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Abstract. We study the dissipative, classical dynamics of a charged particle in the presence of
a magnetic field. Two stochastic models are employed, and a comparative analysis is made, one
based on diffusion processes and the other on jump processes. In the literature on collision-
broadening of spectral lines, these processes go under the epithet of weak-collision model and
Boltzmann-Lorentz model, respectively. We apply our model calculation to investigate the
effect of magnetic field on the collision- broadened spectral lines, when the emitter carries an
electrical charge. The spectral lines show narrowing as the magnetic field is increased, the
narrowing being sharper in the Bolizmann-Lorentz model than in the weak collision model.
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1. Imntroduction

The problem of dissipative dynamics of a charged particle in the presence of a magnetic
field pervades several areas of basic physics such as classical mechanics, electromag-
netic theory and statistical physics. It also has ramifications in plasma physics [ 1], solid
state physics, in particular, diamagnetism r2], and as we shall discuss here, in a branch
of optical spectroscopy called “collision broadening” [3]. In its most elementary form,
the problem involves reversible dynamics due to the Lorentz force, and its interplay
with dissipative effects arising from “collisions”. The term is put under quotes to imply
that its usage is meant to be understood in a generalized sense to describe either real
collisions between the test charge with other foreign particles or effects of interaction
with other degrees of freedom, eg. phonons in solids.

Whatever be the source of collisions, its consequence is to make the velocity v(¢) of the
charged particle a stochastic process. In the present work, we shall assume this process to be
a classical one and that it is a stationary Markov process [4]. Needless to say, the time-
integral of v(t) i.e. the position vector r(t) isalsoa stochastic process (albeit a non-stationary
one) which can be completely specified by the so-called characteristic function

ok, t) = {exp(ik-r(1)), M)
where k is an arbitrary vector and the angular brackets denote the average over the
probability function which defines the underlying stochastic process.
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It is interesting to note that although the quantity ¢(f) in (1) is introduced as an entirely
mathematical object, it has the physical interpretation of the ‘phase’ of the electromagnetic
radiation (of wave vector k) from an emitter whose instantaneous position is r(t). Indeed,
the frequency-Fourier transform of ¢ (¢) yields the optical lineshape for velocity modulation
in gas-phase spectroscopy [5]. This can be readily seen by writing (1) as

ok, t) = <expik° f t» v(t’)dt'>, 2

0

if we assume that v(0) = 0. Note that if the velocity v(t) were constant in time, the
integral in eq. (2) would simply yield v&. We may then perform the average (indicated by
the angular brackets), over a stationary Maxwellian distribution of v, thereby yielding
a Gaussian in t. The Fourier-transform ¢(w), in turn, is also a Gaussian in @ with
a width proportional to T*/%, T being the temperature characterizing the underlying
velocity distribution. Therefore, the spectral line undergoes broadening as temperature
increases, which is usually referred to as the Doppler broadening [3]. However, if the
emitter suffers velocity-changing collisions, its ‘effective’ velocity is reduced, leading to
anarrowing of the Doppler broadened line. This phenomenon is akin to the ‘motional
narrowing’ effect in magnetic resonance [6]. One of our aims in the present paper is to
investigate what influence, if any, does an external magnetic field have on the motional
narrowing, when the emitter carries an electrical charge.

It is well-known that a stationary Markov process such as v(z) has an underlying
probability function P(v, ) that obeys the following master equation

D= [avtewowe - po oWy “

where W(v'|v) denotes the probability per unit time that v jumps (instantaneously) from

V' to v [7]. The general solution for P(v,¢) is not available in an operationally useful
form, except in the following two extreme situatiofis:

(1) The diffusion process. In this case the velocity v(t) is assumed to describe Brownian
motion such that the effect of a collision is to alter the velocity of the particle by a ‘small’
amount. Mathematically, W(v'|v) can be approximated by a second order Kramers—
Moyal expansion (in velocity moments) yielding a Fokker—Planck equation for P(v, )

[4,5]. In the literature on collision broadening, such a process goes by the name of

weak collision model (WCM), and we shall, henceforth employ this nomenclature for

describing the diffusion process. In the sequel, we shall use P(v,1) in the presence of
a magnetic field to investigate the characteristic function ¢(t), and from that, compute
the spectral line shape ¢ (w).
(if) The Boltzmann—Lorentz model. The BLM is a ‘strong collision model’, in contrast
to the WCM, wherein the collisions are viewed to alter the direction of the velocity
vector by arbitrary angles, keeping the magnitude fixed [7, 8]. Unlike the WCM, the
stochastic process ¥(t) is now a Jjump process, and is applicable to a situation of
gas-phase spectroscopy in which the emitter is a small particle that suffers collisions
with much heavier buffer-gas particles [5,8]. In yet another interpretation, borrowed
from the classical kinetic theory, the BLM describes scattering of the test particle from
frozen-in scatterers distributed randomly in space. The BLM, like the WCM, enables
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one to obtain a closed-form solution of the master equation (3), which can then be used
to calculate ¢ (f). We should emphasize that in the WCM, the particle is continually
under the influence of dissipative terms. On the other hand, in the BLM, the trajectory
of the particle evolves freely, albeit under a magnetic field, until this evolution is
disrupted by the next collision event.

The plan of the paper is to investigate the motion of a charged particle in the presence
of a magnetic field in both the WCM and the BLM and make a comparative study of
the velocity-correlation, the characteristic function and the spectral line shape. The
idea is to explore whether the magnetic field, like temperature or pressure, can be used
as a control parameter in the study of collision broadening of spectra. The paper is
organized as follows. In §2, we introduce the WCM and the BLM for describing
stochastic motion of a charged particle in the presence of a magnetic field, and make
a special reference to the respective velocity auto correlation functions. The results for
the characteristic function ¢ (t) and the line shape function & (w)for both the WCM and
the BLM are presented in § 3. We discuss in the concluding § 4, how the magnetic field
can be used to tune the motional narrowing effect, and also offer some comments on
possible quantum generalizations of our results.

2. Two distinct models for stochastic dynamics

a. The weak collision model. As introduced in §1, the weak collision model (WCM)
describes the diffusion process or the Brownian motion of a tagged particlein a medium
(heatbath). Here we analyze the motion when the particle is charged and is under the
infiuence of an external magnetic field. Most of the results are well known in the
literature [9, 107, but we still summarize them in order to make a meaningful compari-
son, later, with the results derived in the Boltzmann—Lorentz model (BLM).

The WCM is characterized by a Langevin equation for a Brownian particle of mass m
and charge ¢ in a fluid at temperature T, under the influence of a uniform magnetic field B:

m%lt =qlvxB)y—myv+£(), ' - @

where y is the friction coefficient and f (t) is a stationary Gaussian white noise with zero
mean and correlation given by

SO fE)y =T8,;8(—1) (5)
where the indices i and j denote cartesian co-ordinates and I is a positive constant

which is related to the friction coefficient y by the so-called fluctuation-dissipation
relationship

T =2mykyT. | (6)

Equation (6) ensures that v(z), and its moments and correlations starting from the
respective initial values, approach equilibrium, asymptotically (as £t — o), governed by
a Maxwellian distribution at temperature T. _

While the Langevin approach is based on the equation of motion of dynamical
variable, in the present instance the velocity v(t), a completely equivalent picture is
provided by the Fokker—Planck equation for the function P(v,t) which defines the
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conditional probability that the velocity is v(¢) at time ¢, given that the velocity is v, at
t = 0. This equation reads [10]

0P(v,1) q _ T,

5 =N PE D) = (VX B}V, P, 0) + 5 VIP(1 1) @
with

P(v,t=0)=5(v—v,). )

As mentioned earlier, eq. (7) for B=0 is a limiting case of the integro-differential
equation (3). It is straightforward to show, from either the Langevin equation (4) or the
Fokker--Planck equation (7) that the correlation function of the velocity is [10]

T .
{v;(0)v,{t)> = (%)e“""' [d;;c08m,t —¢;b;sinc,t + b;by(1 — cosw,1)],
©)

where w, is the so-called cyclotron frequency defined as
o, = gqB/m(B = B]), (10)

b,=B,/B are the direction cosines of the magnetic field B and & 18 the fully
antisymmetric tensor of rank 3. A special case of eq. (9) is the auto-correlation function

CH=v0)v(e)) = (E%) e"""f'(l + 2cosw, t). (11)

b. The Boltzmann—Lorentz model. In this approach, the velocity v(t) is taken to be
a jump process; its magnitude is assumed to remain unaltered due to collisions — only
the direction changes at random [8]. We may therefore view the velocity vector as
amatrix V in the ‘stochastic’ space spanned by the states (Q), where the set {Q} specifies
the Euler angles of the orientation of the velocity. In this space, the matrix V is diagonal

with its elements being given by the possible values of the velocity. Thus, following the
notation of ref. [8]

(QIV)IQ,) =15, v5(Q, — Q), (12)

where i, is the unit vector in the direction of v.

Given an initial velocity at time ¢ = 0, the velocity at time t is obtained in terms of the
average of the time-evolution operator U(z)

(QI(V(I))'iQo)=(QI(<U(t)>V)lQo), (13)

where the brackets .- denote the average over only the statistics of the collisions (not
the full average implied in § 1 (cf. eq. (2)). Using (12), the above expression simplifies to

QIVENIQ) = v QIKU©))|Q0)g,. (14)

In the BLM, the collisions are assumed to be Poisson-distributed with a mean rate
y that depends in general on the instantaneous velocity of the particle. The key
expression is that of (U (¢) > in terms of the ‘free evolution operator’ (i.e., the ‘streaming’
operator) U°(#) and the collision operator J. Following ref. [8], this expression is best
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written in terms of the Laplace transform of {U(t) ),
U@y =3, 0%+ yDINT°¢+ "
n=0

=0+ () + T+ y0)(r(0)J). <T(2)>. (15)

Finally, since the velocity is completely randomized in direction due to collisions, the
collision operator J has the following simple matrix representation

(QO[J|Q)=ZITE. ' (16)

Having set up the preliminaries of the BLM, we now make a departure from ref. [8]
and consider the expression for the matrix element of the free evolution operator U°(z),
when the particle is charged and is under the influence of a magnetic field. This
expression is extracted by first writing down the matrix of the velocity at time ¢ in the
collision-~free case, from (14)

Q[ V(©)1Qp) = v(Q|U° ()| Q) g, {17

Recalling that the Euler angle Q, in the present case is completely specified by the polar
angle 0, and the azimuthal angle ¢, (figure 1), the unit vector f,,, is

g, =(sinf,cos ¢, sinf,sing,, , cosd,). ‘ (18)

Secondly, taking the direction of B to be the z-axis (cf. figure 1), a direct solution of the
equation of motion (i.e., eq. (4) with only the Lorentz term on the right hand side) yields

Q| V(8)]Q,) =v(sinfcos ¢, sinfsing, cosb)
X 5(cos0—cos00)5(c/)—(/)0+wct). (19)
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Figure 1. In the absence of collisions, the velocity vector v precesses around the
direction of the magnetic field B, taken along the z-axis. For an initial velocity vector
Vo = vllg,, Where #ig, = (sinf,cos g, sinfysing,, cosf,), the velocity vector after
time t is given as v(z) = vig(t), where fig(t) = (sinf, cos (t), sinfysind(t), cosf,) and

¢(t) = ¢0 - .l
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That is, the velocity vector in the presence of B is simply rotated about the z-axis in the

clockwise direction by an angle @,t, @, being the cyclotron frequency. Comparing (19)
with (17) and keeping in mind (18), we arrive at

QIU°®)1Q0) =0, $I(U°@))16,, do) = dlcosd — cos6,)(¢p — b + wct)kzo)

With the machinery of eqs (15), (16) and (20) at hand, we are now ready to evaluate
the autocorrelation function C(z). The latter is given by (cf. eq. (11))

C(t) = <v(0)-¥(9)> = (v*{cosy (1) >, | (21)

where y(2) is the angle between the vectors v(0) and v(t), and {--- ) denotes the average
over the statistics of collisions, for a fixed value of the magnitude v. (The final average
over a Maxwellian distribution of the velocity is indicated by double angular brackets.)

For calculational convenience, we rewrite (21) with the aid of the spherical harmonics
addition theorem [11]

€)= <05, 1)), | e F
where ‘
4z 1 ,
S=5 T (0000 6(0)) Y0y, 60))- (23)
m=—-1
In terms of the averaged time-evolution operator (U(t)), eq. (23) can be further re- ‘
expressed as
P AR | | |
S0=7 X T | 420dQY,,(QQICU0)1Q0) Y 1,(Qy)- (24)
m= -1

We turn our attention to the evalution of S,(t) and in particularits Laplace transform

S (z) by employing the series solution for (U(2)) and the matrix representation of the
collision operator J, in the BLM (cf. eqs (15) and (16)). Thus , >

+1

~

S,(z)

Il

i ~
3 [fdﬁods:nmm)(mzf"(z+v(v))|ﬂo>Y’fm(fzo>

=-1

- Jdﬂdﬂ'nm(ﬂ)(ﬂl 0° +y()|Q)

n=0

i [%)Jdﬂldnz(nzlﬁ"(zw(v))mn]"

x f 40, d% (@) 00z +y(v>)|szo)m<ﬂo)}

+1

1 ~
=3 X [ J d0,dQY,,(QQIT (2 + (1)) |Qp) Y£,(Q,)

m=~1

+y(v)tfdﬂdﬂ'n,‘,,(m(mﬁf’(z+y<v))|ﬂ')][§dszodﬂs--..]} 25)

A 1—()/4n[dQ,dQ,Q, ) T0¢ + Y(v)|Q,)
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Hence, the special property of the collision operator, indicated in (20), has enabled
us to write S,(2) entirely in terms of the matrix element of the streaming operator:
U%z +y(v)).

In evaluating (25), we use the following definition of the spherical harmonics [11]
@L+1) (I—m)!

C pm img
p (l+m)!P’ (cosB)e™®. | (26)

YT =
It is then straightforward to show from (20) that

J dQdQ'Y,, (Q(Q|T°(z + Y(©)I€Y)

= Jon dQ, (1T +7(0)1Q6) Y$,(Q) =0, 27

Thus the numerator in the second term on the right of eq. (25) vanishes identically and we
are left with simply the first term, which yields ~

~ 1 1 1 1
S(z)== .
2) 3 [z + y(v) + z 4+ y(v) — iw,t T z+ (V) + icoct} 28

Taking the inverse Laplace transform of (28) and using (23), we finally obtain
C(t) = 3<v*exp(— y()|t])>(1 + 2cosw, ). (29)

Ifthe collision rate were velocity independent, i.e., y(v) = y,(29) would be identical in form to
the correlation function in the WCM, recalling that the mean squared velocity is given by
its ‘equipartition’ value (cf. eq. (11)). However, in the BLM [8]

y(v) = mn,av, 30)

where n, is the number of scatterers per unit volume and a is an effective scattering radius.
Hence, under a Maxwell-Boltzmann distribution p(v), (29) reduces to

[ve]
C(t) =3(1 + 2cosw, 1) f dvv?p(v)e™7OM, 631)
0 .

2 m 3P mv?
o= 3 () oo~ )

The integral in (31) may be viewed as a continuous superposition of exponential correla-
tions (in time) leading to a correlation function that would, in general, have a non-
exponential behaviour. Such behaviour is known to occur in the theory of jump stochastic
processes, such as in the case of the “Kangaroo process” [7, 12, 13]. Substituting the explicit
form of y(v) from (30) we obtain

kT

Clt)= — (1 4+ 2cosw, t) x [1 + 4(vt)® + 2(v)*Jexp(v2t?)erfe(vit)) |

where

— -V-'i'(a, +4y22), ' (33)

N
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Je, T
vEm a? —2-]3];1— (349

and the complementary error function is defined by

where

erfc(vlt|)s~—2,-_ro dxexp(— x2). (35)

Vil

3. The characteristic function and the spectral lineshape

a. The weak collision model. The characteristic function ¢(t) is defined in (1) and (2). If we
employ the definition (2), the evaluation of ¢(r) can be carried out, using the Fokker—
Planck equation (7). Equivalently, we can calculate ¢(t) from definition (1) by employing
the full phase space equation for the probability [10]. However, we follow here a simpler
method by taking cognizance of the fact that the underlying stochastic process in the WCM

is a Gaussian—Markov process. Thus, all cumulants above the two-point vanish identically
[4] and hence, (2) yields

[ t t
(t) = exp —%ijk[ J dr f dt"(vj(t’)vl(t”»:l. (36)
L gl 0 0 '

Further, using stationarity, the above expression simplifies to

¢(t)=exp| — %2 kk, J t d(t — 'E)(UJ-(O)UI(I?)}]. (37)
biA 0

We specialize, now, to the geometry of figure 1 in which the external field is taken along
the z-axis, in order to, explicitly, demonstrate the anisotropic nature of the diffusion. The
velocity-correlation function is already given in (9) using which we derive

¢(O) =exp —3[(k2+ k2)S, (1) + k25,01, (38)

where S, (f)and S (f) are precisely the “variance of the displacement” in the longitudinal and
transverse directions respectively [10] :

2%, T
my?

GRS vt — 1 +exp(—y1)], (39)

. 2%, T
UL "T(/"‘:W 20 + 0?) — (3 — w?)
+exXp(= 1[0 ~ wl)eos(w,t) — 2yw,sin(w,H)]]. (40)

It is evident that the longitudinal component is associated with the free diffusive behaviour
[14], as the motion remains unaffected along the direction of the magnetic field. The

reduces to the result in the usual WCM [7]. | R
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Figure 2. The collision broadened line shape in the weak collision model in the
presence of magnetic field. Curves a, b, ¢ correspond to @, = 1, @, = 07 and @&, = 0

respectively, where &, = w,(k?v?)" Y2 and = 1.

~We turn our attention to the issue of what influence the magnetic field has on the
lineshape, especially, in the context of collision-broadening. For the sake of definiteness, we
choose k,=k, =0 and k,=k. As mentioned earlier, the spectral lineshape is obtained
from [5] :

I(w) = %Re J " dtexp(— ioot) (2. 1)

We substitute for S () from (40) into (38) and evaluate the integral in (41), numerically. The
lineshape is plotted in figure 2 in terms of scaled parameters @, (@, = w,(k*<(v2>)~ /%) and
7y =y(k?<{v*>)""2). For a fixed value of , which can be ascertained by fixing, say the
temperature and pressure, the spectral lines are seen to show narrowing as @, is increased.
Thus the magnetic field seems to have a similar constraining effect as the collisions do on
the velocity of the emitter, leading to a motional narrowing-like phenomenon.

b. The Boltzmann—Lorentz model. Our aim in this sub-section is to compute the character-
istic function (cf. eq. (2)) and its Fourier transform in the BLM, and compare the respective
results with those derived in the WCM (§ 3.a). Before we do this, it is useful to recapitulate
the basic premise of the BLM. The time interval 0 to ¢ is divided into (n + 1) parts at instants
t1>ts,-t,, at which time the tagged particle is assumed to undergo collisions with the
scatterers. The instants t,, ¢, - are randomly distributed and assumed to be governed by
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Poisson statistics. In-between collisiohs, the velocity vector of the particle evolves under the
influence of the applied magnetic field, and the corresponding evolution operator G°(t) has
matrix elements (cf. eq. (19))

(QIG°(1)|Q,) = d(cosh — c080,)d(¢ — ¢, + w,t)exp [iv [tszOSQO

sinf

— 2Lk, (sing, —sing) + k,(cos ¢ — cosqﬁo)]]]. (42)

With the operator G°(t) at hand, the full time evolution operator (U(t)  has the Laplace
transform given by the series solution in (15) except, U°(z + y(v))is replaced by G°(z + y(v)).
The most simplifying result of the BLM that emerges from the structure of the collision

operator J in (16) is that the matrix of (U (z) > is expressible entirely in terms of G°(z + p(®)).
Thus [8] '

. . Colz +y(v))

i, e ’ 43
L j O0dAQUDENI0) = E T )

where

~ 1 ~
Colz + 7)) = 4 Jdﬂon(QI(GO(Z +70)Q). (44)

Using (42), we easily obtain

Colz +y(v) = f : dtexp[ — (z + ()] xz—lﬂ J sinf,df,

J dg,exp [iu(kztcos 0, + sinf, [k, (sing, — sin(¢, — w,1))

wc
+k,(cos(¢y — w,t) — cosd)o)]>:|. (45)

We are now ready to write down the expression for the spectral lineshape in the BLM.
Recall from (41) that

I(w) =7—1tRe}3i_1}(1)¢(z), = —iw+ 4, (46)
where , . : )
- = Colz4+y)
~| 4 0%’
¢t J o PN 08 et 0y “

p(v) being given by (32). As before, we specialize to the geometry for which k, = k, =0 and
k.=k and compute Co(z +7(v)) from (44) by numerical integrations. The ‘results are
then substituted in (46) and one additional numerical integration is performed in order
to deriv_e ¢(2). The resultant I(w) is again plotted (figure 3) in terms of the scaled para-
meters y and &, defined earlier, Once again we notice a narrowing of the spectral line

with increasing magnetic field although the lines are more intense in this case than in
the WCM. ‘ : ‘
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Figure 3. The collision broadened line shape in the Boltzmann Lorentz model in
the presence of magnetic field. Curve a corresponds to @, = 1, and curves bandcto

@, =07 and O respectively, where @, = w,(k*v?) " 12, All curves correspond to
(n,a/k)y=1and = 1. :

4. Summary and conclusions

In this paper, we have employed stochastic modelling for studying classical motion of
a charged particle in the presence of a magnetic field. Two distinct stochastic models
have been used—one based on diffusion processes, the other on jump processes. These
are known in the literature on collision broadening of spectral lines as the weak
collision model (WCM) and the Boltzmann-Lorentz model (BLM) respectively. We
have made a comparative investigation of the influence of the magnetic field on the
spectral line shape, in the WCM and BLM. One of the common features of both these
models is narrowing of spectral lines, as the magnetic field is increased. Normally,
narrowing results from an enhanced rate of collisions, which can be effected by raising
the temperature or pressure of the gas. Thus one of our findings in this paper is that the
magnetic field can be used as a tuning parameter, in addition to the temperature and
pressure, in modulating the width of the spectral lines, in gas-phase spectroscopy.
Apart from the application to spectroscopy, the present study also has a bearing
on plasma physics. The magnetic field is, of course a ubiquitous feature in plasma
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physics and therefore, the results derived here are expected to be of some relevance in
magneto-hydrodynamics. One of the sensitive tools for measuring the temperature
inside a hot plasma (such as the one present in a tokomak) is to analyze the width of
a spectral line emitted by an ion. This analysis would therefore have to take into
account the alteration of the width by the magnetic field, as has been demonstrated in
this paper.

Our treatment has been entirely classical. It is important to extend the method to
quantum mechanics, especially in the context of magneto-transport of an electron,
which is of interest in the measurement of Hall coefficient and magneto resistance, in
solid state physics, Another intriguing question is what effect does dissipation (induce.d
by collisions in the present context) have on the Landau diamagnetism, which is

inherently a quantum phenomenon. These issues will be discussed in a forthcoming
publication.
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