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How can density functional theory be excited from the ground state ?
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Abstract. Density functional theory (DFT) has not been applied on a large scale to
time-dependent problems and problems involving excited states. Atomic and molecular
collisions involving both these types of phenomena remain outside the purview of DFT.
An amalgamation of quantum fluid dynamics (QFD) with DFT considerably broadens the

range of applicability of traditional (ground-state) DFT. Ion-atom collisions have been
studied by jointly using DFT and QFD.
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1. | Introduction

Density-based studies of many-electron systems have become popular in the last
two decades due to their mathematical, physical, computational and conceptual
simplicity. Two important approaches, where density is used as the basic variable
instead of the many-particle wavefunction, are density functional theory (DFT) and
quantum fluid dynamics (QFD) (Bamzai and Deb 1981; Ghosh and Deb 1982). The
backbone of DFT is the Hohenberg-Kohn theorem (Hohenberg and Kohn 1964)
which states that the ground-state energy is a unique functional of density and
attains its minimum for the true ground-state density, thus providing a method for
variational optimization of any arbitrary energy functional to calculate the
appropriate density and energy. On the other hand, a set of two coupled equations,
viz. an equation of continuity and an equation of motion (EOM), forms the basis of
QFD (Deb and Ghosh 1987). By solving these two equations, one obtains the
‘time-evolution of charge density and current density, the two basic variables in
QFD. The major difference between these two approaches is that DFT cannot be
applied to general dynamical situations unless the validity of a time-dependent
DFT (TDDFT) is proved rigorously. In this paper we discuss the current status of
DFT, emphasizing its two major drawbacks and briefly outline an approach
towards their solution.

2. Two major problems of present-day DFT

Although the exact form of the energy functional is not known, due to the unknown
nature of the kinetic energy (Chattaraj and Deb 1984) and-exchange-correlation
energy functionals, the existence of the total energy functional is guaranteed for the
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ground-state (Hohenberg and Kohn 1964). However, the number of attempts to
apply DFT in time-dependent situations is relatively very small. Also, there has
been no DFT calculation for obtaining the energy of an excited state. The present
status concerning these two problems is reviewed below.

2.1 Time-dependent situations

The invertibility of the map between the TD potential and TD density should be
established if one wishes to have a TD version of the Hohenberg-Kohn theorem.
For a very restricted case, this was first proved by Peuckert (1978). He considered
the Taylor expansion of the TD potential in the neighbourhood of zero. In a more
general situationt, Deb and Ghosh (1982), and subsequently Bartolotti (1981, 1982)
developed a TD Kohn-Sham (TDKS) equation (Kohn and Sham 1965) to obtain
the time-evolved density only in the case of a limited class of external potentials,
viz. TD harmonic potentials, which do not allow any excitation. But this still leaves
most TD problems outside the purview of DFT. The most general proof till today
has been provided by Runge and Gross (1984), although the proof is valid only
under certain conditions regarding the initial density and the time-evolution of the
potential. The Runge-Gross proof has been criticised by Xu and Rajagopal (1985)
according to whom this proof cannot be extrapolated to a uniform system under a
TD perturbation. However, an invertible mapping does exist between the TD
potential and the TD current density (rather than the charge density). Neverthe-
less, the Runge-Gross proof does remain valid provided the TD potentials are
well-behaved at large distances (Dhara and Ghosh 1987). Kohl and Dreizler (1986)
have extended the Runge-Gross proof through the construction of a Levy-Lieb-
type functional (Levy 1979; Lieb 1983) while the extension to TD ensembles was
done by Li and others (Li and Tong 1985; Li and Li 1985).

2.2 Excited states

Till today, DFT has been essentially a static ground-state theory. Its impressive
Success prompted many workers to extend DFT to excited states as well. Slater’s
(1974) transition state theory may be regarded as the first attempt to obtain a DFT
for excited states. The subspace theory for excited states (Theophilou 1979, 1987)
may be regarded as a rigorous justification of Slater’s approach. It states that the
composite energy quantity is a unique functional of the composite density. Katriel
(1980) has interpreted Theophilou’s approach as a special case of the original
Hohenberg-Kohn theorem for an appropriately defined composite super-Hamilto-
nian. The Hohenberg-Kohn theorem has also been shown to be valid for any
excited state that corresponds to the lowest state of a given symmetry (Gunnarsson
and Lundqvist 1976). However, Kohn and Vashishta (1983) feel that the
corresponding self-consistent equations generally do not exist. A one-to-one
correspondence had also been established (Mikolas and Tomasek 1977) between
the total energy of a particular state (ground or excited) and the density of the same
state. Since-the ground-state density fixes the Hamiltonian to within an additive .

constant, all the excited states of a system under a local external one-body potential
- .would be characterized by the ground-state density. The Levy-Lieb functional
(Levy 1979; Lieb 1983) encompasses a large class of excited states and provides a
mathematical basis for Theophilou’s idea (Hadjisavvas and Theophilou 1985). Use
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of single excited-state functionals, contrary to subspace functionals, has been
introduced by Valone and Capitani (1981). The Hohenberg-Kohn theorem has also
been extended to excited states (Hunter 1986) through the derivation of a
Schrodinger-type equation satisfied by the square-root of the electron density. This

may be regarded as an extension of a similar equation for the ground -state density
(Deb and Ghosh 1983).

3. Broadening of DFT through QFD

There is a formal equivalence between DFT and QFD in 3-D space (Deb and
Ghosh 1982). Since time occurs naturally in QFD, and a nonzero current density is
obtained for most of the excited states by solving QFD EOMS, through QFD DFT
can go into both TD situations and excited states. We have proposed (Deb and
Chattaraj 1987) an amalgamation of QFD and DFT to give rise to quantum fluid
density functional theory (QFDFT). The above two problems had prevented one
from applying DFT on a large scale to the important area of molecular reaction
dynamics. Since in atomic and molecular collisions both of the above problems, viz.
TD situations and excited states, are involved, QFDFT has been applied (Deb and
Chattaraj 1987) to deal with the high-energy proton-neon collision problem.
Earlier, TD Thomas-Fermi theory and its variants were employed (Ludde et al 1979;
Horbatsch and Dreizler 1981, 1982; Malzacher and Dreizler 1982; Horbatsch 1983)
to study high-energy ion-atom collisions. Several nonlinear features were revealed
through a numerical solution of two fluid dynamical equations. In the case of
proton-argon coliisions it was observed that the perturbation caused by the
incoming proton to the target density is reflected through nonlinear oscillations of
the latter. The oscillations dampen gradually with a different frequency for the
inner and outer parts of the density. The present QFDFT method (Deb and
Chattaraj 1987) can be considered as a generalization of these previous works.
Considering the current status of TDDFT and excited state DFT it is quite
reasonable to assume that the QFDFT approach is likely to be more promising than
. DFT itself. We have derived a TDKS equation in 3-D space which is a new
nonlinear Schrédinger equation, by using a QFDFT approach as well as a stochastic
interpretation of quantum mechanics (Nelson 1985). It has been argued that for any
given Hamiltonian H and initial wavefunction ¢(r,%) there corresponds an
equivalent Markov process in coordinate space such that the probability density
p(r, ) of the partlcle (undergoing Brownian motlon) being at r at the instant ¢
coincides with that given by quantum mechanics, i.e. |¢(r, £) * (Nassa{ 1984). This
stochastic viewpoint further strengthens the use of QFD along with conventional
DFT. A space-time-dependent “local molecular thermodynamics” has also been
developed. This is an extension of the work of Ghosh et al (1984). The
time-evolution of local “thermodynamic” variables can be obtained through the
TDKS equation which has the following form (in atomic units):
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= 9-92 a.u.). The top cut-off value is 50-0 a.u.
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Here C, and C, are the familiar Thomas-Fermi and Dirac constants, respectively,
a(N) depends on N (the total number of electrons), f (R, N) is a function depending
on both R and N, R being the internuclear distance; Q refers to a screened nuclear
charge: The nonlinearity in (1) enters through the single-particle nonlocal potential
Vesr, via nonintegral powers of ¢ as well as an integral occurring in Q. The high
degree of nonlinearity in (1) causes serious problems in its solution.

However, in order to study high-energy proton-neon collisions, we have solved
(1) numerically. Several nonlinear features reveal themselves. In particular, the
possibility of solitary wave solutions is indicated; this requires further analysis. The
time-dependent current density at ¢ = 0-08 a.u. has been depicted in figure 1. The
fact that we now come across a nonzero current density implies that, due to the
approach of the proton, excited states of the neon atom are mixing with its
groundstate. Due to space limitations, we refrain from giving details of this work
(Deb and Chattaraj 1987). We believe that this approach has the potential to
monitor a time-dependent process from start to finish.
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