞. Further, the diagonal elements (K = p′ − p = 0) become

ρ̃(o, r, t) −→

t → ∞
1√
2π

exp
[

−Dr2/(16γh̄2)
]

.

Since momentum being diagonal implies energy being diagonal for a free particle, the energy
basis emerges in this example too as the preferred basis for t → ∞.
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Conclusion – We have obtained exact solutions of the Caldeira-Leggett Master equation
for the reduced density matrix for an oscillator and for a free particle for arbitrary initial
conditions in a compact factorizable form. The solutions for both cases studied show that the
density matrix eventually diagonalizes in the energy basis at long times though the coupling
to the bath is via position. Our conclusion is in tune with the recent result of Paz and
Zurek [10] where they show that eigenstates of energy emerge as pointer states, but we do
not use any weak coupling approximation. The t → ∞ form of our Wigner function agrees
with a theorem of Tegmark and Shapiro [14]. We hope to study later the intermediate time
behavior of the density matrix using the factorised exact solution obtained here.
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