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Abstract. The method of local scaling transformation in density functional theory calculates
a transformation function (TRF) in order to generate an optimized atomic N-electron wave
function from a trial density and a reference density/wave function. The TRFs f(r) for several
atomic systems are studied and it is observed that the number of minima in df(r)/dr equals
the number of atomic shells, except when p = p, and f =r.

Keywords. Local scaling transformation; atomic shell structure; density functional theory.

PACS Nos 31-10; 31}20; 71-10; 71-45
1. Introduction

Recently, the method of local scaling transformations (LST) in density functional
theory (DFT) has attracted some attention [1-5]. Starting from a reference N-electron
wave function W (r,,...,ry), corresponding to a reference one-electron density pg(r),
the method generates an N-electron wave function ¥ ,(ry,...,ry) from a given (trial)
one-electron density p(r) through a unique one-electron transformation T, where
p(r)= Tpo(r). If p(r) contains adjustable parameters then these would enter into ¥,
enabling one to variationally optimize the parameters. It has been shown [3-5] that
even if one uses a trial density p(r) which is considerably simpler than the Hartree-Fock
(HF) density, the method can deliver atomic density and energy of near-HF accuracy.
It is also interesting to note that for the ground states of two-electron atomic systems
¥, is independent of ¥, [3]. Apart from numerical accuracy, a principal advantage
of this method is the retention of the wave function concept within DFT (see also
[6]). It has been opined [7] that discarding the wave function concept in DFT is the
primary reason for the latter’s discomfiture while being extended to excited and

‘time-dependent states.

2. The method

The LST method has been described in detail by others [1-5]. Here we summarize
the essential equations which are useful to us, for the ground states of spherically
symmetric systems. '

The transformation function (TRF) f(r) which is of primary interest in this report
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is defined and calculated through the following expreésions:

p=J(MpotN (1)
=5, @
df _ r’p) 5
dr f*po(f) -

j' px)xtdx = j " po)yPdy @
0 'f(r)=[:(0)/po(0>1.1/3r+0(r2), for small r (5)

=

‘P,,(rl,...,rN) ={ L J(fi/ri)”z:\\yo(fl’“'st)- (6)

1]

Thus, ¥, yields the one electron-density p(r). In case ¥, is constructed from a set of
orthonormal orbitals {y ("}, i=1,...,N, then one obtains the following set of
transformed orthonormal orbitals {¢ m.(r)} for constructing ¥

¢, =JANP Y (f) | (7
Thus, the structures of ¥, and ¥, are the-same, apd
E[p]=E[p;¥ol =¥, HIY, > KY, ¥, (8) .

where H is the Hamiltonian of the system.

The TRF f(r) can be ascribed the same physical meaning as that of the radial
coordinate r, ie., f is a distance quantity, 0 < f < co. Thus, po(f) is obtained by
simply replacing r in po(r) by f. The TRF in effect implies a mapping between r-space
and f-space. The plots of {2 p,(f) as functions of \/f and \/; have been shown later.
~ Apart from the statement [4] that f(r) is' a monotonically increasing function of
r, no attention seems to have been paid to the detailed structure of f(r) which, as
shown by (3), is dependent on p, and p. In particular, the number of minima in df/dr
is observed by us to correspond to the number of shells and hence the number of
maxima in atomic radial density.

Although the calculations reported in this paper correspond to the ground states
of spherically symmetric systems, it is worthwhile to note that, in principle, the LST
method is also applicable to excited states and to non-spherical systems, e.g., diatomic

_molecules. While no calculations seem to be reported for molecules, Koga [5] has
reported LST calculations on the 2'S excited state of the He atom, by taking a

configuration-interaction wave function as ¥, and satisfying both Hamiltonian and
wave-function orthogonalities. '

3. Resuits and discussion

In order to examine the structure of f (), we have repeated Koga’s calculations, using
his optimized electron densities for the ground states of H™,He,Li*,Be**,Li and
Be [3,4]. The reference density p, and the wave function ¥, for He, Li*, Li and Be

were taken from the single-zeta calculations of Clementi and Roetti [8] while those
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Table 1. Calculated kinetic energies (a.u.) for atoms and ions
containing 2—4 electrons by the local scaling transformation method.
The electron density is normalized up to the fifteenth decimal place.
In columns 3 and 4, the negative of total energy is taken as the kinetic
energy (values from table 3 of Koga [3], tables 1 and 3 from Koga [4]).

Kinetic energy

Atom/Ion  Present value Koga’s value Hartree-Fock value

H~™ 0-4885550* 0-4879262 0-4879297
He 28615775 2-8616799 2:8616800
Li* 7:2349501* 7-2364148 72364152
Be** 13-613227* 13-611299 13:611299
Li 7-4328695" 7-431530 7-432727
Be 14:565166° 14-568511 14-573023

2Using the optimized electron density from table 3 of Koga [3];
®Using the optimized p,(r) from table 1 of Koga [4]; °Using the
optimized p,(r) from table 3 of Koga [4].

Table 2. Comparison of calculated position moments (a.u.) with the
corresponding values from table 2 of Koga [3] for the He atom as
well as with the Hartree-Fock values [3]. The present ¥, has been
normalized to unity up to the fifteenth decimal place.

Position Hartree-Fock
moment Present value  Koga’s value value
ry 59936 59959 5996
&y 1-6873 1-6873 1-6873
ry 09273 09273 0-9272
G 1-1847 1:1849 1-1846
Dy 19396 1-9407 1-9398
oty 3-8810 3-8882 3-8838

for H™ and Be*™* were taken from the single-zeta calculations of Roothaan and
Soukup [9]. Table 1 compares our kinetic energy values with Koga’s and HF values
[3,4]. We set that although our kinetic energy value has occasionally gone slightly
above the HF value, our computed values are in excellent agreement with the HF
and Koga’s values. We also compare our calculated position moments, by using ‘¥,
for the He atom with those of Koga [3] in table 2. The agreement is again excellent
and in fact our values generally show better agreement with the HF values than
those of Koga [3]. All calculations were performed in double precision.

Figures 1 and 2 depict f(r) and df/dr for H™ ion and Be atom respectively. The
plots for the other two-electron systems, He, Li* and Be**, are qualitatively similar
to those for H™ while the plots for Li atom are qualitatively similar to those of Be.

Several remarks can be made regarding these plots:

1. f(r)is depicted as a monotomcally increasing function of r [4]; f = 0, 0o corresponding
to r =0, c0.

2. df/dr plots show the effects of both Z and N. As r increases, df/dr increases with
Z from H™ to Be**. The same is true from Li to Be.
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Figure 1. Plot of (a) f(r) against \/; and (b) df/dr against \ﬂ', in a.u., for the
H~ ion. The plots for other two-electron systems, He, Li* and Be™ ¥, are similar.
Normalized transformed orbital is employed.

3. f(r) increases rapidly with r so that at an r-value where the electron density is

very small f is quite large, leading to a rapid increase in df/dr which tends to co
as r— oo0. :

4. From (5), [df/dr],_, = 1, since po(0) and p(0) are quite close to each other. This is
always true in our calculations.
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Plot of (a) f(r) against \/; and (b) df/dr against \/;, in a.u,, for the Be

atom. The plots for the Li atom are similar. Orthonormalized transformed orbitals
are employed. '
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5. df/dr shows one minimum for H~, He, Li* and Be** and two minima for Li and
Be, corresponding to the presence of one and two shells respectively. However,
the locations of these minima do not coincide with the maxima or minima in the
radial density. The first minimum occurs at 9-042 (H™), 3-652 (He), 2217 (Li*),
2:350 (Be* *), 1024 (Li), 0-575 (Be) a.u. while the second minimum occurs at
12:96 (Li) and 9-248 (Be) a.u. respectively. '

6. Thus f(r)= f(r,Z,N), as also df/dr.

Although no LST calculation has been reported so far on atomic systems containing
three shells, we feel that our observation of the number of minima in df/dr being
equal to the number of atomic shells should be of general validity. This observation
is of interest for two reasons: (a) Observation of shell structure in a distance quantity,
f. This is different from the familiar shell structure in density quantities. (b) Although
(3) indicates that df/dr should contain information about shell structure since both
r2p(r) and f2po(f) contain such information, it is not clear how such information
is encoded in df/dr. Equation (3) gives

d2f= 1 [9_{2 }_— r4p2(r)i 12 ] 9
s A e T P ©)

This means that d2 f/dr? vanishes when

d
f“ﬂ?,(f)a;{rzp(r)} =r4pz(r)ad}{f2po(f)} (10)

Such vanishing need not be at the maxima or minima of the radial density. However,
d2 f/dr? =0 at r =0, from (9), since d/df {f>po(f)} =0 at r =0 and f varies linearly
as r for very small r. Figures 1(b) and 2(b) verify these conclusions.
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Figure 3. Plot of (a) single-zeta [8] 4nr? po(r) against \/;, (b) 4nf2 po(f) against
\ﬂ and (c) 4nf 2 p,(f) against ﬁ, in a.u., for the Li* ion. The plots for the other
two-electron systems, H™, He and Be™ *+ are similar. Plots (a) and (b) are identical
but (c) is different. Normalized transformed orbital is employed.

Furthermore, figures 3 and 4 depict 4nf2po(f) as functions of ri2 and f1/2, for
Li* ion and Be atom. They are also compared with the corresponding single-zeta
dnr? po(r) plotted against ri/2 The plots of 4nf*po(f) against f 12 and 4nr?p,y(r)
against r'/2 obviously coincide. But those of 4nf 2 5o(f) against f1/? and r'/? are not
identical; the locations of the maxima and minima in the last two plots are slightly
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different. Also, the plot against r*/2 has a longer tail. This explains why df/dr in (3)
goes. to oo as r— 0.

In summary, atomic shell structure has been observed in a distance quantity like
f(r) whose behaviour is such that f(r)=0, co0 at r =0, co; df/dr ~ 1 at r =0 and goes
to oo as r— oo. These conclusions are valid except in the special case of p = p, and

f=r
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Figure 4. Plot of (a) single-zeta [8] 4nr? po(r) against ﬁ, (b) 472 po(f) against
ﬁ and (c) 47/ po(f) against \/;, in a.u,, for the Be atom. The plots for the Li atom
are similar. Plots (a) and (b) are identical but (c) is different. Orthonormalized
transformed orbitals are employed.
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