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WIDTHS OF SUBGROUPS

RITA GITIK, MAHAN MITRA, ELIYAHU RIPS, AND MICHAH SAGEEV

Abstract. We say that the width of an infinite subgroup H in G is n if
there exists a collection of n essentially distinct conjugates of H such that the
intersection of any two elements of the collection is infinite and n is maximal
possible. We define the width of a finite subgroup to be 0. We prove that a
quasiconvex subgroup of a negatively curved group has finite width. It follows
that geometrically finite surfaces in closed hyperbolic 3-manifolds satisfy the
k-plane property for some k.

Introduction

A subgroup H of a group G is called malnormal in G if for any g ∈ G \H the
intersection g−1Hg∩H is trivial. Malnormality may be thought of as the opposite of
normality, and may be geometrically interpreted as an annulus-free condition. Most
subgroups are not normal but are also far from being malnormal. For example, the
subgroup generated by a in the Baumslag-Solitar group B(1, 2) = 〈a, b|bab−1 = a2〉
is not normal, but any finite collection of its conjugates has infinite intersection. In
this paper we generalize the concept of malnormality in two ways.

Definition 0.1. Let H be a subgroup of a group G. We say that the elements
{gi|1 ≤ i ≤ n} of G are essentially distinct if Hgi 6= Hgj for i 6= j. Conjugates of
H by essentially distinct elements are called essentially distinct conjugates.

Note that we are abusing notation slightly here, as a conjugate of H by an
element belonging to the normalizer of H but not belonging to H is still essentially
distinct from H . Thus in this context a conjugate of H records (implicitly) the
conjugating element.

Definition 0.2. We say that the height of an infinite subgroup H in G is n if there
exists a collection of n essentially distinct conjugates of H such that the intersection
of all the elements of the collection is infinite and n is maximal possible. We define
the height of a finite subgroup to be 0.

Definition 0.3. We say that the width of an infinite subgroup H in G is n if there
exists a collection of n essentially distinct conjugates of H such that the intersection
of any two elements of the collection is infinite and n is maximal possible. We define
the width of a finite subgroup to be 0.

The width can be thought of as an algebraic version of the k-plane property
which was introduced by P. Scott in [Scott]. The k-plane property says roughly
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that out of any k distinct planes corresponding to lifts of an immersed surface in
a 3-manifold to its universal cover at least two are disjoint. This property has
important applications in 3-manifold theory. For example, the 4-plane property
was used in [H-S] to prove that homotopy equivalence implies homeomorphism for
certain 3-manifolds.

It is easy to see that infinite malnormal subgroups have height and width 1,
subgroups of finite index have finite height and width, and infinite normal subgroups
of infinite index have infinite height and width. The main result of this paper is
the following:

The Main Theorem. A quasiconvex subgroup of a negatively curved group has
finite width; hence it has finite height.

Corollary. As any quasi-Fuchsian subgroup of the fundamental group of a closed
hyperbolic 3-manifold is quasiconvex, all such subgroups have finite width. Hence
quasi-Fuchsian subgroups of closed hyperbolic 3-manifolds have the k-plane property
for some k.

We give two different proofs of the Main Theorem which stem from two differ-
ent perspectives, one viewing negatively curved groups as a generalization of free
groups, the other viewing negatively curved groups as a generalization of cocompact
Kleinian groups. The first proof, found jointly by the first and the third authors,
was motivated by their research about intersections of conjugates in free groups,
(cf. [G-R]). It uses basic geometry of negatively curved groups and the pigeonhole
principle, and is given in Section 1. The second proof, discovered independently by
the second and the fourth authors, originated in the study of immersed incompress-
ible surfaces in 3-manifolds. It makes use of the action of a negatively curved group
on its boundary and of the behavior of limit sets under this action. The argument
is modeled on the proof that quasi-Fuchsian surface subgroups satisfy the k-plane
property for some k (cf. [Mi], [R-S]), and is given in Section 2.

1. Counting Cosets

Let X be a set, let X∗ = {x, x−1|x ∈ X}, and for x ∈ X define (x−1)−1 = x.
Recall that the Cayley graph of G = 〈X |R〉 denoted by Γ is an oriented graph
whose set of vertices is G and the set of edges is G×X∗, such that an edge (g, x)
begins at the vertex g and ends at the vertex gx. Since the Cayley graph depends
on the generating set of the group, we work with a fixed generating set. The word
metric on Γ, denoted by ρ, is defined by assigning to each edge length 1. A geodesic
in Γ is a shortest path joining two vertices. A geodesic triangle in Γ is a closed
path p = p1p2p3, where each pi is a geodesic. A group G is δ-negatively curved if
any side of any geodesic triangle in Γ belongs to the δ-neighborhood of the union
of the other two sides. As usual, we assume that all negatively curved groups are
finitely generated. A subset S of G is K-quasiconvex in G if any geodesic in Γ with
endpoints in S belongs to the K-neighborhood of S. We say that S is quasiconvex
in G if it is K-quasiconvex in G for some K. It is well-known that a quasiconvex
subgroup of a finitely generated group is finitely generated ([Sh]).

A word in X is any finite sequence of elements of X∗. Denote the set of all words
in X by W (X), and denote the equality of two words by “≡”. The length of the
element g in the group G, denoted by |g|, is the length of a shortest word in X
representing g.
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Definition 1.1. The label of a path p = (g1, x1)(g1x1, x2) · · · (g1x1 · · ·xn−1, xn) in
Γ is the function Lab(p) ≡ x1x2 . . . xn ∈ W (X). As usual, we identify the word
Lab(p) with the corresponding element in G.

Let γ be a geodesic in Γ with endpoints at v and w. The inverse of γ is denoted
by γ̄. The length of γ, which is equal to ρ(v, w), is denoted by |γ|.
Lemma 1.2. Let H be a K-quasiconvex subgroup of a δ-negatively curved group G.
If a shortest representative of the double coset HgH has length greater than 2K+2δ,
then the intersection H ∩ g−1Hg consists of elements shorter than 2K + 8δ + 2;
hence it is finite.

Proof. As the cardinality of the set H ∩ g−1Hg is invariant under conjugation, we
can assume without loss of generality that g is a shortest representative of the coset
gH . Consider h ∈ H∩g−1Hg. Let h0 ∈ H be such that h = g−1h0g. Let ph, p1, ph0

and p2 be geodesics in Γ such that ph begins at 1 and ends at h, p1 begins at 1
and ends at g−1, ph0 begins at g−1 and ends at g−1h0 and p2 begins at g−1h0

and ends at g−1h0g = h. Hence Lab(ph) = h, Lab(p1) = g−1, Lab(p2) = g and
Lab(ph0) = h0. Consider the geodesic 4-gon formed by p1, ph, p2 and ph0 . Let v
be a middle vertex of ph, so |ρ(1, v) − ρ(v, h)| ≤ 1. Let q be the initial subpath
of ph connecting 1 to v. As H is K-quasiconvex and h ∈ H , there exists a path
s shorter than K which begins at v and ends at an element from H . Let t be
a shortest path which begins at v and ends at some vertex w of ph0 , and let q′

be the initial subpath of ph0 connecting g−1 to w. As H is K-quasiconvex and
h0 ∈ H , there exists a path s′ shorter than K which begins at an element from
g−1H and ends at w. Then g = Lab(q′s̄′)Lab(s′t̄s)Lab(s̄q̄). But Lab(qs) ∈ H
and Lab(q′s̄′) ∈ H , hence Lab(s′t̄s) ∈ HgH . As any element in HgH is longer
than 2K + 2δ, so is Lab(s′t̄s). But then |t| > 2K + 2δ − |s| − |s′| > 2δ; hence
ρ(v, ph0) > 2δ. As G is δ-negatively curved, any side of any geodesic 4-gon in Γ
belongs to the 2δ-neighborhood of the union of the other three sides, so v belongs to
the 2δ-neighborhood of p1∪p2. Assume that there exists a path y of length less than
2δ which begins at a vertex u of p1 and ends at v. Then p1 = p′1p

′′
1 , where p′1 ends at

u. As g is a shortest representative of gH , and as g = Lab(p̄1) = Lab(p̄′′1ys)Lab(s̄q̄),
it follows that |g| = |p′1| + |p′′1 | ≤ |s| + |y| + |p′′1 |. Hence |p′1| ≤ K + 2δ. But then
|q| ≤ |p′1|+|y| ≤ K+4δ, so |h| < 2|q|+2 < 2K+8δ+2. Similarly, if v belongs to the
2δ-neighborhood of p2, it follows that |h| < 2K + 8δ + 2, proving the Lemma.

Lemma 1.3. Let G be a δ-negatively curved group, let M = 42δ+ 12K, and let m
be the number of elements of G with length not greater than M . Let {g−1

i Hgi, 1 ≤
i ≤ n} be a collection of essentially distinct conjugates of a K-quasiconvex subgroup
H of G such that gi is a shortest representative of the coset Hgi and |gi| ≤ |gn|,
for 1 ≤ i < n. If for i 6= n all the products gig

−1
n belong to the same double coset

HsH with |s| ≤ 2K + 2δ, then n ≤ m.

Proof. As gig
−1
n ∈ HsH , for 1 ≤ i < n and |s| ≤ 2K + 2δ there exist hi and ki in

H , and si ∈ HsH such that gig
−1
n = hisiki, |si| ≤ 3δ + 2K, and hisiki is shortest

possible. The Lemma is an immediate consequence of the following technical result.

Proposition. The length of ki is less than M
2 for n > i ≥ 1.

Indeed, the Proposition implies that |siki| < 3δ+2K+ M
2 < M for all 1 ≤ i < n.

Hence the pigeonhole principle implies that if n > m, then for some pair of indices
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1 ≤ i < j < n the elements siki and sjkj are equal. But then gig
−1
n = hisiki

and gjg
−1
n = hjsiki. Therefore Hgi = Hgj, contradicting the assumption that the

conjugates g−1
i Hgi and g−1

j Hgj are essentially distinct.

Proof of the Proposition. To avoid awkward notation we prove the Proposition for
k1. The proof for other values of the index i is identical. Let α be a geodesic in
Γ beginning at g−1

1 and ending at 1, so Lab(α) = g1, and let ω be a geodesic in Γ
beginning at g−1

n and ending at 1, so Lab(ω) = gn.
Let η, σ and κ be geodesics in Γ labeled with h1, s1 and k1 correspondingly, such

that ησκωᾱ is a closed path. In fact, it is a geodesic pentagon. As G is δ-negatively
curved, any side of any geodesic pentagon in Γ belongs to the 3δ-neighborhood of
the union of the other four sides. Denote the m-neighborhood of a set S by Nm(S)
and recall that the initial and the terminal vertices of κ are g−1

n k−1
1 and g−1

n . Let u
be the vertex in κ such that u ∈ N3δ(η ∪ σ) and ρ(u, g−1

n ) is minimal possible, and
let v be the vertex in κ such that u ∈ N3δ(ω) and ρ(v, g−1

n k−1
1 ) is minimal possible.

Let κ1 be the initial subpath of κ ending at u and let κ3 be the terminal subpath
of κ beginning at v. If the complement κ2 of κ1 ∪ κ3 in κ is non-empty, then it is
connected and κ2 ⊂ N3δ(α). In this case |k1| = |κ| = |κ1| + |κ2| + |κ3|. If κ2 is
empty, then |k1| = |κ| < |κ1|+ |κ3|. In either case, the following Claims imply that
|k1| < (6δ +K) + (9δ +K) + (6δ + 4K) = M

2 , proving the proposition.

Claim 1. |κ3| ≤ 6δ +K.

Indeed, let y′ be a path shorter than 3δ which begins at v and ends at a vertex
v′ of ω. Let ω′ω′′ be a decomposition of ω such that v′ is the terminal vertex of
ω′. As H is K-quasiconvex and as Lab(κ) ∈ H , there exists a path y′′ shorter than
K which ends at v such that Lab(y′′κ3) ∈ H . As gn is a shortest representative
of Hgn, it follows that |gn| = |ω| = |ω′| + |ω′′| ≤ |y′′y′ω′′| ≤ K + 3δ + |ω′′|; hence
|ω′| ≤ 3δ +K. But then |κ3| ≤ |ω′|+ |y′| ≤ 6δ +K.

Claim 2. |κ2| ≤ 9δ +K.

Let α′α′′ be the decomposition of α such that no point of α′′ belongs to N3δ(κ)
and α′′ is the maximal possible terminal subpath of α. Then κ2 ⊂ N3δ(α

′); hence
|κ2| ≤ |α′|+6δ. It remains to show that |α′| < 3δ+K. Indeed, let a be the terminal
vertex of α′. Then there exists a path f ′ of length less than 3δ which begins at a
vertex a′ in κ and ends at a. As H is K-quasiconvex and as Lab(κ) ∈ H , there exists
a path f ′′ of length less than K, which begins at g−1

n H and ends at a′. As gn is the
shortest representative of Hgn, it follows that |ω| ≤ |α′′|+|f ′|+|f ′′| ≤ |α′′|+3δ+K.
But |ω| ≥ |α| = |α′|+ |α′′|; hence |α′| ≤ 3δ +K.

Claim 3. |κ1| ≤ 6δ + 4K.

If u ∈ N3δ(η), let b be a path of length less than 3δ beginning at u and ending at a
vertex u′ of η. Let c and d be paths of length less than K such that c begins at g−1

n H
and ends at u, and d begins at cosets u′ and ends at g−1

1 H . Then Lab(cbd) ∈ HsH
and |cbd| ≤ 2K + 3δ. Let η′ be the initial subpath of η terminating at u′. As
Lab(η′d) ∈ H,Lab(cκ1) ∈ H ; and as h1s1k1 is shortest possible, it follows that
|ησκ| ≤ |η′d| + |cbd| + |cκ2κ3|, which implies that |η| + |σ| + |κ| − |η′| − |κ2κ3| ≤
2|c|+ 2|d| + |b| ≤ 3δ + 4K. As |η| ≥ |η′| and as |κ| = |κ1| + |κ2| + |κ3|, it follows
that |κ1| ≤ 3δ + 4K.

If u ∈ N3δ(σ), note that |σ| = |s1| < 3δ + 2K. Hence in this case, |κ1| ≤
|σ|+ 3δ ≤ 6δ + 2K.
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Proof of the Main Theorem. Let H be a K-quasiconvex subgroup of a δ-negatively
curved group G, and let m be as in Lemma 1.3. As G is finitely generated, there
exists a finite number, say N , of elements in G of length not greater than 2K + 2δ.
We claim that H has width less than mN . Indeed, let {g−1

i Hgi|1 ≤ i ≤ n}
be a collection of essentially distinct conjugates of H , such that gi is a shortest
representative of the coset Hgi and |gi| ≤ |gn|, for 1 ≤ i < n. Lemma 1.3 implies
that if n ≥ mN there exists an index i < n such that the length of a shortest
representative of the double coset Hgig

−1
n H is greater than 2K + 2δ. But then

Lemma 1.2 implies that the intersection g−1
i Hgi ∩ g−1

n Hgn is finite, proving the
Main Theorem.

2. Limit Sets

We recall some generalities about negatively curved groups. For a thorough
discussion of these matters see, for instance, [Gr 1], [C-D-P] or [G-H]. The Gromov
boundary of the Cayley graph Γ, denoted by ∂Γ, is the collection of equivalence
classes of geodesic rays r : [0,∞) → Γ with r(0) = 1, where rays r1 and r2 are
equivalent if sup{ρ(r1(t), r2(t))} < ∞. The Gromov inner product of elements a
and b in Γ is defined by (a, b) = 1

2{ρ(a, 1)+ρ(b, 1)−ρ(a, b)}. It extends naturally to
an inner product on ∂Γ, defining a metric on ∂Γ (cf. [G-H]). This metric, denoted
by d, is called the visual metric on ∂Γ. The diameter of a set in the visual metric
will be called its visual diameter. The limit set Λ(S) of a subset S of Γ is defined
in the usual way as the collection of accumulation points of S in ∂Γ. It is easy
to see that if S is a K-quasiconvex subset of Γ, then infinite geodesics that start
in S and terminate on the limit set of S lie in a K-neighborhood of S. Let H be
a K-quasiconvex subgroup of G. As G acts on itself on the left by isometries, it
follows that every left coset gH is K-quasiconvex. The conjugate gHg−1 stabilizes
the coset gH , and every element of gHg−1 is within distance |g| of an element in
gH . It follows that Λ(gH) = Λ(gHg−1).

Remark 2.1. Since cosets are disjoint, any ball of finite radius in Γ has non-empty
intersection with only finitely many left cosets of H .

This observation has the following immediate corollary:

Theorem 2.2. A quasiconvex subgroup of a negatively curved group has finite
height.

Proof. Let H be a K-quasiconvex subgroup of a negatively curved group G, and
let {g−1

1 Hg1, ..., g
−1
m Hgm} be a set of essentially distinct conjugates of H such that⋂

g−1
i Hgi is infinite. Then

⋂
g−1
i Hgi contains an element of infinite order which

gives rise to a geodesic l with endpoints in
⋂

Λ(g−1
i Hgi) =

⋂
Λ(g−1

i H). As any
vertex, say v, quasiconvex in l lies in a K-neighborhood of the corresponding left
g−1
i H , all the corresponding left cosets intersect the ball of radius K about v.

Remark 2.1 implies that there exist a finite number n of left cosets which intersect
this ball; thus m ≤ n, so the height of H is at most n .

Thus the asymptotics of H and its conjugates establishes finite height. To prove
finite width, one needs a better understanding of the asymptotics. We will be
interested in intersection patterns of limit sets of conjugates, so that the following
definitions will be useful.
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Definition 2.3. Let L denote the collection of all the translates of Λ(H) under
the action of G. A subset S ⊂ L is said to have non-trivial intersection if the
intersection of all elements of S is non-empty; S is said to be full if every pair of
elements of S intersect.

We start with the following well-known lemma (cf. [G-H]) which says that qua-
siconvex sets lying far away from the origin are small in the visual metric.

Lemma 2.4. For every R > 0 there exists ε(R) such that every K-quasiconvex
subset of G which does not intersect the ball of radius R around 1 has visual diameter
less than ε(R), and ε(R) → 0 as R→∞.

This allows us to estimate the number of conjugates whose diameter is bounded
from below.

Corollary 2.5. For given ε > 0 the set {Λ ∈ L : visual diameter of Λ ≥ ε} is
finite.

Proof. By Lemma 2.4 there exists some R (depending on ε) such that for every Λ
with visual diameter larger than ε, any coset whose limit set is Λ enters the ball of
radius R about the origin. Since there are only finitely many such cosets, the set
of such Λ is finite.

The following two lemmas tell us how quasi-convex subgroups intersect.

Lemma 2.6. If H1, ..., Hn is a finite collection of quasiconvex subgroups of G, then⋂
Λ(Hk) = Λ(

⋂
Hk).

Proof. If G is a cocompact lattice in Hn, this result was proved by Swarup and
Susskind [Su-Sw] (see also [Gr 2], p.164). We prove the lemma for two K-quasicon-
vex subgroups A and B; the argument for general n is analogous. The idea is that
all points in ∂Γ are conical. Given a point p ∈ Λ(A) ∩ Λ(B), choose a geodesic
beginning at 1 and terminating at p. This geodesic lies in a K-neighborhood of
A and of B; hence there exist two sequences of points {ai} ⊂ A and {bi} ⊂ B,
converging to p, such that ρ(ai, bi) < 2K. Thus ai and bi differ by some path
(word) of length ≤ 2K. Since there are only finitely many such words, we may
pass to subsequences of {ai} and {bi} such that ai = big for some fixed g of length
less than 2K. Let ci = aia

−1
1 = (big)(g

−1b−1
1 ) = bib

−1
1 . Then {ci} is a sequence in

A ∩B converging to p.

The following fact is well-known (cf. [Sh]).

Lemma 2.7. If H1, ..., Hn is a finite collection of quasiconvex subgroups of G, then⋂
Hk is quasiconvex

Proof. We proceed by induction, so it suffices to prove the theorem for the case
n = 2. Suppose A and B are K-quasiconvex subgroups and A ∩ B is not quasi-
convex. It follows that there exists a sequence of points {xi} in A ∩ B such that
some geodesic path li from 1 to xi does not lie in the ri-neighborhood of A ∩ B,
where ri → ∞. Thus we can find points yi along li such that Bri(yi), the ball
of radius ri about yi, does not contain any elements of A ∩ B. As A and B are
K-quasiconvex, there exist elements ai ∈ A and bi ∈ B within K of yi; hence ai
and bi differ by an element of B2K(1). Since B2K(1) is a finite set, we may pass to a
subsequence of {yi} so that ai = big, where g ∈ B2K(1). Now choose ri > K+ |a1|.
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Then aia
−1
1 = (big)(g

−1b−1
1 ) = bib

−1
1 is an element of A ∩B within K + |a1| of yi,

a contradiction.

Corollary 2.8. There exists a bound on the size of a subset of L with non-trivial
intersection.

Proof. By Theorem 2.1 H has height n for some n. Now suppose S = {Λ(H1), ...,
Λ(Hm)} is a subset of L with non-trivial intersection. Then by Lemma 2.6, this
intersection is the limit set of

⋂
Hi. Thus

⋂
Hi is an infinite group, and hence

m ≤ n.

The following lemma ensures that the limit set of H is pushed off itself by most
group elements not in H . This lemma was independently proven by I. Kapovich
and H. Short in [K-S] and by E. Swenson in [Swe].

Lemma 2.9. Let H be a K-subgroup of a negatively curved group G. If H < L < G
and L has the same limit set as H, then [L : H ] is finite.

Proof. Assume that there exist infinitely many distinct right cosets {Hli} of H
in L, where li is a shortest representative of Hli and ρ(li, 1) ≥ ρ(lj , 1) for i > j.
Then ρ(li, 1) → ∞, so after passing to a subsequence if necessary, we have that
li → z ∈ ∂Γ. Then z ∈ Λ(L), but the Claim following Lemma 2.9 states that
z /∈ Λ(H), contradicting the hypothesis that Λ(H)=Λ(L). Therefore H has finite
index in L.

Claim. z does not lie in Λ(H).

Proof of the Claim. It is enough to show that for any h ∈ H , the Gromov inner
product (h, li) is bounded by a constant depending only on K and δ, as this shows
that the Gromov inner product (c, z) is bounded by the same constant for any point
c in the limit set of H . Consider geodesic triangles Ti with vertices h, 1, and li. Let
[x, y] denote the edge of the triangle with vertices x, y. G is δ-negatively curved,
so that all triangles are δ-thin. Let ti, ui and vi denote the vertices of the inscribed
triangle of Ti: that is, ti, ui and vi are vertices on the geodesics [1, li], [li, h] and [1, h]
respectively, such that ρ(1, ti) = ρ(1, vi), ρ(li, ti) = ρ(li, ui) and ρ(h, ui) = ρ(h, vi).
As vi’s lie in a K-neighbourhood of H , there exist wi ∈ H such that ρ(vi, wi) ≤ K.
Also, since triangles are δ-thin, the diameter of the inscribed triangle is at most
2δ (cf. [Gr 1]). Therefore, ρ(li, 1) ≤ ρ(li, wi) ≤ ρ(li, ti) + ρ(ti, vi) + ρ(vi, wi) =
ρ(li, ti) + 2δ+K. Hence (h, li) = ρ(1, ti) = ρ(1, li)− ρ(li, ti) ≤ 2δ+K, proving the
claim.

Recall that a quasiconvex subgroup H is said to be maximal in its limit set if
H = stab(Λ(H)). Lemma 2.9 shows that any quasiconvex subgroup is a finite index
subgroup of a quasiconvex subgroup which is maximal in its limit set. We will also
need the following.

Lemma 2.10. Let H be a quasi-convex subgroup of G which is maximal in its limit
set. Then for any g ∈ G \H, gΛ(H) 6⊂ Λ(H).

Proof. Assume that g(Λ(H)) ⊂ Λ(H). If g has finite order n, then g−1(Λ(H)) =
gn−1(Λ(H)) ⊂ Λ(H); thus g(Λ(H)) = Λ(H). If g has infinite order, it fixes two
distinct points p and q, which must lie in the limit set of gnH for every n. The
geodesic λ joining p and q lies in a K-neighbourhood of the cosets gnH . Let v
be a vertex on λ. Then gnH passes through a K-neighbourhood of v for all n.
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Thus from Remark 2.1 and the pigeonhole principle gn ∈ H for some n. Hence
Λ(H)=gn(Λ(H)) ⊂ g(Λ(H)), so g(Λ(H)) = Λ(H), as before. In any case, the
maximality of H in its limit set implies g ∈ H .

Remark 2.11. Let Λ1,...,Λl be a collection of limit sets such that Λ1∩...∩Λl 6= ∅. By
acting on Γ by an appropriate group element, we can assume that some geodesic
joining a pair of distinct points in Λ1 ∩ ... ∩ Λl passes through the identity. Then
Lemma 2.4 implies that there exists a lower bound ε0 (depending only on K) on
the visual diameter of Λ1∩...∩Λl.

Let L be the stabilizer of Λ1 ∩ ... ∩ Λl. Thus Λ(L) = Λ1 ∩ ... ∩ Λl.

Lemma 2.12. Given any Λ ∈ L and a collection Λ1, ...,Λl such that

1) Λ ∩ Λi 6= ∅ for i = 1, ..., l,
2) visual diameter of Λ1 ∩ ... ∩ Λl ≥ ε0,
3) Λ1 ∩ ... ∩ Λl ∩ Λ = ∅,

there exist ε > 0 depending on L and an element h of L, depending on Λ, such that
the visual diameter of the translate of Λ by h is greater than or equal to ε.

Proof. Suppose there exists a sequence Λl+1,Λl+2, ... satisfying the conditions of
the Lemma, such that the visual diameters of all translates of Λl+i by elements
of L are less than 1/i. Let Kl+i denote the coset of H with limit set Λl+i. Let
pi ∈ L and qi ∈ Kl+i be such that ρ(pi, qi) = ρ(L,Kl+i). Translating each Kl+i

by an appropriate element of L, we can assume that pi is the identity 1 for all i.
As the Kl+i’s are uniformly quasiconvex, being cosets of H , Remark 2.1 implies
that ρ(pi, qi) = ρ(1, Kl+i) = ρ(L,Kl+i) → ∞. Therefore, by Corollary 2.5, {Λl+i}
converges (after passage to a subsequence if necessary) to a point z. As in the proof
of the Claim following Lemma 2.9, one sees that z lies in ∂Γ \ Λ1 ∩ ... ∩ Λl. But
Λl+i∩Λj 6= ∅ for j = 1, ..., l. This implies that z ∈ Λ1∩ ...∩Λl, a contradiction.

We are now ready to prove the main theorem.

Theorem. H has finite width.

Proof. This argument is similar to the ones in [R-S] and in [Mi] showing that
geometrically finite immersed incompressible surfaces satisfy the k-plane property.
Since it suffices to prove the theorem up to subgroups of finite index, Lemma 2.9
allows us to assume that H is maximal in its limit set. Suppose H does not have
finite width. Then for all n we have a collection of full sets Sn ⊂ L such that
the cardinality of Sn ≥ n. Each Sn contains a maximal subset Tn with non-trivial
intersection. As in Remark 2.11, we can translate each Sn so that every element of
Tn has visual diameter larger than ε0. Since by Corollary 2.5 the set of translates
with visual diameter larger than ε0 is finite, we can pass to a subsequence of {Sn}
so that Tn is the same set for each n; that is, there exists a set T ⊂ Sn which is
a maximal subset with non-trivial intersection in each Sn. For each n choose an
element Λn ∈ Sn \ T . Let L denote the intersection of the stabilizers of elements
in T . Then by Lemma 2.12 there exist an ε1 > 0 and an element gn ∈ L such that
translating Sn by gn carries Λn to a set of visual diameter greater than ε1. Since
the set {Λ ∈ L : visual diameter of Λ ≥ ε1} is finite, there exists Λ0 ∈ L such
that (after passing to a subsequence of {Sn} if necessary) T ∪ {Λ0} ⊂ Sn for all
n. Let T ′ = T ∪ {Λ0}. Note that T ′ has trivial intersection, as T was a maximal
subset with non-trivial intersection. As the cardinality of Sn →∞, there exists an
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infinite sequence {Λn} with Λn ∈ Sn. By Lemmas 2.4 and 2.5, the visual diameter
of Λn approaches 0, and hence we may pass to a subsequence of Λn converging to
some point z ∈ ∂Γ. Since Λn intersects every element of T ′, z is contained in every
element of T ′. Hence, we have that T ′ intersects non-trivially, a contradiction.
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