A feasibility study towards absolute dating of Indo-Gangetic alluvium using thermoluminescence and infrared-stimulated luminescence techniques

M. Someshwar Rao, B. K. Bisaria* and A. K. Singhvi
Physical Research Laboratory, Navarangpura, Ahmedabad 380 009, India
*Geological Survey of India (NR), Lucknow 226 024, India

Results of a successful maiden attempt to date the Indo-Gangetic alluvium using the luminescence dating technique are presented. The low equivalent dose for the surface sample indicates that these samples had experienced a solar resetting of geologically acquired luminescence. The infrared stimulated luminescence ages on other terraces range from ~ 2 to 15 ka and are stratigraphically consistent.

The 0.25 million sq km Gangetic plain is a foreland basin, extending from Delhi ridge in the west to Rajmahal hills in the east and from Siwaliks in the north to Bundelkhand–Vindhyan high-lands in the south. Major rivers on this plain, viz. Ganga, Yamuna, Ramganga, Ghaghra, Gandak, etc. originate in the Himalaya and carry a large sediment load towards Bay of Bengal. The alluvial fill shows a south-eastward decrease in thickness and this varies from 1000 m in the north near Himalaya to <10 m in the south adjoining peninsular shield. The basement of the Ganga basin is segmented by a number of transversely occurring geofractures, giving a horst and graben topography. This structural fabric of the basin was responsible for the creation of a number of sub-basins such as the Western UP Shelf, Faizabad
Ridge, Eastern UP Shelf, etc. Evidences indicate that during Quaternary, reactivation of these geofractures resulted in the neotectonic adjustments, leading to a relative sinking and uplifting of the different blocks as manifested by morphologic changes of rivers such as meander cut-off, straightening of course and migration of confuence. This scenario suggests that the alluviation dynamics was controlled by them. Table 1 provides a summary of the lithostratigraphy of the Ganga plain in UP3-5.

The Gangetic plain of UP is a thick pile of Quaternary sediments overlying a northerly sloping basement6,7, comprising rocks of Bundelkhand gneissic complex (BGC), Delhi Group, Vindhyan Group and Siwalik Group. The Quaternary alluvium for which the dating has been attempted, has been classified into Older Alluvium comprising Banda and Varanasi Alluvial deposits. The New Alluvium consists of fan deposits near the foothills of Himalaya and, terrace and recent alluvial deposits within the valley fills of present day rivers.

The flood plain restricted to the present day valley of the rivers has been classified into older flood plain, comprising erosional terrace, depositional terrace (T_e) and active flood plain (T_a) representing present day meander belt of the rivers7. These aggradational surfaces are of regional character and possess a Holocene top soil8. These structures have been suggested to be formed as a result of variation in the gradient of river streams in response to eustatic sea level changes9. Relying on this model, Singh8,9 proposed the formation age of the oldest geomorphic unit, the Varanasi Plain to be ~ 128 ka, representing the last interglacial event, and the age 30–25 ka BP for the formation of the terrace T_1 during the succeeding high sea level stand. The relative dependence of sedimentation rate of the alluvium on neotectonic and climatic events (sea level changes) has still remained unresolved owing to the absence of any reliable dating framework. The only attempt so far to directly date these terraces has been the radiocarbon dating of carbonate nodules embedded in the terrace sediments, which range from 9 to 40 ka (ref. 10). However, radiocarbon ages of the carbonates are often suspect due to contamination either from the modern carbon or the dead carbon11. Therefore, in the present paper we examine the feasibility of dating the terrace deposits by the recently developed dating techniques, viz. the thermoluminescence (TL) and infrared stimulated luminescence (IRSL) dating methods. The basic advantage of these methods is that they utilize the minerals constituting the sediment for estimation of the depositional event.

Luminescence dating is radiation microdosimetry of natural radiation environment. All sediments contain radionuclides, viz. 238U (in ppm), 232Th (in ppm) and 40K (in %). The radiations arising from the decay of these radionuclides along with the cosmic rays provide a constant source of natural radiation flux. The interaction of these radiations with crystal lattice of mineral generates an avalanche of electron and holes. During their motion in crystal lattice, a small fraction of these charges gets trapped at lattice defect sites. The binding energy of the trapped charges at some of these sites is sufficiently high to permit a residence time of trapped charges extending to 10^6–10^7 a at room temperature. This implies that the total number of trapped charges increase with time until a thermal/optical stimulus provides sufficient energy for their detrapping. A small fraction of the detrapped charges radiatively recombine to produce luminescence which bears a proportional relationship to the total radiation exposure. The evaluation of sediment age (t) by TL/IRSL involves measurement of the environmental dose rate (R) and the total dose deposited in mineral (Q). The total dose that accumulated in the mineral grain in the form of total trapped charge concentration is deciphered by measuring the natural luminescence and calibrating it with the luminescence

| Table 1. Summary of Quaternary lithostratigraphy of the Ganga plain |
|---------------------|-----------------|
| **Age** | **Lithostratigraphic units including thickness in metres** | **Lithology and distribution** |
| New alluvium | | |
| Recent alluvium | Confined to present bank limits of the present day rivers comprising bar sand and occasional silt cover. |
| 5–10 m | | |
| Terrace alluvium | Occurring in the terraced valley zones of the present rivers. Comprises alternate sequence of silt and sand. |
| 10–30 m | | |
| Holocene | | |
| Fan alluvium | Coarser clastics with pebbles of all sizes in a radiating channel pattern near the Siwalik Foot Hill. |
| 5–15 m | | |
| Older alluvium | | |
| Varanasi alluvium | Polycyclic sequence of oxidized silt-clay and micaceous sand with ferruginous nodules and kankar dissiminations. Covering most part to the north of Ganga-Yamuna axis from Ghaziabad to Ballia. Derived from Himalaya. |
| > 600 m | | |
| Lower to upper Pleistocene | | |
| Banda alluvium | Comprises a sequence of silt clay and red quartzo-feldspathic sand with occasional kankar. Covering parts of Bundelkhand and Baghelkhand regions to the south of Ganga-Yamuna developed by peninsular shield. |
| 120–300 m | | |
sensitivity of the sample (i.e. luminescence/unit dose). The age is then calculated by dividing the estimated dose \(Q \) with the environmental dose rate \(R \).

\[
\text{Age} (t) = \frac{\text{Total luminescence}}{(\text{Luminescence/unit dose}) \times (\text{Dose/year})} = \frac{Q}{R}.
\]

(1)

In the case of sediments, the event dated by luminescence method is the most recent episode of sunbleaching. It is considered that during the predepositional weathering and transport, the minerals are exposed to the sunlight and this exposure causes a photobleaching of ‘geological luminescence’ to a near ‘zero’ residual value \(I_0 \). The geological luminescence reflects the signal acquired by the mineral during the geological antiquity. On sedimentation and consequent burial, the sun exposure ceases and a fresh accumulation of luminescence (over and above the residual level) \(I_0 \) is initiated because of the irradiation from ambient radioactivity. The total luminescence level \(I_{\text{tot}} \) is related to the luminescence level \(I_0 \) acquired since sedimentation through the relation

\[
I_{\text{tot}} = I_0 + I_d
\]

(2)

and the luminescence age of depositional event is given by

\[
\text{Age} = \frac{D(I_d)}{R},
\]

(3)

where \(D(I_d) \) is the equivalent laboratory radiation dose required to generate the signal \(I_d \) in the bleached sample.

An important aspect of application of the luminescence dating is to ascertain the extent of photobleaching by predepositional sunbleaching. For sediment transported in air through suspension or by saltation, the duration of transport and the availability of un-attenuated daylight flux ensures that maximum possible bleaching of the luminescence to a residual value \(I_0 \) occurs. On the other hand, sediments transported fluvially, receive an attenuated solar flux due to turbulence in the water and the sediment load\(^{12-14}\) (see Figure 1). Thus, additional experiments are needed to ascertain the level of photobleaching. These include laboratory bleaching studies using filtered sunlight\(^15,16\) and study of sediments recently deposited under a depositional environment identical to that of the sample\(^15\). A more recent approach has been to conduct single grain analysis to identify the most bleached mineral grains in a complex suite of samples with grains of different daylight exposure history\(^17\).

Because Indo-Gangetic alluvium sediments are also fluvially transported, two types of experiments, viz. the infrared stimulated luminescence (IRSL) dating and the partial bleach thermoluminescence (TL) analysis were performed. In the IRSL technique, a stimulation with 880 nm source was used. This excitation probes the most sensitive optically stimulable signal\(^18\). Figure 2 shows the bleaching rate of IRSL of a 90–150 µm K-feldspar mineral separated from the Gangetic alluvium sample on sunlight exposure. It is seen that sunlight exposure can erase 90% of the infrared stimulable signal in few tens of seconds.

Samples for the present study were collected by B. K. Bisaria from different geomorphic surfaces from Budaun,
Figure 3. Location of sampling sites, stratigraphic position of sample and IRSL ages.

Table 2. Sample, stratigraphic position, dosimetry data, equivalent dose and luminescence age estimates of samples from Indo-Gangetic alluvium

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>Site</th>
<th>Terrace</th>
<th>Depth (mbas)</th>
<th>Radioactivity data</th>
<th>Dose rate (Gy/ka)</th>
<th>Equivalent dose</th>
<th>Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Th (µg/g)</td>
<td>U (µg/g)</td>
<td>Internal† External†</td>
<td>Total dose</td>
<td>TL (Gy)</td>
</tr>
<tr>
<td>TL-8</td>
<td>Budaun (North)</td>
<td>T₂</td>
<td>8.0</td>
<td>5.5(1.1)</td>
<td>1.6(0.3)</td>
<td>2.37</td>
<td>0.19</td>
</tr>
<tr>
<td>TL-6</td>
<td>Budaun (North)</td>
<td>T₁</td>
<td>11.4</td>
<td>4.7(1.5)</td>
<td>2.1(0.4)</td>
<td>1.08</td>
<td>0.09</td>
</tr>
<tr>
<td>TL-34</td>
<td>Erawah (North)</td>
<td>T₁</td>
<td>12.9</td>
<td>14.5(4.6)</td>
<td>3.1(1.1)</td>
<td>1.67</td>
<td>0.13</td>
</tr>
<tr>
<td>TL-5</td>
<td>Azamgarh</td>
<td>T₁</td>
<td>4.0</td>
<td>7.1(1.6)</td>
<td>1.8(0.5)</td>
<td>2.40</td>
<td>0.19</td>
</tr>
<tr>
<td>5/92</td>
<td>Kanpur (R.Bank)</td>
<td>T₂</td>
<td>16.4</td>
<td>13.8(3.9)</td>
<td>2.8(1.2)</td>
<td>1.24</td>
<td>0.10</td>
</tr>
<tr>
<td>6/92</td>
<td>Kanpur (R.Bank)</td>
<td>T₁</td>
<td>18.0</td>
<td>6.1(1.4)</td>
<td>1.9(0.4)</td>
<td>1.11</td>
<td>0.09</td>
</tr>
<tr>
<td>4/92</td>
<td>Kanpur (R. Bank)</td>
<td>T₉</td>
<td>19.7</td>
<td>7.1(2.5)</td>
<td>2.1(0.7)</td>
<td>1.3</td>
<td>0.10</td>
</tr>
</tbody>
</table>

* For unetched grains external alpha dose estimated by assuming a value as 0.2±0.1.
Cosmic ray dose assumed as 150 µGy/ka.
Average 10% moisture content assumed for correcting dose attenuation.
† Internal dose rate estimated by assuming K content as 10%.
The numbers in the parenthesis provide error in the measurement. Thus, 12.0(1.2) is 12.0 ± 1.2.
Figure 4. Typical IRSL shine curves, growth curves and equivalent dose plateau for K-feldspar mineral separates for sample TL8. The IRSL shine curves are for (a) natural + α-dose (60 Gy), (b) natural + β-dose (30 Gy) and (c) natural aliquot.

Figure 5. Plot of typical glow curve (top box), growth curve (middle box) and the equivalent dose plateau (bottom box) for K-feldspar mineral separate for sample TL8. The glow curves are for (a) natural + sun bleach (10 min), (b) natural + sun bleach (5 min) and (c) natural aliquot and (d) natural + 30 Gy beta dose. The partial bleach growth curves are for (a) natural + sun bleach (5 min) and (b) natural + sun bleach (10 min). The equivalent dose plateau is for 5 min sun bleach.
Kanpur and Etawa sites in the central region of the Indo-Gangetic plain. Figure 3 shows the sampling localities and the cross-sections of fluvial deposits. The samples were collected as horizontal cores in metal cylinders from freshly exposed vertical cuts. The samples were pre-treated with 1N HCl and 30% H2O2 to remove carbonate and organics. The sediment grains of size 90–150 μm were then separated by dry sieving. Feldspar was isolated by density separation (<2.58 g/cm3) using a sodium polytungstate compound. Due to the limited sample availability, HF etching of the alpha-exposed layer of these samples, except for BKB-8, could not be attempted. Several monolayer aliquots were obtained from the sample by sprinkling the extracted feldspars onto stainless steel discs, containing silkspray for adhesion.

Irradiations were performed using beta source 89Sr/90Y of strength 30 mCi with dose rate of ~0.05 Gy/s. Luminescence from grains was observed using Corning 5-584-7-59 blue transmitting filters combined to an EMI 9635 QA PMT photomultiplier and a photon counting system. For infrared stimulation, an indigenous semi-automated system employing a source made by an array of 16 TEMT 484 diodes, emitting at 880 ± 80 nm was used. The luminescence output from the individual discs was normalized using integrated luminescence obtained from the natural samples on short infrared stimulation for 1 s. Prior to the measurements, the samples were pre-heated for 160°C for 300 min to remove the unstable luminescence signal that is additionally generated during the laboratory irradiation and bleaching procedures. In the analysis, the samples were measured for IRSL for 15 s and then for their TL. This was done on the basis of IRSL stimulation causing an insignificant (∼2%) depletion of TL signal. In the analysis, the luminescence intensity vs radiation dose growth curves were fitted to linear regressions. In estimating the dose rate, uranium and thorium concentrations were measured using thick source alpha counting and potassium was estimated by atomic absorption spectroscopy. The concentrations were converted into dose rates using conversion table provided in Aitken [20] (assuming the decay series to be in radioactive equilibrium). An average 10% water content and 150 μGy/a cosmic ray dose was assumed in calculating the dose rates. The internal β-dose has been calculated using the factor provided by Mejdahl [21] and assuming a 10% internal potassium content. For the unetched samples, the alpha-dose has been estimated assuming an alpha efficiency of 0.2 ± 0.1 (ref. 22). The error in age was estimated using the prescription of Aitken [20].

Table 2 provides a summary of TL and IRSL data and figures 4 and 5 provide typical shine down curve, growth curve and plateaux for IRSL and glow curve, growth curve and plateaux for TL data. Both the TL and IRSL ages show a stratigraphic consistency. These ages are also concordant with the previous TL age estimates on similar terrace sequences from Rooker area [22]. Note that the age 200 years obtained on surface sediment suggests that the luminescence signal is definitively bleached prior to burial and this age also can be taken as the lower limit to the ages obtainable by the IRSL technique. The age 200 years for surface samples can also be considered as the over-estimation amount for all the samples deposited under similar conditions. From Table 2 it is apparent that TL ages are somewhat higher compared to their IRSL ages. In view of easy bleachability of IRSL and the near zero IRSL age of the surface sample, we consider IRSL ages to be more realistic compared to the corresponding TL ages. The age of the Varanasi Plain at Budau site is obtained as 12 ka is consistent with the radiocarbon age of ~12 ka obtained at this depth deduced from the data from Kanpur and Fatehpur sequences (Figure 2 of Raigopal [23]). The ages on terrace T1 suggest their formation during late Holocene period. The low TL/IRSL ages on T1 and Varanasi Plain suggest either that these terraces are substantially younger than the inferred age [24], or that they are part of the Holocene aggradation deposits. The ages arrived at for Varanasi Plain and T1 terraces are in concordance with evolutionary model of the Ganga Plain as suggested by Bisaria et al [25]. More detailed chronological work is needed to conclude the age bracket for these terraces.

The preliminary dating results show that the zeroing of luminescence signal indeed occurred for these samples and that the ages are stratigraphically consistent, demonstrating the reliability of the technique and its future prospects in examining the time evolution of the Indo-Gangetic sequence.

RESEARCH COMMUNICATIONS

ACKNOWLEDGEMENTS. We thank Shri Ravi Shanker, Geological Survey of India, Lucknow and Shri Gopendra Kumar, Director (Retd.) for their help with the sample collections and for their keen interest.

Received 3 October 1996; revised accepted 25 February 1997