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Abstract. Reconstruction of a signal from the phase of its Fourier

- transform is important and useful in a variety of practical applications.
In this paper, we give a brief review of the previous results and develop
some new ones pertaining to the phase-only reconstruction problem. The
review includes conditions under which the signal is uniquely specified by
its Fourier transform phase and some algorithms for performing the
reconstruction. New results consist of an extension of a previous technique
and an explicit formula for reconstruction. A number of potential
applications of the reconstruction techniques are briefly mentioned in the
concluding section.
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1. Introduction

In a variety of practical applications, it is required to reconstruct a signal from its
partial Fourier domain information (Oppenheim et al 1983). Such partial information
may consist of the Fourier transform (FT) phase alone, the FT magnitude alone (Fienup
1978; Hayes et al 1980a; Hayes 1982), or the signed FT magnitude (Van Hove et al
1983) (i.e. the FT magnitude together with a bipolar function, + 1, representing one
bit of phase information at each frequency). Signal reconstruction from FT phase
alone is referred to as the magnitude-retrieval problem, and it is this problem that

~we address ourselves to in this paper.

It has been well recognized in the literature (Hayes et al 1980b; Oppenheim & Lim
1981) that the phase of the FT of a signal contains a significant amount of information
about the signal and that several important features of the signal are preserved if
only the phase is retained. It is also well known that. under certain conditions,
phase information alone is sufficient to recover the original signal.

In general, of course, a signal is not uniquely defined by its phase’. This is well
demonstrated by the fact that the phase remains invariant when a given signal is
convolved with any zero-phase signal. Thus, whatever be the nature of the signal, it

Throughout this paper, reference to the phase or magnitude of the signal should be interpreted, respectively,

as the phase or magnitude of the FT of the signal.
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can, at best, be uniquely reconstructed from the phase information only to within an
arbitrary zero-phase factor. Some constraints are therefore necessary to uniquely
determine a signal from its phase. One such contraint is the minimum (or maximum)
phase condition (Oppenheim & Schafer 1975). For continuous-time signals with
rational Laplace transforms, this condition corresponds to confining all the poles and
zeros only to the left half (or right half) of the s-plane. For discrete-time signals with
rational z-transforms, the corresponding confinement is within (or outside) the z-plane
unit circle. Under these conditions, the Hilbert transform relation between the
log-magnitude of the FT and its phase forms the basis of the conventional reconstruction
algorithm. Alternatively, Quatieri & Oppenheim (1981) have developed iterative
algorithms for reconstructing a2 minimum (or maximum) phase signal from the phase
or magnitude of its FT. These algorithms repeatedly impose the causality constraint
in the time domain and incorporate the known phase or magnitude function in the
frequency domain, the approach being similar to the iterative techniques proposed
by Gerchberg & Saxton (1972) and Fienup (1978). The convergence properties of
these algorithms have been investigated in detail by Tom et al (1981). In addition,
Yegnanarayana & Dhayalan (1983) have proposed noniterative procedures for phase
or magnitude-only reconstruction for a minimum phase signal, based on the relation
. between log magnitude and phase of such a signal through cepstral coefficients
(Yegnanarayana 1981, 1982). These techniques, though free from the convergence
problems of iterative algorithms, require the phase in the unwrapped form for the
phase-only reconstruction. Phase unwrapping is a well-known difficult problem
because of the need for detection of the discontinuities in the principal (wrapped)
value of the phase (Oppenheim & Schafer 1975; Tribolet 1977).

Many practical signals do not, however, satisfy the minimum or maximum phase
condition. For some classes of them, conditions have been derived for recovery of
the signal again, to within a scale factor from its phase. We summarize these conditions
(Hayes et al 1980b) in the next section; for proofs and detailed discussions, reference
may be made to Hayes et al (1980a), Oppenheim (1981), and Oppenheim et al (1982).

2. Conditions for exact reconstruction from phase

A basic result relating to exact reconstruction from phase can be stated in the form
of the following theorem.

Theorem 1. A one-dimensional discrete-time signal which is of finite length and which
has a z-transform with no zeros in conjugate reciprocal pairs or on the unit circle is
uniquely specified to within a scale factor by the phase of its FT (or by the tangent of
its phase). . '

While zeros on the unit circle are disallowed for convenience, zeros in conjugate
reciprocal pairs are disallowed for avoiding possible ambiguity due to zero-phase
components.

In theorem 1, the phase is assumed to be known for all frequencies. In a pract cal
situation, however, only a finite set of samples of the phase will be known. Theorem 1
has therefore been extended to take care of this situation as follows.

Thearem 2. A one-dimensional discrete-time signal which is known to be zero outside
val 0 < n <N is uniquely specified to within a scale factor by N samples of its
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The phase interpolation problem 227
phase (or tangent of its phase) at distinct frequencies in the interval 0 < < if it has
a z-transform with no zeros on the unit circle or in conjugate reciprocal pairs.

This theorem forms the basis of several signal reconstruction algorithms discussed in
the next section. :

3. Algorithms

The problem of signal reconstruction from phase can be stated as follows: Let Py(z)
be the z-transform of a discrete-time finite duration signal p™(n),0 <n <N, ie.

N
Pyia)= 3 pM(mz" 1)

The FT of the signal is simply obtained by replacing z by ¢/ in (1). Let

Py(e®) = | Py(e®) e/ @

and let ¢(w,)= ¢, be specified at N distinct frequencies: w;,k=1,2,..., N, where
0<w,<n and ws need not be ordered or uniformly spaced. It is assumed that
p™(0) # 0 and Py(z) does not have zeros on the unit circle or in conjugate reciprocal
pairs implying that the phase values, ¢, do not contain a linear phase component.
The assumption p™(0) # 0 is made to simplify the algorithms. The problem is to
~ reconstruct the signal from the given frequency—phase pairs (wy, ¢y)-

3.1 Equations to be solved

From (2), we have

N
PN(ejw) _ %@ nZO P(N)(n)e”"“’

Py(e®) e #@ N G)
Y pM(n)el
n=0
On cross multiplication and simplification, we have
p p ‘
N _ N ‘
Zo p‘N’(n)e‘-’[""’ + (] — p(N)(n)ej[nw +¢(m)]. (4)
n= n=0

Equation (4) is satisfied only if the imaginary part of either side vanishes; this gives
N
Z P(N)(”) sin[no + ¢(w)] =0. ‘ (5)
n=0

Sampling ¢(w) at N distinct frequencies, oy, k=1,2,...,N reduces (5) to the following
set of N linear equations '

N
Y p™(n)sin(no, + @) = —p™M(O)sing, k=1,2,...,N. (6)
n=1 )

p™(0) is, however, not known; the equations can be solved for p™ (n)/p™™(0) which

is equivalent to choosing p™(0) = 1 in (6). The solution can be effected through any
one of the well known algorithms for matrix inversion.

T
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Note that however exact the method may be, large N will always lead to numerical
instability and severe round-off errors. As a result, the applicability of this technique
will be limited in practice. :

To circumvent the problem, two iterative algorithms are available in the literature,
which we now describe.

3.2 First iterative algorithm

This algorithm (Hayes ez al 1980a; Oppenheim & Lim 1981; Oppenheim et al 1982)
involves going back and forth between the time and frequency domains with the
relevant constraints imposed in each domain. Let the M-point DFT of p™(n), with
M = 2N be denoted by

P(K) = Py(@)]2maspe = | P(K)| ¥, ™

The iterative procedure Begins with an initial guess |P,(k)| of the unknown DFT
magnitude | P(k)|. Combining this with the given phase samples ¢(k), and taking the
M-point IDFT gives the first estimate p, (n),

p1(n) = IDFT[| P, (k)| ], 8)

p1(n) will be an M-point sequence. Since our aim is to obtain an N + 1 point sequence,
p:(n) is modified to another sequence y, (n) as follows.

pi(n) for 0 <n< N,
y,(n) ={ B (arbitrary) for n=0,

Ofor N+1<n<M—1 9)

The DFT of y,(n), Y, (k), is obtained and the second estimate of p(n) is obtained as
Pa(n) = IDFT[] Y, ()| ], | (10)

Equations (7), (8), and (9) complete one iteration, and this process is repeated. It has
been observed empirically, and also proved theoretically (Tom et al 1981), that the
algorithm always converges, although the number of iterations may be large for large
N. Since the DFT and IDFT are the major computational units, this algorithm does
not suffer from numerical instability or round-off errors that arise in solving the set
of equations (6) through matrix inversion. -

The computation time required in this algorithm can be saved considerably by
improving the convergence characteristics. This is precisely effected in the second
iterative algorithm (Tom et al 1981; Oppenheim et al 1982). described below.

3.3 Second iterative algorithm

A compact representation of the first iterative algorithm is as follows.
Pi+1= Tp,, (11)

P, = [p,(0). p,(1),..., p,(M)T,

where

and
pq+1 = [pq-f-l(o),pq-l—l(l)a'-‘apq+1(M)]t,
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represent the estimates of the unknown vector p = [p(0), p(1),...,p(M)] after the gth
and (g + 1)th iterations, respectively, and T is a nonlinear operator corresponding to
time limitation and phase substitution operations. It has been shown that convergence
is improved if instead of (11), the iteration is modified to the following

pq+l_:‘-(1 _—Ocq)pq+“q qua (12)

where o, is a scalar, referred to as the relaxation parameter, which may change with
g. This is the second iterative algorithm. Note that for any choice of «,, the phase
associated with p, .. is the same as that of p, by virtue of the definition of the operator
T. Hence under appropriate conditions, a convergent soluticn of (12) will correspond
to a scaled version of p.

The question of convergence of (12) has been analysed in detail by Tom et al (1981),
who have also derived the required optimum «, for maximum rate of convergence
of the iteration.

The problem of signal reconstruction has also been dealt with in terms of specified
group delay functions (Yegnanarayana et al 1984). Based on the relation between the
cepstral coefficients and the group delay functions of a signal, the authors have
rederived the conditions for phase- (or magnitude-) only reconstruction. New iterative
as well as noniterative techniques have been proposed and their convergence proper-
ties in the group delay domain have been extensively discussed (Yegnanarayana &
Dhayalan 1983; Yegnanarayana et al 1984; Madhu Murthy & Yegnanarayana
1989). Applications of the proposed algorithms to speech and picture signals have
also been demonstrated (Yegnanarayana et al 1984, 1988). In these studies, it has
been recognized that the nature of the signal determines the relative importance of
spectral magnitude or phase in its reconstruction. This contradicts the earlier notion
(Oppenheim & Lim 1981) that phase is more important than magnitude in all cases.
The role of signal reconstruction from partial Fourier domain information and group
delay functions in spectrum estimation and for sensor imaging applications have
been discussed and illustrated in some recent contributions (Yegnanarayana et al
1990; Yegnanarayana & Murthy 1990).

3.4  Recursive algorithm

In a recent contribution, Merchant (1988) has proposed a recursive technique for the
reconstruction, which involves finding a polynomial Py(z), of order N, which satisfies
phases at N given frequencies.
He viewed the problem of reconstruction as that of determining a sequence of
monic? real polynomials P,,(z), of orderm, m =2, 3,..., N satisfying the given frequency—
‘phase characteristics on the unit circle, i.e.

Phase[P,(¢*)]1=¢,, q=12,...,m. - (13)

'

He showed that P, (z) is related to its predecessors P, _,(z) and P, _,(z) as follows

Pm(z)"'—"am—lpm—l(z)+ﬂm—1(z"—?‘coswm—1 +Z*1)[Pm—1(z)_Pm—2(z)]°
' (14)

where a,,_, and f,,_, are real numbers, and can be easily determined.

2A monic polynomial is defined as one in which the coefficient of the highest power term is unity.
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The coefficients of Py(z) and P,(z), required for initializing the recursion, are:

p0)=1, (15)
pH(0)=1, (16)
pH(1)= —sin ¢, /sin(w; + ¢,). (17)

Note that if w, + ¢, = nm,n =0 or any integer, then p'*(1) cannot be computed. In
such a case (w,,¢,) should be interchanged with some other (w,,¢,), such that
w, + ¢, # nm.

Apart from the algorithms mentioned above, there is another solution to the
problem of signal reconstruction from phase which is worth mentioning. Merchant
(1982) reformulated the phase-reconstruction problem from time-domain considerations
(see also Merchant & Parks 1983). This gives rise to a system of equations whose
coefficient matrix can be expressed as a sum (or difference) of a Toeplitz and a Hankel
matrix. It has been shown by Merchant & Parks (1982) that any matrix which can
be expressed as a sum (or difference) of a Toeplitz and Hankel matrix can be converted
to a block-Toeplitz form. Akaike (1973) has shown that a block-Toeplitz matrix can
be inverted by a block-Levinson type recursion algorithm. Thus the system of equations
can be solved in a very efficient manner. The applications of this technique and other
algorithms discussed here will be given in §5.

v 4., Some new results

We present in this section some new generalizations and extensions of the results of
the previous section.

4.1 Extension of Merchant’s technique

Merchant’s (1988) recursive formulation, though very elegant, is not programmable
on a computer. We have extended his technique for computer implementation
(Minocha et al 1991). Here, we discuss the alogrithm and present several illustrative
examples to demonstrate the accuracy and efficiency of our program?.

Substituting in (14) the corresponding polynomial expressions for P, (z), P,-(2)
and P,,_,(z) and carrying out somewhat lengthy algebraic manipulations results in
the following recursive formulas for the coefficients of the polynomial:

P70 = o PO + By [ 2008y (PO — P V0) +
FE™ I = 1) =PI — 1)+ ("0 + 1) = p" D+ 1))

r=12,....m—1, (18a)
_—_-ﬁm_lp(m—l)(m_ D, r=m, (18b)

where
pO()=0, forj>i. (18¢)

The program, written in Fortran, may be obtained from the authors on request.

.
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The parameters f,,-, and «,,_, in (18) are given by

Bm—lem—l/Cma (19&)
U1 =1 = B (P V(1) — p™ 7 2(1)), (19b)
where -
m—1
Ap-1=—sing,,— > p™“V(r)sin(ro, + ¢,), (19¢)
r=1
m—2 ' m—1 :
B,_i= Y p"P@Msin(ro,+ ¢,)— Y p" "V ()sin(ro, + ¢,)  (19d)
r=1 r=1
and

Cn =@" V(1) =p" P(1))A,_; — 2B, 1(cOSW, — COSWy, -1 ). (19€)

Merchant (1988) has cited two situations either of which will cause the recursion to
terminate, and has also suggested remedial actions. We summarize his findings for
the sake of completeness.

When C,, =0, «,,_, and §,., cannot be determined [see (19)] and this brings the
recursion to a halt. Thus, one needs to explore the conditions for which such a
situation arises.

C,, equals zero for the following cases:

Case 1: Consider a polynomial H,,(2)
H(2) = Py (2)[p" " (1)~ p" "2 (1)] — (2 — 2c08 0y +271) %
X [Pp-1(2) = Pp-2(2)]. (20)

Note that the constant term of ‘H,,,(z) is zero.
Also, H,,(z) has the same structure as P,,(z) in (14). Hence,

Phase[H, ()] =, q=12,....,m—1, @1)
Cp= IM[H, ()], 2

where M[ ] is the imaginary part of [ .

C,, =0, if and only if,

Phase [H,,(¢/*")] = ¢,,. (23)
Equations (21) and (23) imply that

Phase[H, ()] =¢,, g=12,...,m. (24)

Since the constant term of H,,(z) is zero, (24) indicates the presence of a linear phase
component in the subset of phase values ¢,,q9 =1,2,...,m. One of the conditions for
the algorithm to work is that the prescribed phase values should not contain a linear
phase component. Since the recursion constructs a sequence of polynomials which
satisfy a growing subset of the prescribed frequency/phase pairs, each subset also
needs to satisfy the same condition. In the present situation where a given subset has
a linear phase component but the complete set does not, the procedure will not work
unless some remedial action is taken. Merchant (1988) suggested that the frequency/
phase pairs should be reordered by circulating them and then the recursion can be
continued.



232 S C Dutta Roy and Shailey Minocha

Case 2:

Phase [P, (¢/*™)] = ¢,. (25a)
But if '

Phase [P, (¢/°")] = ¢, (25b)

then it implies that
P(z) =P, _(2). (26)

Now, when P, ,(z) is computed, C,,..; becomes 0 and recursion terminates. Again
the frequencies can be circularly shifted as in case 1 and recursion continued.

However, it may happen that even after taking care of these situations, the recursion
may terminate at a polynomial of order less than the desired order N (Merchant
1988). This indicates the presence of a linear phase component in the full set of
frequency-phase pairs which needs to be removed before the polynomial can be
constructed. With premature termination, our program reports the last polynomial
successfully constructed. As an example, consider the polynomial.

P@)=(0+z" +z724+2"3)(1+4z7").

Due to the presence of a symmetric factor in P,(z), recursion cannot proceed beyond
the computation of P,(z) (an intermediate polynomial).
However, it was observed that for -

Py@)=(1+z"1(1+2z71),
and for
Py(z)=(1—z"')(14+2z714+3272),

the presence of linear phase factors do not terminate the recursion and P,(z) and
P3(z) are successfully constructed. It is inferred that zeros at z = + 1, though
contributing to linear phase components, do not .hinder the unique construction of
a sequence from its phase values.

The design of our program is summarized in appendix A. To further validate the
program, we consider a polynomial of order 6:

Ps(z)=1+22"1 432724273 44274 + 52754776, (27)

The phase values at an arbitrary set of frequencies are listed in table 1. The coefficients
obtained by implementing the procedure given here on the HP 9000 system are also
shown in table 1. The error in computed values, though negligible, is attributed to
the finite-bit arithmetic of the computer.

4.2  Explicit formulas for reconstruction

In another recent. contribution (Minocha et al 1990), we have derived explicit
mathematical formulas for determining the coefficients of a polynomial (assuming the
discrete signal to be real and of finite length) exactly, from the prescribed phase
characteristics on the unit circle and have proposed an algorithm for the computation.
The explicit formulas have been obtained by solving the system of linear equations
(6) for several low orders and then resorting to induction. It has been shown that

P = — D™ /D® | — 1,2,...,N, ‘ (28)

N

e



The phase interpolation problem 233

Table 1. Comparison of the computed values of the coefficients with their actual values
for the examples [(27) and (34)].

Specified p™M(k)
Frequency Phase
Example k  (normalized) (radians) Actual Reconstructed
Equation (27) 1 /5 0-859681459555361 2 1-9999995996147184
2 /9 —1:208646365893548 3 3.000000002299421
3 7/10 — 1-084476489414754 1 0.999999993685273
4 2n/5 —4:5536120521889E-002 4 4-000000002017118
5 2n/9 0-546762582963989 5 4-999999993223931
6 3n/7 —0-470038925396254 1 1-000000000361047
Equation (34) 1 /6 0-534378199356056 1 1-00000000000002
2 n/3 —1-047197653189843 —~2  —2-00000000000000
3 /2 —1-107148962577857 3 3-0000000000004
4 27/3 0-132454424294178 —4  —4-00000000000006

Note: Due to monic polynomial condition, p®™(0) = 1.

where D{¥ and D™ are given separately for two cases viz. N =1, 2 and 3 (case 1)
and N >4 (case 2).

Case: N=1,2& 3

N N~—1+8n,1 N-1
DM = ¥ sinfioo; + ¢1){ T (= 1)'[ [T sin(Lerg.s+ ¢,,+1)]},(29)
i= 1= =
where
I,m=n
A ? »
S 2 {O, - (30a)
r=j+ 1 +5i,2 5N’2, (3Ob)
[10=1Ln<m (30c)
L=((4+064))y, (30d)
A=((i+j—1+ )k, (30e)
. 4 Jmmodulo N, m#nN, 30f
(m))y = {N,m =nN, n is an integer. (o0

The numerator, D™, in (28) is also of the same form as D™ with i replaced by i’ and
L replaced by L', where

I'=1i(1— ), (31a)
and ’

L' - L(]. — 51,"). (31b)
Case 2. N=4

N
D™ =% sin(a;w, + ¢,) B-C, (32a)

i1=1
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where
N+ii—1 N+ix—2
B={ Y sin(azwz—i-qbz){ Z+lsin(a3w3+¢3)...x
i2=i1+1 i3=i2
Ntigo,—N+4
X > Sin(aN—3wN—3+¢N—3)}"'}a (32b)
ey =iy-q+1
3 N N '
= Zl: H Sin(@m0, + ¢) =[] sin(bj,,,wq+¢q)} (32¢)
i=t} q=N- q=N-2 .
and
m=(3—N +q). (32d)

The notations used in (32) will be clear from the algorithm discussed in appendix B.
As in case 1, D™ is of the same form as D™ except for replacement of
a;,i=12,...,N, by :

a;=a;(1 — 8,,). (33)

The formulas derived here [(29)—(33)], though seemingly involved, are easily
implementable on a computer3. An efficient algorithm for computing D™, D™ and
hence p{™ is described briefly in appendix B.

An example is now given to demonstrate the validity of the formulas and the
algorithm.

Consider

P(2)=1+2z"1—2z"2432z"3 474 (34)

The frequency/phase pairs along with the coefficients obtained by implementing the
algorithm on an HP 9000 system are shown in table 1.

Validation experiments show that the method should not be used for N > 10 as it
requires a rather large execution time.

5. Conclusions

In this section, we discuss some of the important situations where the phase
interpolation problem arises and how the solution of the problem can be used to
one’s advantage.

In an FT coding system, it is usual to transmit both magnitude and phase, after
appropriate coding. If the signal satisfies the magnitude retrieval conditions, then it
should suffice to transmit the coded phase only. A 51gn1ﬁcant bit-rate reduction can
be achieved thereby (Hayes et al 1980a).

In paleomagnetism (Oppenheim et al 1983), a history of the direction of the earth’s
magnetic field over time can be obtained by an examination of the core samples. This
is, essentially, a phase information, and it would be very convenient if one can obtain
the magnitude or strength information from this phase data.

Given the convolved output of a desired signal with some unknown distorting
signal, the problem of blind deconvolution (Merchant 1982; Oppenheim et al 1983)
involves the recovery of the desired signal, with no substantial information available
about either the desired signal or the distorting signal. However, in the special case
of a zero-phase distorting signal, the phases of the observed signal and the desired
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e

signal are identical; hence the desired signal can be reconstructed from phase‘

information alone.

In a similar problem, signal reconstruction from only the Fr phase can be useful
in the estimation of the frequency response of a linear time-invariant system with
some restrictions on the symmetry of the input to the system.

The role of phase -only reconstruction has also been exploited in the areas of i 1mage
and speech processing (Fienup 1979; Oppenheim et al 1979; Oppenheim & Lim 1981;
Yegnanarayana et al 1984) and X-ray crystallography (Oppenheim & Lim 1981).
Images degraded by approximately zero-phase blurring functions (e.g. by defocused
lenses in an optical system) can be reconstructed from the knowledge of phase alone
as the phase of the blurred image would be similar to that of the original image. With
FT magnitude assumed to be unity, it has been shown that the intelligibility of speech
is retained in a phase-only reconstruction. In the area of X-ray crystallography, it
has been observed that the atomic structure, inferred from the diffraction data, is better
preserved in a magnitude-retrieval Fourier synthesis than in a phase-retrieval Fourier
synthesis.

Appendix A

A flow chart of the main program module is given in figure Al.
Following this module, we use a less formal method of stating the algorithm.

(1) The recursion can be initiated only for N > 1. The program checks the value of
N and reads the given frequency/phase pairs.
(2) Initialize: m =1 & k =0; m is the order of the polynomial being computed in the
sequence of polynomials P,(z),m=1,2,...,N and k is the parameter that controls
the circular shift of the frequency/phase pairs

3 31 If
(w; + ¢,)/n=0 or any integer
32 Then
3.2a  CALL subroutine SHIFT
3.2b SHIFT:
If K=N-m+l1
Then it indicates that while circularly shifting the frequencies all
the frequency/phase pairs (@,, ¢,),g=m+1,---,N have
been tried; recursion prematurely terminates with a message
_Else increment k, circularly shift the frequencies. Control passes
to main program.
3.2c Go to step 3.1.
33 Else Compute p*(1).
(4) CALL subroutine OUTPUT
ouTPUT prints p™(r), r=12,...,m
(5) Initialize: k = 0; Increment m.

If m=N+1

Then it means that the desired Nth order polynomial has been
determined and therefore recursion stops

Else - (A) cALL subroutine CHECK

CHECK takes care of cases 1 & 2 and their remedies discussed in
§4.1.

e
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?

Set m=m+1
k=0

Retd{(w,
,,,,, d :’q) Call
’ check
Set m=1
k=0
. Calculate

(“’I*fe’])/IIE 0
or integer ?

Compute

pll)(n)
Call Compute ,;n.l a°‘m4
output pM) gy ret, ,m

Figure Al. Flow chart of the main program module for the implementation of Merchant’s
(1988) recursion.

(B) Compute C,,

O If C,<10D0 x 107"*=C, ~0
Then (i) CALL subroutine SHIFT. SHIFT checks k and reorders the
frequency/phase pairs as in step 3.2b

(ii) Go to (A).
Else Compute
Bn—1:0n—-y and p™(r), r=1,2,...,m

6) » Go to 4.
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Appendix B

The explicit formulas derived for orders N = 1, 2 & 3 [(29)-(31)] can be easily
programmed and implemented. For orders N > 4, the computer program implementing
(32) and (33) to determine p{™,k=1,2,..., N is organized as follows:

Main program computes p{™ using (28).
The subprograms are as follows:

(i) For evaluating denominator, D™,

(ii) For evaluating the numerator, D{™.

(1) For negating the sign of the product term, each time the index of any summation
increments by 1. ‘

(iv) For computing the Kronecker delta [(30a)].

(v) For computing the modulo [(30f)].

(vi) For sorting the array in ascending order.
(vii) The major task in evaluating D™ or D is to determine the coefficients,
ap,n=12,...,N for the products of the sine terms to be generated. a,’s are computed
in a subprogram using the subprograms (iv)—(vi) by the following method:

(ks n=12,
an =
((dn,n—l));\h n=3s4:"'7N)
where d, ,_, is computed as follows. Let ¢;,i=1,2,...,n—1 be the array in which

the a;s are arranged in ascending order when a, is being evaluated.
Then let

(BI)

p=((a,-y+ 1))k, when i;=i;_, +1, | (B2)

i.e. at the start of the loop; else

p=((a,+ 1), (B3)

dy = ((P))Ev + 5(1p));v.<-\= (B4)
and

dn,m = ((dn,m-— 1 ))}V + 5((d,,_,,,vl))k,c‘,,,’ m= 2” 39 REEY G 1’ (BS)

d, n- . is substituted in (B1) to get a,. The a,,n=1,2,...,N — 3 are used in (32a) and
(32b) and for the innermost summation, (32c), the following substitutions are made:

a1,3_N+q=aq, q=N_2,N—1,N, (B6)
Aj3-N+q=0a1 1> J=2,3, (B7)

J

where j1 is defined as

jl=@=N+q)—B—N+q)83-y+q3- (B8)
Also

bj,=a;;,

bj’z =a_,-,3,

bj,3 = aj,z., j= 1, 2, 3. (Bg)

By repeated usage of subprogram (\;ii), D™ and DV are evaluated, yielding p{".

i
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