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Abstract. Three simulated expressions are suggested regarding the Z-dependence of ground-
state energies of neutral atoms at the Hartree-Fock, exact nonrelativistic and relativistic levels.
The Hartree-Fock-level Z ~1/3-¢xpansion contains three previously derived plus two newly
derived terms, the latter signifying exchange corrections from the ‘inner core’ and the ‘core
‘mantle’ of the Lieb atom, This leads to better agreement than any previous expression, with
every coefficient being physically transparent. The Z-dependence of the correlation energy is
obtained from a semiempirical Wigner-type correlation potential while the relativistic
correction is taken to be in between the values suggested separately by Scott and Schwinger.
Agreement with reference values is again better than before. It appears, however, that the
atomic Z ~!/3-expansion should not proceed beyond terms O(Z).

Keywords. Z~!/>-expansion; atomic binding energy; Thomas-Fermi theory; exchange-
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1. Introduction

Based on the Thomas-Fermi (Tr) method and its various refinements, the search for a
Z~1/3.expansion for the non-relativistic ground-state energies of neutral atoms has
been a vintage problem in atomic physics (Dirac 1930; Scott 1952 March 1953, 1957;
Ballinger and March 1955; March and Plaskett 1956; Dmitrieva and Plindov 1975; Lieb
1976, 1981; March and Parr 1980; Schwinger 1980, 1981; Shakeshaft et al 1981;
Shakeshaft and Spruch 1981; Tal and Levy 1981; Aguilera-Navarro et al 1982; Bander
1982; Tal and Bartolotti 1982; Conlon 1983). This involves writing the energy as the
following function of Z(nuclear charge or the number of electrons)

—E(Z)=C1Z"P+C6Z*+CsZP + ..., (A)

where all the C;s are, in principle, known universal numbers arising from well-defined
physical effects. However, the present situation concerning (A) is not quite satisfactory
on the basis of three criteria: (i) clear physical significance is known only for C, Ce and
Cs; (ii) agreement with Hartree-Fock (HF) and nonrelativistic (NR) atomic energies,
especially at low Z, is not excellent; and (jii) the length of the above expansion is not
known.

There have been two types of studies on (A). The first has tried to calculate C;,Cg and
C; from first principles (Dirac 1930; Scott 1952; March 1953, 1957; Ballinger and
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March 1955; March and Plaskett 1956; Schwinger 1980, 1981; Dmitrieva and Plindov
1975; Lieb 1976, 1981; Bander 1982; Conlon 1983) whereas the second has tried to
obtain either C; or all three by fitting calculated energies to experimental or ab initio
energies (Scott 1952; March and Parr 1980; Shakeshaft et al 1981; Shakeshaft and
Spruch 1981; Tal and Levy 1981; Aguilera-Navarro et al 1982; Tal and Bartolotti 1982).
The derived values are C,; = 0-76874512a.u.* (TF value), C¢ = —0-5a.u. [Scott value
(1952)] and Cs = 02699 a.u. [(Schwinger value (1980)]. With these, the 3-term
expansion in (1) reproduces known energy values for 6 < Z < 80 at 2% error and at
7% error for the hydrogen atom (Schwinger 1980). If one takes the Z7/3 term alone
then, in the limit Z — oo, this gives the exact Nr energy (Lieb 1976; Lieb and Simon
1977), but it overestimates energy badly at low Z with ~ 30% error (figure 1). On the
other hand, workers studying various fitting or interpolation schemes have commented
on the presence of oscillatory and/or discontinuity features, depending on the scheme
of interpolation.

This paper is an attempt to improve the situation vis-a-vis criteria (i)—(iii) above. In §2
we discuss the basis on which two new constants C, and C; are derived in §3. The results
of energy simulation at the HF, Nr and relativistic levels are then described in §4, while
§5 takes stock of the resulting situation.
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Figure 1. Percent deviation of C;Z7/3 from atomic ground-state Hartree-Fock energies
(Clementi and Roetti 1974; McLean and McLean 1981) as a function of Z.

* Atomic units will be employed throughout this paper.
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2. The approach to the problem

The analysis of the present problem requires us to obtain the integral of any local
function of the charge density p(r) as a function of the nuclear charge Z. This we do
below, using an average-density argument. We also utilize Lieb’s (1976; 1981) analysis
of the Z-dependence of r and p in different regions of an atom (in particular, see §Vcof
Lieb 1981). Specifically, we consider almost the whole of the atom to consist of an ‘inner
core’, a ‘core’ and a ‘core mantle’. The Z 713_dependent kinetic energy term arises from
the ‘core’ whereas the Z 2 and Z 3/ terms arise from the ‘inner core’ and ‘core mantle’
respectively. Similarly, the Z*/ term for exchange energy arises from the ‘core’, while
the “inner core’ and ‘core mantle’ contribute, respectively, the Z*#/> and Z terms. Note
that the problem is really open-ended since the Z*/* and Z terms would also contain
small kinetic-energy contributions from the region outside the ‘core mantle’. However,
we feel it is necessary that the included terms correspond to a consistent physical picture
and, therefore, we do not consider here the region outside the ‘core mantle’ (since then,
one will also have to consider exchange contributions from this region, and so on again
for kinetic energy, etc.).

Let f(p) be a local function of p(r) and F[p] its volume integral. Then the
Z-dependence of F is given by

F=f@V
=f(Z*Vo)VoZ ", ey

where V is the TF volume (Lieb 1976) of a neutral atom with Z electrons, p(=2Z/V)is
the average density and the volume ¥, is a universal constant. Writing

—Ep=C§p*Pdr=C,2"P @

and V = V,Z° one can readily show that a = —1 and ¥, = (Ce/C)** = 7218207
a.u, since C, = (3/10) (3n?)*.

Now, in order to find the correction from the ‘inner core’, consider all the electrons as
having been incorporated into a spherical Scott atom (1952) of radius R, where R may
extend a little outside the ‘inner core’ into the ‘core’. For this atom, let
’ p=Cr, | | : 3
where C is a universal constant. The Z-dependence of p enters through that of r. The
density normalization is

R
47[[ pridr=2Z. )
°

Taking Z ~ R™! (see Lieb 1981) and using (3), this gives a« = —4. To obtain C, we
equate the Scott (1952) and Weizsicker energies, viz.,

1_, 1[(Vp)
22 -—SJ.—————p dr

=2C" 172 j p32dr, )
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for a spherical atom, using p = Cr~#, Using (1) and (2) we obtain

p=16Vgir+ ) -

This gives the radial dependence of electron density in a spherical Scott atom.

Consider now the correction from the ‘core mantle’. Here Z ~ R™2 (Lieb 1981),
where R is the radius of the ‘mantled’ atom (as before, R may extend a little into the
‘core’). Using (3) and (4), we now find o = —6, i.e.

p=Crs. | ™

Replacing (Vp)* by (dp/dr)? as well as using (1) and (2), we obtain the Weizsicker
energy for this region as

Vp)? -
( 5) dr = 4:5 Z313 (CVp)~ 1P, @®)
This ought to be identified with the SE,, correction of Schwinger (1980), where
SE,, = 2 (0:2699)Z3/3/11. &)
Then
= (99/1:0796)*V 5 r~6, 10)

which gives the radial dependence of the electron density in the ‘core mantle’ and in its
region of overlap with the ‘core’.

Equations (1), (2), (6) and (10) form the backbone of the present work leadmg to the
following results.

3. Simulation of the ground-state energies of neutral atoms at the Hartree-Fock,
exact nonrelativistic and relativistic levels

3.1 The Hartree-Fock level
We write the energy as
—EHF(Z) =C7Z7/3+C622+C52513+C4Z4/3+C3Z, (11)

where C is the TF value, Cg is the Scott value and Cs is the Schwinger value. C4, C; are
the exchange corrections to be calculated in view of the fact that the magnitude of the
Dirac exchange is less (Shih 1976) than that of the HF exchange.

For a homogeneous electron gas or a gas of slowly varying density, the leading
gradient correction to the Dirac exchange is takenas (Kohn and Sham 1965; Shih 1980;
Shih et al 1980; Gross and Dreizler 1981; Hernandez and Gazquez 1982; Csavinszky
and Yosman 1983):

Ka[p] = Bj( fg, r, 12)

where B is given by (Kohn and Sham 1965; Shih 1980;.Shih et al 1980; Gross é.nd
Dreizler 1981; Csavinszky and Vosman 1983):

B = (=T)/[432n(3n%*7].
Replacing (Vp)? by (dp/dr)? for a spherical Scott atom and using (6), we obtain

L[p] = 16B(16/Vs)™ /2 jp’/“ dr. (13)




- Z-dependence of atomic energies ‘ 235

Use of (1) and (2) then gives

, L(2) = 4BV 4247, (14)
ie.
C, = 00129783 a.u. (15)
Similarly, using (1), (2) and (10) for the ‘core mantle’, we obtain
m(Z) =36 pZ C~72. (16)
Hence, ’
C; = 000126492 a.u. ) a7

Note that both the exchange corrections, C4 and C3, have the same sign as the original
Z 5/3.exchange term. Thus, at the H level all the five C;’s are derived, and not adjusted,
with the physical effects clearly delineated.

3.2 The exact nonrelativistic level

Since both exchange and correlation have a similar origin in interelectronic repulsion,
one may think of extending the above picture to cover electron correlation as well. As
we shall see below, this does not work, casting doubt on any Z - 1/3_expansion for
correlation energy. '

In the local density approximation, correlation energy is given by

B0 = [alslodr | 19)

In order to apply (1) and (2), one must start with a reliable correlation potential g.[p].
‘We have examined the parametric forms for &[] of McWeeny (1976) and Vosko and
coworkers (Vosko et al 1980; Wilk et al 198 1)for 05 < rg < 20, where @3y mrd=p"
The values of Vosko and coworkers agree with reference values (Ceperley and Alder
1978, 1980) better than those of McWeeny. However, using Hartree-Fock atomic
densities (Clementi and Roetti 1974), we observed that both these correlation potentials
overestimate atomic correlation energies, especially at low Z, by 100-250%; such a
situation also occurs with Cowan’s (1981) statistical prescription for correlation.
Therefore, we will employ the Wigner-type parametric formula

e[p] = —(9:810+21437p~ 1), 4

suggested by Brual and Rothstein (1978). As seen in table 1, this gives a much better
reproduction of atomic correlation energies (Veillard and Clementi 1968). Using (1)
and (2), (19) leads to

—E¥2Z) = Z[9:810+21:437(Z3/Vo)™'FP] 7% (20

Table 1 lists these values. Comparing columns 2 and 5, we see that the average-density
argument via (1) and (2) leads to some overestimation. This is a characteristic feature.
Nevertheless, the values from (20) are still better than those from the &’s of McWeeny
(1976), Vosko et al (1980) and Wilk et al (1981).

Thus, the sum of (11) and (20) simulates the exact nonrelativistic energy. Note that
(20) contains two adjusted parameters.

Using (1) and (2), one can readily argue that E,(Z) cannot have terms containing
Z23, 2113 etc. If E.(Z) has any term Z¥ k < 1, then the corresponding e.[#] has ap'
term, | < 0. Suchan &[p] diverges when p - 0,although the correlation energy density
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Table 1. Calculated values (a.u.) of —E.(Z)= — [e[p]pdr, using Hartree-Fock atomic
densities (@,

Brual-

Reference Rothstein McWeeny Vosko et al Equation
z value (i) value (iil) value®) value® (20)
3 0-0454 006472 0-1770 01620 0-1010
4 0-0940 0-09163 0-2431 . 0-2247 01525 .
6 0-1551 0-1593 0-4034 0-3738 0-2684
7 0-1861 02044 0-4986 0-4636 0-3313
10 0-381 0-3567 0-7828 0-7464 0-5337
12 0-428 0-4377 09119 08916 0-6774

@ Clementi and Roetti 1974; @ Veillard and Clementi 1968; i Brual and Rothstein 1978;
) McWeeny 1976; ) Vosko et al 1980; vy Wilk et al 1981.

vanishes giving a finite E.[p]. If, like exchange, one expresses E,(Z) as a sum of Z3/ 3,
Z*® and Z terms, then &,[p] becomes

e[ p] =Ap'P+Bpre 4. (21)

If the three parameters 4, B and C are now adjusted to reproduce atomic correlation
energies (Veillard and Clementi 1968), then the parameters do not have the same sign
leading to the unphysical result that , [ ] vanishes at a nonzero p. An identical situation
results if one takes any two of the three Z-dependent terms. Further, one should not
take E (Z)as either a single Z%/3, Z4/3 or Z term, because this will againlead toan ¢,[p]
which is not in accord with experience (see (21)). Therefore, it is obvious that if one
requires good reproduction of atomic correlation energies, then E,(Z) should not
contain Z37 to Z'/3 terms.

3.3 The relativistic level
For simulation at this level we employ the expression (Scott 1952; Schwinger 1980)
—~Eg(Z) % 10% = C,2Z2°72, : (22)

where we take C = 3-5 a.u. This provides better agreement with Dirac-Hartree-Fock
values (Desclaux 1973) than the values of 40 and 2-4 suggested by Scott (1952) and
Schwinger (1980). The Z°/>-term is the leading relativistic correction to the kinetic
energy. Note that this is the, only parameter adjustment done in this paper.

Thus, the sum of (11), (20) and (22) simulates the relativistic atomic energy. The
diminishing relative importance of correlation and increasing importance of relativistic
corrections with increasing Z are faithfully mimicked by (20) and (22).

4. Results
Using (11), (20) and (22), we have calculated atomic ground-state energies for

2 £ Z < 110 and compared them with the appropriate reference values as well as the
values of Shakeshaft et al (1981) with their median value (0-275) for Cs which includes
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correlation. The largest error occurs with Z = 2, viz. 31 %, 2-8 9, and 1-4 7 for (11), (20)
and (22) respectively. On the whole, the present energies are better than the previous
ones, especially at low Z. Table 2 reports values for 10atoms. A pleasing situation is that
for most of the atoms, the simulated HF and nonrelativistic energies lie above the
corresponding true energies. However, due to parameter adjustment, the physical

Table 2. Comparison of —E(Z) values (a.u) for neutral atoms with Hartree-Fock,
nonrelativistic and relativistic energies.

Hartree-Fock Nonrelativistic Relativistic
z level® leveld level (i)
2 2-86168 2:9037 2-90382
276634 2-7473 2-86175
28220 2:82212
3 7-43272 7-4781 7-4780
7-22269 7-1946 7-43327
7-3236 - 732410
4 14:57302 14-6670 14-6685
14-33280 14:2967 14-5752
14-4852 14-4870
5 24-52906 24+6530 24-6579°
2442664 24-3839 24-5350
24-6352 24-6401
10 128-54705 128928 129-056
128-44103 128-385 128-674
128975 129-085
15 340-71869 341-240 342:025
339-19779 339-164 341420
340-100 340-786
20 67675803 — —
67518084 675202 679-502
676477 678981
40 35389172 — —
35346109 3535171 3594-81
3537:607 3594-27
80 18408-984 — —
18404-965 18407-963 196235
18411-609 196939
90 24359-726 — —
24348155 24352:024 264719
24355735 265342

) In this column for every Z, the first number is from Clementi and
Roetti (1974) for 2 < Z < 40 and from McLean and McLean (1981)
for Z = 80-90. The second number is from eq. (11).

(i) I this column, for every Z, the first number is from Veillard and
Clementi (1968); the second number is from Shakeshaft et al (1981),
with Cs = 0-275; the third number is from the sum of (11) and (20).
For Z > 15, the first number is not entered.

(@) T, this column, for every Z, the first number is the experimental
energy (Veillard and Clementi 1968); the second number is the Dirac-
Hartree-Fock value (Desclaux 1973); the third number is from the
sum of (11), (20) and (22). For Z > 15, the first number is not entered.
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meaning of the constants in (20) and (22) is not completely clear. Note that the
overestimation in energy due to the use of the average-density argument, in converting
p-dependence into Z-dépendence, compensates to a certain extent for the
underestimation resulting from C,, C¢ and Cs together.

5. Conclusions

By incorporating the exchange corrections C4 Z*/® and C, Z, we have obtained better
agreement with nr values than observed before, especially at low Z. Except for the few
atoms where the simulated energy has gone below the HF energy, the agreement would
improve further if Z*/3- and Z-dependent kinetic-energy contributions are also
incorporated. In order to retain physical consistency, we have refrained from doing this.
At this level, the physical meanings of all the co-efficients are clear. However, at the Nr
and relativistic levels this physical clarity is partly lost due to parameter adjustment,
although the numerical agreement with reference values improves further. The
relativistic situation deserves a first-principles attack.

For practical purposes, if one neglects exchange contributions from outside the ‘core
mantle’, then expansion (A) proceeds only up to C3Z. We have argued in §3 that the
atomic correlation energy should not be expanded in Z ~1/3, i.e. it should not contain
terms from Z 3/* to Z /3, if a satisfactory correlation potential and good agreement with
atomic correlation energies are desired. It is also worthwhile to note that hardly any
work seems to have been done on the Z-dependence of excited states.
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