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1 Introduction

This paper describes a measurement carried out by the Compact Muon Solenoid (CMS)
Collaboration of the inclusive production cross sections for W and Z bosons in pp colli-
sions at /s = 7TeV. The vector bosons are observed via their decays to electrons and
muons. In addition, selected cross-section ratios are presented. Precise determination of
the production cross sections and their ratios provide an important test of the standard
model (SM) of particle physics.

The production of the electroweak (EWK) gauge bosons in pp collisions proceeds
mainly via the weak Drell-Yan (DY) process [1] consisting of the annihilation of a quark
and an antiquark. The production process pp — W + X is dominated by ud — W+ and
da — W, while pp — Z + X is dominated by uit and dd — Z.

Theoretical predictions of the total W and Z production cross sections are determined
from parton-parton cross sections convolved with parton distribution functions (PDFs),
incorporating higher-order quantum chromodynamics (QCD) effects. PDF uncertainties,
as well as higher-order QCD and EWK radiative corrections, limit the precision of current
theoretical predictions, which are available at next-to-leading order (NLO) [2-4] and next-
to-next-to-leading order (NNLO) [5-9] in perturbative QCD.

The momentum fractions of the colliding partons z1, x2 are related to the vector boson
masses (miy, 7= sz1x2) and rapidities (y = 3 In(zq/x2)). Within the accepted rapidity
interval, |y| < 2.5, the values of = are in the range 1073 < 2 < 0.1.

Vector boson production in proton-proton collisions requires at least one sea quark,
while two valence quarks are typical of pp collisions. Furthermore, given the high scale of
the process, § = m%v /7™ 10* GeV?, the gluon is the dominant parton in the proton so that
the scattering sea quarks are mainly generated by the g — qq splitting process. For this
reason, the precision of the cross section predictions at the Large Hadron Collider (LHC)
depends crucially on the uncertainty in the momentum distribution of the gluon. Recent
measurements from HERA [10] and the Tevatron [11-19] reduced the PDF uncertainties,
leading to more precise cross-section predictions at the LHC.

The W and Z production cross sections and their ratios were previously measured by
ATLAS [20] with an integrated luminosity of 320 nb~! and by CMS [21] with 2.9 pb~!.
This paper presents an update with the full integrated luminosity recorded by CMS at the
LHC in 2010, corresponding to 36 pb~!. The leptonic branching fraction and the width of
the W boson can be extracted from the measured W /Z cross section ratio using the NNLO
predictions for the total W and Z cross sections and the measured values of the Z boson
total and leptonic partial widths [22], together with the SM prediction for the leptonic
partial width of the W.



This paper is organized as follows: in section 2 the CMS detector is presented, with
particular attention to the subdetectors used to identify charged leptons and to infer the
presence of neutrinos. Section 3 describes the data sample and simulation used in the
analysis. The selection of the W and Z candidate events is discussed in section 4. Section 5
describes the calculation of the geometrical and kinematic acceptances. The methods used
to determine the reconstruction, selection, and trigger efficiencies of the leptons within the
experimental acceptance are presented in section 6. The signal extraction methods for the
W and Z channels, as well as the background contributions to the candidate samples, are
discussed in sections 7 and 8. Systematic uncertainties are discussed in section 9. The
calculation of the total cross sections, along with the resulting values of the ratios and
derived quantities, are summarized in section 10. In the same section we also report the
cross sections as measured within the fiducial and kinematic acceptance (after final-state
QED radiation corrections), thereby eliminating the PDF uncertainties from the results.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal
diameter, providing a magnetic field of 3.8 T. Within the field volume are a silicon pixel and
strip tracker, an electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL).
Muons are detected in gas-ionization detectors embedded in the steel return yoke. In
addition to the barrel and endcap detectors, CMS has extensive forward calorimetry.

A right-handed coordinate system is used in CMS, with the origin at the nominal
interaction point, the z-axis pointing to the center of the LHC ring, the y-axis pointing
up (perpendicular to the LHC plane), and the z-axis along the anticlockwise-beam direc-
tion. The polar angle 6 is measured from the positive z-axis and the azimuthal angle ¢ is
measured (in radians) in the zy-plane. The pseudorapidity is given by n = —Intan(6/2).

The inner tracker measures charged particle trajectories in the pseudorapidity range
In| < 2.5. It consists of 1440 silicon pixel and 15148 silicon strip detector modules. It
provides an impact parameter resolution of ~15 um and a transverse momentum (pr) res-
olution of about 1% for charged particles with pp &~ 40 GeV.

The electromagnetic calorimeter consists of nearly 76 000 lead tungstate crystals, which
provide coverage in pseudorapidity |n| < 1.479 in a cylindrical barrel region (EB) and
1.479 < |n| < 3.0 in two endcap regions (EE). A preshower detector consisting of two
planes of silicon sensors interleaved with a total of three radiation lengths of lead is located
in front of the EE. The ECAL has an energy resolution of better than 0.5% for uncon-
verted photons with transverse energies (Et) above 100 GeV. The energy resolution is 3%
or better for the range of electron energies relevant for this analysis. The hadronic barrel
and endcap calorimeters are sampling devices with brass as the passive material and scin-
tillator as the active material. The combined calorimeter cells are grouped in projective
towers of granularity An x A¢ = 0.087 x 0.087 at central rapidities and 0.175 x 0.175
at forward rapidities. The energy of charged pions and other quasi-stable hadrons can
be measured with the calorimeters (ECAL and HCAL combined) with a resolution of
AE/E ~ 100%/+/E(GeV) @ 5%. For charged hadrons, the calorimeter resolution im-



proves on the tracker momentum resolution only for pr in excess of 500 GeV. The energy
resolution on jets and missing transverse energy is substantially improved with respect to
calorimetric reconstruction by using the particle flow (PF) algorithm [23] which consists
in reconstructing and identifying each single particle with an optimised combination of
all sub-detector information. This approach exploits the very good tracker momentum
resolution to improve the energy measurement of charged hadrons.

Muons are detected in the pseudorapidity window |n| < 2.4, with detection planes
based on three technologies: drift tubes, cathode strip chambers, and resistive plate cham-
bers. A high-pr muon originating from the interaction point produces track segments
typically in three or four muon stations. Matching these segments to tracks measured in
the inner tracker results in a pr resolution between 1 and 2% for p values up to 100 GeV.

The first level (L1) of the CMS trigger system [24], composed of custom hardware
processors, is designed to select the most interesting events in less than 1 s, using infor-
mation from the calorimeters and muon detectors. The High Level Trigger (HLT') processor
farm [25] further decreases the event rate to a few hundred Hz before data storage. A more
detailed description of CMS can be found elsewhere [26].

3 Data and simulated samples

The W and Z analyses are based on data samples collected during the LHC data oper-
ation periods logged from May through November 2011, corresponding to an integrated
luminosity Line = 35.9+ 1.4 pb~ 1.

Candidate events are selected from datasets collected with high- Er lepton trigger re-
quirements. Events with high- Bt electrons are selected online if they pass a L1 trigger filter
that requires an energy deposit in a coarse-granularity region of the ECAL with Et > 5 or
8 GeV, depending on the data taking period. They subsequently must pass an HLT filter
that requires a minimum FEr threshold of the ECAL cluster which is well below the offline
Er threshold of 25 GeV. The full ECAL granularity and offline calibration corrections are
exploited by the HLT filter [27].

Events with high-pp muons are selected online by a single-muon trigger. The energy
threshold at the L1 is 7 GeV. The pt threshold at the HLT level depends on the data taking
period and was 9 GeV for the first 7.5 pb~! of collected data and 15 GeV for the remaining
28.4 pb~ 1.

Several large Monte Carlo (MC) simulated samples are used to evaluate signal and
background efficiencies and to validate the analysis techniques employed. Samples of EWK
processes with Z and W bosons, both for signal and background events, are generated using
POWHEG [28-30] interfaced with the PYTHIA [31] parton-shower generator and the Z2 tune
(the PYTHIAG Z2 tune is identical to the Z1 tune described in [32] except that Z2 uses the
CTEQG6L PDF, while Z1 uses the CTEQ5L PDF). QCD multijet events with a muon or
electron in the final state and tt events are simulated with PYTHIA. Generated events are
processed through the full GEANT4 [33, 34] detector simulation, trigger emulation, and
event reconstruction chain of the CMS experiment.



4 Event selection

The W — fv events are characterized by a prompt, energetic, and isolated lepton and
significant missing transverse energy, . No requirement on Jp is applied. Rather, the
FPr is used as the main discriminant variable against backgrounds from QCD events.

The Z boson decays to leptons (electrons or muons) are selected based on two energetic
and isolated leptons. The reconstructed dilepton invariant mass is required to be consistent
with the known Z boson mass.

The following background processes are considered:

e QQCD multijet events. Isolation requirements reduce events with leptons produced
inside jets. The remaining background is estimated with a variety of techniques
based on data.

e High-Er1 photons. For the W — erv channel only, there is a nonnegligible background
contribution coming from the conversion of a photon from the process pp — y+jet(s).

e Drell-Yan. A DY lepton pair constitutes a background for the W — /fv channels
when one of the two leptons is not reconstructed or does not enter a fiducial region.

e W — 7v and Z — 777~ production. A small background contribution comes from
W and Z events with one or both 7 decaying leptonically. The minimum lepton pr
requirement tends to suppress these backgrounds.

e Diboson production. The production of boson pairs (WW, WZ, ZZ) is considered
a background to the W and Z analysis because the theoretical predictions for the
vector boson production cross sections used for comparison with data do not include
diboson production. The background from diboson production is very small and is
estimated using simulations.

e Top-quark pairs. The background from tt production is quite small and is estimated
from simulations.

The backgrounds mentioned in the first two bullets are referred to as “QCD back-
grounds”, the Drell-Yan, W — 7v, and dibosons as “EWK backgrounds”, and the last one
as “tt background”. For both diboson and tt backgrounds, the NLO cross sections were
used. The complete selection criteria used to reduce the above backgrounds are described
below.

4.1 Lepton isolation

The isolation variables for the tracker and the electromagnetic and hadronic calorimeters

are defined: Iivk = D 4 00 PT > TECAL = Y _poar BT, THCAL = D _poar £1 . where the sums
are performed on all objects falling within a cone of aperture AR = /(An)2 + (A¢)? =
0.3 around the lepton candidate momentum direction. The energy deposits and the track
associated with the lepton candidate are excluded from the sums.



4.2 Electron channel selection

Electrons are identified offline as clusters of ECAL energy deposits matched to tracks
reconstructed in the silicon tracker. The ECAL clustering algorithm is designed to recon-
struct clusters containing a large fraction of the energy of the original electron, including
energy radiated along its trajectory. The ECAL clusters must fall in the ECAL fiducial
volume of |n| < 1.44 for EB clusters or 1.57 < |n| < 2.5 for EE clusters. The transition
region 1.44 < |n| < 1.57 is excluded as it leads to lower-quality reconstructed clusters, due
mainly to services and cables exiting between the barrel and endcap calorimeters. Electron
tracks are reconstructed using an algorithm [35] (Gaussian-sum filter, or GSF tracking)
that accounts for possible energy loss due to bremsstrahlung in the tracker layers.

The radiated photons may convert close to the original electron trajectory, leading
to charge misidentification. Three different methods are used to determine the electron
charge. First, the electron charge is determined by the signed curvature of the associated
GSF track. Second, the charge is determined from the associated trajectory reconstructed
in the silicon tracker using a Kalman Filter algorithm [36]. Third, the electron charge is
determined based on the azimuthal angle between the vector joining the nominal interac-
tion point and the ECAL cluster position and the vector joining the nominal interaction
point and innermost hit of the GSF track. The electron charge is determined from the two
out of three charge estimates that are in agreement. The electron charge misidentification
rate is measured in data using the Z — eTe™ data sample to be within 0.1%-1.3% in EB
and 1.4%-2.1% in EE, increasing with electron pseudorapidity.

Events are selected if they contain one or two electrons having Et > 25 GeV for the
W — ev or the Z — ete™ analysis, respectively. For the Z — eTe™ selection there is
no requirement on the charges of the electrons. The energy of an electron candidate with
E1 > 25 GeV is determined by the ECAL cluster energy, while its momentum direction
is determined by that of the associated track.

Particles misidentified as electrons are suppressed by requiring that the n and ¢ co-
ordinates of the track trajectory extrapolated to the ECAL match those of the ECAL
cluster permitting only small differences (An, A¢) between the coordinates, by requiring
a narrow ECAL cluster width in 7 (o), and by limiting the ratio of the hadronic energy
H to the electromagnetic energy E measured in a cone of AR = 0.15 around the ECAL
cluster direction. More details on the electron identification variables can be found in
refs. [37, 38]. Electron isolation is based on requirements on the three isolation variables
Incar/Er, Igcan/Er, and Iy /Er.

Electrons from photon conversions are suppressed by requiring the reconstructed elec-
tron track to have at least one hit in the innermost pixel layer. Furthermore, electrons are
rejected when a partner track is found that is consistent with a photon conversion, based
on the opening angle and the separation in the transverse plane at the point where the
electron and partner tracks are parallel.

The electron selection criteria were obtained by optimizing signal and background
levels according to simulation-based studies. The optimization was done for EB and EE
separately.
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Figure 1. Distributions of the electron identification variables An, A¢, o,,, and H/E for data
(points with the error bars), for EB (left) and EE (right). For illustration the simulated W — ev
signal (histograms), normalized to the number of events observed in data, is superimposed. These
distributions are obtained after applying all the tight requirements on the selection variables, except
that on the presented variable. The tight requirement on that variable is indicated with an arrow.
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Figure 2. Distributions of the electron isolation variables Iix/Er, Iscar/Er, and Iycar/Er for
data (points with the error bars), for EB (left) and EE (right). For illustration the simulated W —
ev signal (histograms), normalized to the number of events observed in data, is superimposed. These
distributions are obtained after applying all the tight requirements on the selection variables, except
that on the presented variable. The tight requirement on that variable is indicated with an arrow.

Two sets of electron selection criteria are considered: a tight one and a loose one. Their
efficiencies, from simulation studies based on W — ev events, are approximately 80% and
95%, respectively. These efficiencies correspond to reconstructed electrons within the geo-
metrical and kinematic acceptance, which is defined in section 5. The tight selection criteria
give a purer sample of prompt electrons and are used for both the W — ev and Z — eTe™
analyses. The virtue of this choice is to have consistent electron definitions for both anal-
yses, simplifying the treatment of systematic uncertainties in the W /Z ratio measurement.



In addition, the tight working point, applied to both electrons in the Z — eTe™ analysis,
reduces the QCD backgrounds to a negligible level. Distributions of the selection variables
are shown in figures 1 and 2. The plots show the distribution of data together with the simu-
lated signal normalized to the same number of events as the data, after applying all the tight
requirements on the selection variables except the requirement on the displayed variable.

For the W analysis, an event is also rejected if there is a second electron that passes the
loose selection with Epr > 20 GeV. This requirement reduces the contamination from DY
events. The number of W — er candidate events selected in the data sample is 235687,
with 132696 positrons and 102991 electrons.

For the Z analysis, two electrons are required within the ECAL acceptance, both with
E1 > 25 GeV and both satisfying the tight electron selection. Events in the dielectron
mass region of 60 < mee < 120 GeV are counted. These requirements select 8452 events.

4.3 Muon channel selection

Muons candidates are first reconstructed separately in the central tracker (referred to sim-
ply as “tracks” or “tracker tracks”) and in the muon detector (“stand-alone muons”).
Stand-alone muons are then matched and combined with tracker tracks to form “global
muons”. Another independent algorithm proceeds from the central tracker outwards,
matching muon chambers hits and producing “tracker muons”.

The following quality selection are applied to muon candidates. Global and stand-
alone muon candidates must have at least one good hit in the muon chambers. Tracker
muons must match to hits in at least two muon stations. Tracks, global muons, and tracker
muons must have more than 10 hits in the inner tracker, of which at least one must be in
the pixel detector, and the impact parameter in the transverse plane, dxy, calculated with
respect to the beam axis, must be smaller than 2 mm. More details and studies on muon
identification can be found in refs. [39, 40].

Muon candidates selected in the W — pr analysis must be identified both as global
and tracker muons. Moreover, as additional quality selection, the global muon fit must have
a x? per degree of freedom less than 10 in order to reject misidentified muons and misre-
constructed particles. The W — uv candidate events must have a muon candidate in the
fiducial volume |n| < 2.1 with pr > 25 GeV. The muon must be isolated, satisfying (fglnb =
(Itrk + Iscar + Incar) /pr < 0.1. Events containing a second muon with pp > 10 GeV in
the full muon acceptance region (|n| < 2.4) are rejected to minimize the contamination from
DY events. The distributions of the variables used for muon quality selection are shown in
figure 3 after applying all selection requirements, except that on the presented variable.

Background due to a cosmic-ray muon crossing the detector in coincidence with a
pp collision is very much reduced by the impact parameter requirement. The remaining
cosmic-ray background is evaluated by extrapolating to the signal region the rate of events
with large impact parameter. Figure 3 (bottom, right) shows the distribution of the impact
parameter dy, for the W — uv candidates satisfying all selection requirements, except that
on dyy. Candidates with large dyy, are mainly due to cosmic-ray muons and their rate is
independent of dyy. A background fraction on the order of 10~ in the dyxy < 2 mm region
is estimated.
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Figure 3. Distribution of number of hits in the inner tracker and in the pixel detector, number of
hits in muon chambers, number of muon segments stations, x? per degree of freedom, and trans-
verse impact parameter dyy, for data (points with the error bars). For illustration the simulated
W — puv signal (histogram), normalized to the number of events observed in data, is superimposed.
These distributions are for events satisfying all selection requirements, except that on the presented
variable. The applied requirement on that variable is indicated as a blue arrow. In the dy, distri-
bution, the horizontal line shows the average of the bins with dx, > 0.2 cm used to estimate the
cosmic-ray muon contamination in the signal region. The excess of events in data in the region with
dyy < 0.2 cm with respect to W — pv signal simulation is due to muons from long-lived particle
decays in the QCD background.
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The isolation distribution in data, together with the MC expectations, are shown in
figure 4. Events with [, gﬂnb > 0.2 are mainly from QCD multijet background, and are used
as a control sample (section 7.3).

After the selection process described, 166 457 events are selected, 97 533 of them with a
positively charged muon candidate and 68 924 with a negatively charged muon candidate.

Z — putp~ candidate events are selected by pairing a global muon matched to an HLT
trigger muon with a second oppositely charged muon candidate that can be either a global
muon, a stand-alone muon, or a track. No x? selection or requirement that the muon be
reconstructed through the tracker-muon algorithm is applied. The two muon candidates
must both have pr > 20 GeV and |n| < 2.1, and their invariant mass must be in the
range 60 < my, < 120 GeV. Both muon candidates must be isolated according to the
tracker isolation requirement I < 3 GeV. The different choice of isolation requirements
in W — uv and Z — putpu~ is motivated in section 8.3. After the selection process, the
number of selected events with two global muons is 13 728.

5 Acceptance

The acceptance Aw(e) for W — erv is defined as the fraction of simulated W events
having an ECAL cluster within the ECAL fiducial volume with Er > 25 GeV. The ECAL
cluster must match the generated electron after final-state radiation (FSR) within a cone
of AR = 0.2. No matching in energy is required.

There is an inefficiency in the ECAL cluster reconstruction for electrons direction
within the ECAL fiducial volume due to a small fraction (0.5%) of noisy or malfunctioning
towers removed from the reconstruction. These are taken into account in the MC simu-
lation, and no uncertainty is assigned to this purely geometrical inefficiency. The ECAL
cluster selection efficiency is also affected by a bias in the electron energy scale due to the
25 GeV energy threshold. The related systematic uncertainty is assigned to the final W
and Z selection efficiencies.

~10 -



Awz

Process
l=e L=p

W+ — ¢ty ] 0.5017 4+ 0.0004 | 0.4594 + 0.0004
W™ — (77 | 0.4808 £ 0.0004 | 0.4471 4 0.0004
W — lv 0.4933 £ 0.0003 | 0.4543 £ 0.0003
Z — ¢~ 1 0.3876 +0.0005 | 0.3978 + 0.0005

Table 1. Acceptances from POWHEG (with CT10 PDF) for W — fv and Z — ¢T¢~ final states,
with the MC statistics uncertainties.

The acceptance for the Z — eTe™ selection, Az(e), is defined as the number of simu-
lated events with two ECAL clusters with E1 > 25 GeV within the ECAL fiducial volume
and with invariant mass in the range 60 < mee < 120 GeV, divided by the total number of
signal events in the same mass range, with the invariant mass evaluated using the momenta
at generator level before FSR. The ECAL clusters must match the two simulated electrons
after FSR within cones of AR < 0.2. No requirement on energy matching is applied.

For the W — pv analysis, the acceptance Ay (p) is defined as the fraction of simulated
W signal events with muons having transverse momentum p%en and pseudorapidity n®™",
evaluated at the generator level after FSR, within the kinematic selection: pgTen > 25 GeV
and |n&"| < 2.1.

The acceptance Az (u) for the Z — p™p~ analysis is defined as the number of simulated
7Z signal events with both muons passing the kinematic selection with momenta evaluated
after FSR, pf" > 20 GeV and |78 < 2.1, and with invariant mass in the range 60 <
myu < 120 GeV, divided by the total number of signal events in the same mass range, with
the invariant mass evaluated using the momenta at generator level before FSR.

Table 1 presents the acceptances for W, W, and inclusive W and Z events, computed
from samples simulated with POWHEG using the CT10 PDF, for the muon and the electron
channels. The acceptances are affected by several theoretical uncertainties, which are
discussed in detail in section 9.3.

6 Efficiencies

A key component of this analysis is the estimation of lepton efficiencies. The efficiency is
determined for different selection steps:

e offline reconstruction of the lepton;
e lepton selection, with identification and isolation criteria;
o trigger (L1+HLT).

The order of the above selections steps is important. Lepton efficiency for each selection
is determined with respect to the prior step.
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A tag-and-probe (T&P) technique is used, as described below, on pure samples of
Z — (T4~ events. The statistical uncertainty on the efficiencies is ultimately propagated
as a systematic uncertainty on the cross-section measurements. This procedure has the
advantage of extracting the efficiencies from a sample of leptons kinematically very similar
to those used in the W analysis and exploits the relatively pure selection of Z — £/~
events obtained after a dilepton invariant mass requirement around the Z mass.

The T&P method is as follows: one lepton candidate, called the “tag”, satisfies trigger
criteria, tight identification and isolation requirements. The other lepton candidate, called
the “probe”, is required to pass specific criteria that depend on the efficiency under study.

For each kind of efficiency, the T&P method is applied to real data and to simulated
samples, and the ratio of efficiencies in data (€qata) and simulation (egy,) is computed:

p= €data 7 (61)

€sim

together with the associated statistical and systematic uncertainties.

6.1 Electrons

As mentioned in the previous section, the tight electron selection is considered for both the
W and Z analyses, so the overall efficiency can be written as

€all = €rec €tight €trg- (6.2)

The reconstruction efficiency €. is relative to ECAL clusters within the ECAL acceptance,
the selection efficiency eggng is relative to GSE electrons within the acceptance, and the
trigger efficiency e, is relative to electrons satisfying the tight selection criteria.

All the efficiencies are determined by the T&P technique. Selections with different
criteria have been tried on the tag electron. It was found that the estimated efficiencies are
insensitive to the tag selection definition. The invariant mass of the T&P pair is required to
be within the window 60 < me, < 120 GeV. No opposite-charge requirement is enforced.

The number of probes passing and failing the selection is determined from fits to the
invariant mass distribution, with signal and background components. Estimated back-
grounds, mostly from QCD multijet processes, are in most cases at the percent level of the
overall sample, but can be larger in subsamples where the probe fails a selection, hence the
importance of background modeling. The signal shape is a Breit-Wigner with nominal Z
mass and width convolved with an asymmetric resolution function (Crystal Ball [41]) with
floating parameters. The background is modeled by an exponential. Systematic uncertain-
ties that depend on the efficiency under study are determined by considering alternative
signal and background shape models. Details can be found in section 9.

The T&P event selection efficiencies in the simulation are determined from large sam-
ples of signal events with no background added.

The T&P efficiencies are measured for the EB and EE electrons separately. Tag-and-
probe efficiencies are also determined separately by charge, to be used in the measurements
of the W+ and W™ cross sections and their ratio. Inclusive efficiencies and correction factors
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Efficiency Data Simulation Data/simulation (p)
EB

€iepree | (9T.0£1.0)% | (97.78 £0.02)% 0.992 £ 0.011

€t&p-tight | (84.0E0.3)% | (87.47 £0.05)% 0.960 + 0.004

€t&p-trg (98.0£0.1)% | (97.10+0.03)% 1.009 £ 0.001

€t&p-all (79.8£0.9)% | (83.05+0.06)% 0.961 +£0.011
EE

Et&p-rec (94.3+1.1)% | (94.61 £0.05)% 0.997 + 0.011

€t&p-tight (731 £0.7)% | (75.61 +£0.10)% 0.966 £ 0.009

Et&ep-trg (97.3£0.3)% | (97.16 = 0.04)% 1.001 £ 0.003

Et&ep-all (67.0£1.0)% | (69.51 +0.10)% 0.965 £ 0.015

Table 2. Tag-and-probe efficiencies in data and simulation, and the correction factors used in the
electron channels for the barrel (EB) and endcaps (EE). The combined statistical and systematic

uncertainties are quoted.

€sim €sim X P
Wt = etw | (76.04+0.03)% | (73.7+ 1.0)%
W — e | (76.94+0.03)% | (73.2+ 1.0)%
W o ev | (76.40+0.02)% | (73.5+0.9)%

Table 3. Simulation efficiencies and the final corrected selection efficiencies for the W+, W~ and
their average, in the W — ev analysis. The quoted uncertainties are statistical for €y, and include
both statistical and systematic uncertainties for the corrected efficiencies ez, X p.

are summarized in table 2. The T&P measurements of the efficiencies on the right-hand
side of eq. (6.2) are denoted as €igp-rec, Et&ep-tights AN €tgp-trg-

Event selection efficiencies are measured with respect to the W events within the
ECAL acceptance. Simulation efficiencies estimated from POWHEG W samples are shown
in table 3. These are efficiencies at the event level, e.g.: they include efficiency loss due to
the second electron veto. Given the acceptances listed in table 1 and the T&P efficiencies
listed in table 2, the overall efficiency correction factors for electrons from W decays are
computed. The overall W signal efficiencies, obtained as products of simulation efficiencies
with data/simulation correction factors, are listed in table 3.

The efficiencies and the data/simulation ratios are also estimated in bins of the electron
E1 and 7 in order to examine in detail the detector performance and take into account the
differences in the W and Z kinematic distributions. The data/simulation ratios for recon-
struction, selection, and trigger are shown in figure 5 as functions of the electron EtT and 7.
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€sim €sim X P

7 —ete™ | (66.74+£0.07)% | (60.9 +1.1)%

Table 4. Simulation efficiency and the final corrected selection efficiency for the Z — ete~
analysis. The quoted uncertainties are statistical for egy, and include both statistical and systematic
uncertainties for the corrected efficiency egm X p.

The reconstruction data/simulation ratios appear to be uniform with respect to Er
and 7, so a smaller number of bins is sufficient for the determination of their values. The
data/simulation ratios for the selection and trigger efficiencies show a dependence that is
estimated using ten 7 bins and six Er bins. Data/simulation ratios are estimated for both
electron charges as well.

The binned ratios and simulation efficiencies are transferred into the W analysis by
properly weighting their product in each (E7, 1) bin by the relative ECAL cluster abun-
dance estimated from POWHEG simulations. The corrected efficiencies are compared with
the two-bin case in which the efficiencies are estimated in two bins of n (EB and EE).
The multibin corrected efficiencies are found to be consistent with the two-bin corrected
efficiencies within the assigned uncertainties.

The Z selection efficiencies for data and simulation are obtained based on the T&P
efficiencies listed in table 2 and the event acceptances given in table 1. The Z efficiencies
are first determined after reconstruction and identification (as products of single-electron
efficiencies). The event trigger efficiency is computed as the probability that at least one
of the two electrons satisfies the L1+HLT requirement. The overall selection efficiency for
the Z analysis is the product of the reconstruction, identification, and trigger efficiencies.
The simulation efficiency obtained from the POWHEG Z samples, together with the final
corrected Z selection efficiency egi, X p, are shown in table 4. These efficiencies are relative
to the Z events with both electrons within the ECAL acceptance.

6.2 Muons

For the W — puv cross section determination the single-muon efficiency combines the
efficiencies of all the steps in the muon selection: triggering on the muon, reconstructing
it in the muon and central detectors, and applying the quality selection and the isolation
requirement. In the procedure followed in this analysis, the reconstruction efficiency in the
central tracker is factorized and computed independently, while the remaining terms are
computed globally, without further factorizing them into different terms.

An initial preselection of Z events for the T&P method is performed by selecting events
that contain tracks measured in the central tracker having pr > 25GeV, |n| < 2.1, and,
when combined with an oppositely charged track, give an invariant mass in the range
60 < my+,
defined as a global muon, that is matched to one of the preselected tracks, passes the

- < 120 GeV. We further require the presence in the event of a “tag” muon,

selection described in section 4.3, and corresponds to an HLT muon. The number of tag
muons selected in data is about 22000. All the other preselected tracks are considered as
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Figure 5. Data/simulation T&P ratios versus electron Er (left column) and 7 (right column).
The ratios are presented for the reconstruction (prec, top row), selection (pignt, middle row), and
trigger (pirg, bottom row) efficiencies. Points with error bars represent the ratio measured in data;
dashed lines correspond to a constant ratio of one.

probes to evaluate the muon efficiency. The background present in this sample is subtracted
with a fit to the dimuon invariant mass spectrum of the sum of a Z component and a linear
background contribution. The shape of the Z component is taken from simulation.

The efficiency is studied as a function of the muon 1 and pr. A dependence on 7 is
observed (figure 6, left) because different regions are covered by different muon detectors.
This behavior is not fully reproduced in the simulation, as reflected in the corresponding
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Figure 6. Single-muon efficiencies (left) for data (red circles with error bars) and simulation (black
triangles), and the ratio between them (right), as a function of the muon 7.

pt wo p*
erep(data) | (86.0£0.8)% | (85.04+0.8)% | (85.6+0.8)%
erep(sim) | (89.25 £ 0.05)% | (89.38 +0.05)% | (89.32 + 0.04)%
P (96.3+£0.9)% | (95.1+0.9)% | (95.7+0.9)%

Table 5. Tag-and-probe efficiencies in data and simulation and correction factors for positively
and negatively charged muons. The errors on eyg(sim) are statistical only, while the systematic
uncertainty is included for the other quantities.

p values (figure 6, right). The efficiency also exhibits a dependence on pr (figure 7, left),
but this trend is similar in data and in simulation, and the correction factors can be taken
as approximately constant up to pp = 100 GeV (figure 7, right). These binned correction
factors are applied to the W analysis during signal modeling (section 8): W simulated
1) bin of the muon. The
slightly difference between the kinematic characteristics of the muons and those from W

events are weighted with the p factor corresponding to the (pr,

decays is thus taken into account.

The average single-muon efficiencies and correction factors are reported in table 5 for
positively and negatively charged muons separately, and inclusively. The statistical uncer-
tainties reflect the size of the available Z sample. Systematic uncertainties on e, (data)
and the correction factors p are discussed in section 9.2.

A small fraction of muon events are lost because of L1 muon trigger prefiring, i.e., the
assignment of a muon segment to an incorrect bunch crossing, occurring with a probability
of a few per mille per segment. The effect is only sizable in the drift-tube system. The
efficiency correction in the barrel region is estimated for the current data to be ~1% per
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Figure 7. Single-muon efficiencies (left) for data (red circles with error bars) and simulation (black
triangles) and the ratio between them (right), as a function of the muon pr.

€sim €sim X P

Wt — putu | (89.19+0.03)% | (85.4+0.8)%
W= — v | (89.19+0.03)% | (84.1+0.8)%
W o | (89.19+0.03)% | (384.8+0.8)%

Table 6. Simulation efficiencies and final corrected efficiencies for the W — pr analysis. The quoted
uncertainties are statistical for €4, and include both statistical and systematic uncertainties for the
corrected efficiencies €gy, X p.

muon. This estimate is obtained from studies of muon pairs selected by online and offline
single-muon trigger paths at the wrong bunch crossing, that have an invariant mass near
the Z mass. Tracker information is not present in the case of prefiring, precluding the
building of a trigger muon online or a global muon in the offline reconstruction. Since
this effect is not accounted for in the efficiency from T&P, the measured Z — ™ p~ and
W — uv cross sections are increased by 1% and 0.5%, respectively (including barrel and
endcap regions) to correct for the effect of trigger prefiring. The uncertainty on those
corrections is taken as a systematic uncertainty.

The W — puv efficiencies from simulation are shown in table 6 for the W and W~
samples separately and combined after applying the binned corrections estimated with the
T&P method using Z events.

For the Z — ptpu~ cross section measurement, the muon efficiencies are determined
together with the Z yield using a simultaneous fit described in section 8.3, and efficiencies
from a T&P method were only applied to a counting analysis used as cross check. The
simulation efficiency obtained from the POWHEG Z samples, together with the corrected Z
selection efficiency € X p are shown in table 7.
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€sim €sim X P

Z — ptpm | (89.21+£0.05)% | (87.1+1.1)%

Table 7. Simulation efficiency and the final corrected selection efficiency for the Z — ptu~
analysis. The quoted uncertainties are statistical for egy, and include both statistical and systematic
uncertainties for the corrected efficiency egm X p.

7 The W — fv signal extraction

The signal and background yields are obtained by fitting the Fp distributions for W — ev
and W — pv to different functional models. An accurate Jp measurement is essential for
distinguishing a W signal from QCD multijet backgrounds. We profit from the application
of the PF algorithm, which provides superior i reconstruction performance [42] with
respect to alternative algorithms at the energy scale of the W boson.

The Fr is the magnitude of the transverse component of the missing momentum vec-
tor, computed as the negative of the vector sum of all reconstructed transverse momenta
of particles identified with the PF algorithm. The algorithm combines the information
from the inner tracker, the muon chambers, and the calorimeters to classify reconstructed
objects according to particle type (electron, muon, photon, or charged or neutral hadron),
thereby allowing precise energy corrections. The use of the tracker information reduces the
sensitivity of Fr to miscalibration of the calorimetry.

The QCD multijet background is one of the most significant backgrounds in W analy-
ses. At high Fp, EWK backgrounds, in particular W — 7 and DY, also become relevant,
leading to contamination levels on the order of 10%.

The P model is fitted to the observed distribution as the sum of three contributions:
the W signal, the QCD and EWK backgrounds. The EWK contributions are normalized
to the W signal yield in the fit through the ratios of the theoretical cross sections.

Simultaneous fits are performed to the two [ spectra of Wt and W~ candidates,
fitting either the total W cross section and the ratio of positive and negative W cross
sections, or the individual positive and negative W cross sections. In both cases the overall
normalization of QCD multijet events is determined from the fit. The diboson and tt
contributions, taken from simulations, are negligible (section 7.2).

In the following sections the modeling of the Fr shape for the signal and the EWK back-
grounds is presented, and the methods used to determine the Jop shape for the QCD multijet
background from data are described. Finally, the extraction of the signal yields is discussed.

7.1 Signal Fr Modeling

The W — fv signal is extracted with methods that employ simulation predictions of the
Py distribution in signal events. These predictions rely on the modeling of the vector-
boson recoil and detector effects that can be difficult to simulate accurately. Discrepancies
could result from deficiencies in the modeling of the calorimeter response and resolution,
and from an incomplete description of the underlying event. These residual effects are
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addressed using corrections determined from the study of Z-boson recoil in data, discussed
in the following paragraph.

The recoil to the vector boson is defined as the negative of the vector sum of transverse
energy vectors of all particles reconstructed with the PF algorithm in W and Z events,
after subtracting the contribution from the daughter lepton(s). The recoil is determined
for each event in Z — ¢/~ data and simulated Z — ¢*¢~ and W — (v samples. We
fit the distributions of the recoil components (parallel and perpendicular to the boson pp
direction) with a double Gaussian, whose mean and width vary with the boson transverse
momentum. For each sample, we fit polynomials to the extracted mean and width of the
recoil distributions as functions of the boson transverse momentum. The ratios of data
to simulation fit-parameters from the Z samples are used as scale factors to correct the
polynomials parameters of the W simulated recoil curves. For each W simulated event,
the recoil is replaced with a value drawn from the distribution obtained with the corrected
parameters corresponding to the W pp. The Jp value is calculated by adding back the
energy of the W lepton. The energy of the lepton used in the calculation is corrected for the
energy-scale and resolution effects. Statistical uncertainties from the fits are propagated
into the Fir distribution as systematic uncertainties. An additional systematic uncertainty
is included to account for possible differences in the recoil behavior of the W and Z bosons.

The same strategy is followed for the recoil corrections in the electron and muon
analyses. As an example, figure 8 (left) shows the effect of the recoil corrections on the
Fr shape for simulated events in the electron channel, while figure 8 (right) shows the
uncertainty from the recoil method propagated to the corrected o shape of W — ev
events. The distribution of the residuals, y, is shown at the bottom of each plot, where x
is defined as the per-bin difference of the two distributions, divided by the corresponding
statistical uncertainty. The same definition is used throughout this paper.

The systematic uncertainties on the signal Jr shape are propagated as systematic un-
certainties on the extracted signal yield through the fitting procedure. Signal shapes are
determined for the W and W~ separately.

7.2 Electroweak backgrounds

A certain fraction of the events passing the selection criteria for W — fv are due to
other EWK processes. Several sources of contamination have been identified. The events
with Z — ¢T¢~ (DY background), where one of the two leptons lies beyond the detector
acceptance and escapes detection, mimic the signature of W — v events. Events from Z —
7t~ and W — 7v, with the tau decaying leptonically, have in general a lower-momentum
lepton than signal events and are strongly suppressed by the minimum pr requirements.
The P shape for the EWK vector boson and tt contributions are evaluated from
simulations. For the main EWK backgrounds (Z — ¢*¢~ and W — 7v), the Fp shape is
corrected by means of the procedure described in section 7.1. The [ shapes are evaluated

trvand W~ — 77 7.

separately for W — 7
A summary of the EWK and tt background fractions in the W — ev and W — puv
analyses can be found in table 8. The fractions are similar for the W — erv and W — puv

channels, except for the DY background which is higher in the W — er channel. The
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Figure 8. Left: simulated £y distribution in W — ev events before (continuous black line) and after
(dashed red line) recoil corrections. Right: the uncertainties from the recoil method propagated to
the corrected Fp shape of W — ev events (continuous black line, identical to the dashed red line on
the left-hand side plot) are presented with the red-dashed and blue-dotted lines. These two shapes
are obtained when the recoil systematic uncertainties are varied by one standard deviation. At the
bottom of each plot is shown the distribution of the residuals, x, defined as the per-bin difference
of the two distributions, divided by the corresponding statistical uncertainty.

Bkg. to sig. ratio
Processes
W—-ev | W— puv

Z—ete ,utu~, v~ (DY) | 7.6% 4.6%
W — v 3.0% 3.0%
WW+WZ+7Z7Z 0.1% 0.1%
tt 0.4% 0.4%
Total EWK plus tt 11.2% 8.1%

Table 8. Estimated background-to-signal ratios in the W — er and W — puv channels for EWK
and tt backgrounds. The relative statistical uncertainties on those ratios are small, and range from
0.1% to 0.4%.

difference is mainly due to the tighter definition of the DY veto in the W — uv channel,
which is not compensated by the larger geometrical acceptance of electrons (|n| < 2.5) with
respect to muons (|n| < 2.1).
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Figure 9. Fit to the background-dominated control sample defined by inverting the selection on
the track-match variables, while maintaining the rest of the signal selection. The blue solid line
represents the model used to fit the control data sample. This is a Rayleigh function plus a floating-
yield signal shape that accounts for the signal contamination in the control region. The magenta
dashed line shows the Rayleigh function alone with its parameters estimated from the combined fit.

7.3 Modeling of the QCD background and W — ev signal yield

Three signal extraction methods are used, which give consistent signal yields. The method
described in section 7.3.1 is used to extract the final result.

7.3.1 Modeling the QCD background shape with an analytical function

The W — ev signal is extracted using an unbinned maximum likelihood (UML) fit to the
Py distribution.

The shape of the Frp distribution for the QCD background is modeled by a parametric
function (modified Rayleigh distribution) whose expression is

fQCD(ET) = -ETeXp <_2(0'0f;T0'1ﬁ3T)2> . (71)

The fit to a control sample, defined by inverting the track-cluster matching selection vari-
ables An, A¢, shown in figure 9, illustrates the quality of the description of the background
shape by the parameterized function, including the region of the signal, at high Fp. To
study the systematic uncertainties associated with the background shape, the resolution
term in eq. (7.1) was changed by introducing an additional QCD shape parameter o, thus:
oo+ o0 1ET + o QE%.

The free parameters of the UML fit are the QCD background yield, the W signal
yield, and the background shape parameters oy and o;. The following signal yields are
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Figure 10. The Fr distribution for the selected W — ev candidates on a linear scale (left) and
on a logarithmic scale (right). The points with the error bars represent the data. Superimposed
are the contributions obtained with the fit for QCD background (violet, dark histogram), all other
backgrounds (orange, medium histogram), and signal plus background (yellow, light histogram).
The orange dashed line is the fitted signal contribution.

obtained: 136 328 + 386 for the inclusive sample, 81 568 4= 297 for the W+ — eTv sample,
and 54 760 £ 246 for the W~ — e~ 7 sample. The og and o7 values obtained from the fit
are o9 = 8.56 £ 0.15, o1 = 0.130 £ 0.008 for the W — et sample, and oo = 8.50 & 0.15,
o1 = 0.139 £ 0.008 for the W~ — e~ 7 sample. The fit to the inclusive W — er sample
is displayed in figure 10, while the fits for the charge-specific channels are displayed in
figure 11.

The Kolmogorov-Smirnov probabilities for the fits to the charge-specific channels are
0.31 for the W™ sample and 0.25 for the W~ sample. Figure 12 shows the distribution for
the inclusive W sample of the transverse mass, defined as Mt = \/ 2prEr(1 — cos(Ag, b))

where A¢, p, is the azimuthal angle between the lepton and the Py directions.

7.3.2 Modeling the QCD background shape with a fixed distribution

In this approach the QCD shape is extracted directly from data using a control sample
obtained by inverting a subset of the requirements used to select the signal. After fixing
the shape from data, only the normalization is allowed to float in the fit.

The advantage of this approach is that detector effects, such as anomalous signals in
the calorimeters or dead ECAL towers, are automatically reproduced in the QCD shape,
since these effects are not affected by the selection inversion used to define the control
sample. The track-cluster matching variable An is found to have the smallest correlation
with Fp and is therefore chosen as the one to invert in order to suppress the signal and
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samples passing the same inverted selection criteria used to obtain the control sample in data
(dashed histogram).

obtain the QCD control sample. Requirements on isolation and H/E are the same as for
the signal selection since these variables show significant correlation with Fr.

The shape of the Jy distribution for QCD and y+jet simulated events passing the
signal selection is compared to the [ distribution for a simulated control sample composed
of all simulated samples (signal and all backgrounds, weighted according to the theoretical
production cross sections), after applying the same anti-selection as in data (figure 13).

The difference in the Jp distributions from the signal and inverted selections is found
to be predominantly due to two effects, which can be reduced by applying corrections. The
first effect is due to a large difference in the distribution of the output of a multivariate
analysis (MVA) used for electron identification in the PF algorithm, between the selected
events and the control sample. The value of the MVA output determines whether an elec-
tron candidate is treated by the PF algorithm as a genuine electron, or as a superposition of
a charged pion and a photon, with track momentum and cluster energy each contributing
separately to Fip. The control sample contains a higher fraction of electron candidates in
the latter category, resulting in a bias on the Jr shape. A correction is derived to account
for this. The second effect comes from the signal contamination in the control sample.
The size of the contamination (1.17%) is measured from data, using the T&P technique
with Z — eTe™ events, by measuring the efficiency for a signal electron to pass the control
sample selection.

The results of the inclusive fit to the Jy distribution with the fixed QCD background
shape are shown in figure 14; the only free parameters in the extended maximum likelihood
fit are the QCD and signal yields. By applying this second method the following yields are
obtained: 135982 + 388 (stat.) for the inclusive sample, 81286 + 302 (stat.) for the W —
etv sample, and 54 7034249 (stat.) for the W~ — e~ ¥ sample. The ratios of the inclusive,
W+ — etv, and W~ — e~ 7 yields between this method and the parameterized QCD shape
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Figure 14. Result of the fixed-shape fit to the Jy distribution for all W candidates. The points
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fit for QCD background (violet, dark histogram), other backgrounds (orange, medium histogram),
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contribution from signal.

method are 0.997 + 0.005, 0.997 + 0.005, and 0.999 4 0.005, respectively, considering only
the uncorrelated systematic uncertainties between the two methods.

7.3.3 The ABCD method

In this method the data are divided into four categories defined by boundaries on Fp and
the relative tracker isolation, I /ET, of the electron candidate. The boundaries of the
regions are chosen to minimize the overall statistical and systematic uncertainties on the
signal yield. Values of fp above and below the boundary of 25 GeV, together with I,y /Et
values below the boundary of 0.04, define the regions A and B, respectively. Similarly, the
regions above and below the Jr boundary for I /E7 values above 0.04, but below an
upper I,/ E1 bound of 0.2 (0.1) for electrons in the EB (EE), define the regions D and C,
respectively. There is no upper bound for the Fip values. The different regions are shown
graphically in figure 15, with region A having the greatest signal purity. Combined regions
are referred to as ‘AB’ (for A and B), for example. The extracted signal corresponds to
the entire ABCD region.

A system of equations is constructed relating the numbers of observed data events, IV;,
in each of the four regions (i = A, B, C and D) to the numbers of electroweak backgrounds,
E;, QCD backgrounds, i, and signal events, S;. Several parameters should be determined
from auxiliary measurements or simulations as shown in the following formulas:

Qa

fa= QA+ Q@B

(7.2)
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Figure 15. The arrangement of the four categories of events used in the ABCD method. The
vertical scale indicates increasing values of relative track isolation It /Er and the horizontal scale
indicates increasing For.
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Sa + S+ Sc + Sp

In this formulation, two parameters, fa and fp, relate to the QCD backgrounds and
are defined as the ratios of events with a fake electron candidate in the A and D regions
to the number in the AB and CD regions, respectively. The two parameters represent the
efficiency with which misidentified electrons pass the boundary on Fr dividing AD from
BC. If the efficiency for passing the Jp boundary is largely independent of the choice of the
boundaries on Iy, /ET, then these two parameters will be approximately equal. Assuming
fa = fp holds exactly leads to a simplification of the system of equations such that all
direct dependence of the signal extraction on parameters related to the QCD backgrounds
is eliminated. For this idealized case there would be no uncertainty on the extracted signal
yield arising from modeling of QCD backgrounds. Detailed studies of the data suggest this
assumption holds to a good degree. A residual bias in the extracted signal arising from
this assumption is estimated directly from the data by studying a control sample obtained
with inverted quality requirements on the electron candidate, and an appropriate small
correction to the yield is applied (0.37%). A systematic uncertainty on the signal yield
is derived from the uncertainty on this bias correction. This contribution is small and is
dominated by the uncertainty on signal contamination in the control sample.

Three other important parameters relate to signal efficiencies: ep and ep, which are
the efficiencies for signal events in the AB and CD regions, respectively, to pass the Fp
boundary, and ep, which is the efficiency for the electron candidate of a signal event to
pass the boundary on relative track isolation dividing the AB region from the CD region
under the condition that this electron already lies in the ABCD region. The first two of
these, ex and ep, are estimated from models of the Jir in signal events using the methods
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Source W — ev Wt — ety W~ —e v
Analytical fun. | yield | 136 328 +=386 | 81568 297 | 54760 + 246
) yield | 135982 + 388 | 81286 £ 302 54703 £ 249
Fixed shape
ratio | 0.997 & 0.005 | 0.997 + 0.005 | 0.999 £ 0.005
ABCD yield | 136003 + 498 | 81525 +385 | 54356 + 315
ratio | 0.998 & 0.007 | 0.999 &+ 0.007 | 0.993 £ 0.007

Table 9. Comparison of W — ev signal extraction methods. The signal yield of each method is
presented together with its statistical uncertainty. For the fixed shape and the ABCD methods, the
ratios of the signal yields with the analytical function method are also shown taking into account
only the uncorrelated systematics between the methods used in the ratios.

described in section 7.1. The third parameter, ep, is measured from data using the T&P
method, described in section 6.1, and is one of the dominant sources of uncertainty on the
W boson yield before considering the final acceptance corrections.

Electroweak background contributions are estimated from MC samples with an overall
normalization scaled through an iterative method with the signal yield. The electroweak
contribution is subtracted from the observed data events in each of the four regions, N; —
Ni - Ei (1 = A, B, C and D)

Assuming that fo = fp, the signal contained in the ABCD region, S, can be obtained
from the following formula:

aS?+bS+c=0 (7.7)
with coefficients,
a = ep(ep — 1)(ep — €p)
b= NA(l — GD)(l — Ep) — NBED(l — 6}3) + Nceaep — NDEP(l — GA)
Cc = NBND — NANC (710)

The extracted yield with respect to the choice of boundaries in relative track isolation
and Fp is sensitive to biases in ep and the QCD electron misidentification rate bias correc-
tion described above, respectively. The yield is very stable with respect to small changes in
these selections, giving confidence that these important sources of systematic uncertainty
are small.

The following signal yields are obtained: 136 003 + 498 (stat.) for the inclusive sample,
81525 + 385 (stat.) for the W — eTv sample, and 54 356 + 315 (stat.) for the W~ — e ¥
sample. The ratios of the inclusive, W — e*v, and W~ — e~ 7 yields between this method
and the parameterized QCD shape are 0.9984+0.007, 0.999+0.007, and 0.9934+0.007, respec-
tively, considering only the uncorrelated systematic uncertainties between the two methods.

The results of the three signal extraction methods are summarised in table 9.
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7.4 Modeling of the QCD background and W — uv signal yield

The W — pv analysis is performed using fixed distributions for the Fp shapes obtained
from data for the QCD background component and from simulations, after applying proper
corrections, for the signal and the remaining background components.

Different approaches to signal extraction are considered for W — uv, as for W — ev.
The alternative methods do not demonstrate better performance than the use of fixed
shapes in the W signal fit. Given the lower backgrounds in the muon channel with respect
to the electron channel, the alternative strategies are not pursued at the same level of detail
as in the electron case.

The Fr shape of the QCD background component is obtained from a high-purity
QCD sample of events that pass the signal selection, except that the isolation requirement
is inverted and set to I'®L | > 0.2 (figure 4).

Simulation studies indicate that this distribution does not accurately reproduce the
Fr shape when muon isolation is required. This is shown in figure 16 (left), where the solid
line represents the shape for events with an isolated muon and the dashed line the shape
obtained by inverting the isolation requirement.

A positive correlation between the isolation variable I, gfﬂnb and Fr is shown in figure 16
(right, red open circles). This behavior can be parameterized in terms of a linear function
Pr o< (1 +arl™ ) as shown in the same figure. A compensation for the correlation

comb
is subsequently made by applying a correction of E/r = Fr/(1 +al églrnb) to the events
selected by inverting the isolation requirement and a new corrected shape is obtained.
The agreement of this new shape (black points in figure 16, left) with the prediction from
events with an isolated muon is considerably improved. It is also observed that a maximal
variation in the correction factor of Aa = 0.08 successfully covers the simulation prediction

for events with an isolated muon over the whole Er interval (shaded area in figure 16, left).

The same positive correlation between Fr and I(fginb is observed in the data (blue
squares in figure 16, right). A correction K. = Fr/(1 + al ), with a ~ 0.2, was
applied. The shapes obtained in data are shown in figure 17 where the uncorrected and
corrected data shapes from events selected by inverting the isolation requirement, together
with the simulation expectation for events with an isolated muon, are shown. The shaded
area in figure 17 is bounded by the two distributions, obtained using two extreme correc-
tion parameters o += Aq, with Aa = 0.08, as evaluated in simulations. This area is taken
as a systematic uncertainty on the QCD background shape.

Several parameterizations for the correction are considered, but the impact on the
corrected distribution and therefore on the final result is small. Associated uncertainties
on the cross section and ratios are evaluated as the differences between the fit results
obtained with the optimal « value and two extreme cases, o + Aca.

The following signal yields are obtained: 140 757+383 for the inclusive sample, 56 666+
240 for the W~ — p~ 7 sample, and 84 091 & 291 for the W™ — 1+ sample.

The Py distributions are presented in figure 18 (full sample) and figure 19 (samples
selected by the muon charge) superimposed on the individual fitted contributions of the
W signal and the EWK and QCD backgrounds. Figures 18 and 19 show the Frp distri-
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Figure 16. Left: distribution of the corrected Fr for selected events with a non isolated muon
(black points) superimposed on the distribution of uncorrected Er for the same events (blue, dashed
line) and r for events with an isolated muon (black, solid histogram). All distributions are from
simulated QCD events. The shaded area represents the systematic uncertainty due to corrections
with factors a4 Aa, for Ao = 0.08. Right: distribution of the average Fr versus I'¢ . for simulated

comb

QCD events (red circles) and for data (blue squares). The high values of Ey in the first two bins

in 11 are due to the presence of the W signal events. The superimposed lines are linear fits in

the range [0.2, 3.0] of I*¢!

comb"”

butions for data and fitted signal, plus background components. Figure 20 shows the M
distributions for data and signal, plus background components, fitted from the Fp spectra.

8 The Z — £1£~ signal extraction

The Z — ¢T¢~ yield can be obtained by counting the number of selected candidates after
subtracting the residual background. The Z — ¢/~ yield and lepton efficiencies are also
determined using a simultaneous fit to the invariant mass spectra of multiple dilepton cat-
egories. The simultaneous fit deals correctly with correlations in determining the lepton
efficiencies and the Z yield from the same sample. The Z yield extracted in this way does
not need to be corrected for efficiency effects in order to determine the cross section, and
the statistical uncertainty on the Z yield absorbs the uncertainties on the determination
of lepton efficiencies that would be propagated as systematic uncertainties in the counting
analysis. Both methods were performed for the Z — eTe™ analysis, while only the simul-
taneous fit was used for the Z — p ™+~ analysis after taking into account the results from
the previous studies [21].
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Figure 18. The [y distribution for the selected W — pv candidates on a linear scale (left) and
on a logarithmic scale (right). The points with the error bars represent the data. Superimposed
are the contributions obtained with the fit for QCD background (violet, dark histogram), all other
backgrounds (orange, medium histogram), and signal plus background (yellow, light histogram).
The black dashed line is the fitted signal contribution.
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Figure 19. The Ey distributions for the selected W (left) and W™ (right) candidates. The points
with the error bars represent the data. Superimposed are the contributions obtained with the fit
for QCD background (violet, dark histogram), all other backgrounds (orange, medium histogram),
and signal plus background (yellow, light histogram). The black dashed line is the fitted signal
contribution.
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Figure 20. The My distribution for the selected W — pv candidates on a linear scale (left) and
on a logarithmic scale (right). The points with the error bars represent the data. Superimposed
are the contributions obtained with the fit for QCD background (violet, dark histogram), all other
backgrounds (orange, medium histogram), and signal plus background (yellow, light histogram).
The black dashed line is the fitted signal contribution.

8.1 EWK and QCD backgrounds

For the Z — eTe™ analysis the background contributions from EWK processes Z — 777,
tt, and diboson production are estimated from the yields of events selected in NLO MC
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samples normalized to the NNLO cross sections and scaled to the considered integrated
luminosity. They amount to 30.8+0.4 events, where the uncertainty combines the NNLO
and luminosity uncertainties. Data are used to estimate the background originating from
Wjets, v+jets, and QCD multijet events where the selected electrons come from misiden-
tified jets or photons (referred to as ‘QCD background’). This background contribution
is estimated using the distribution of the relative track isolation, Ii/ET, and amounts
to 4.9 &+ 8.4 (stat.) & 8.4 (syst.) events. As a cross-check, the “same-sign/opposite-sign”
method was used, which is based on the signs of the charges of the two electron candidates,
the measured charge misidentification for electrons that pass the nominal selection criteria,
and the hypothesis that the QCD background is charge-symmetric. The QCD background
estimate with this method is 59 4+ 17(stat.) £ 160 (syst.) events. The two methods are
consistent with the presence of negligible QCD background in our sample.

Backgrounds in the Z — p™p~ analysis containing two isolated global muons have
been estimated with simulations to be very small. This category of dimuon events is de-
fined as the “golden” category. The simulation prediction of the smallness of the tt and
QCD backgrounds was validated with data. First, the selected dimuon sample was enriched
with tt events by applying a requirement on Jr, because of the presence of neutrinos in
tt events, and an agreement between data and the simulation prediction was found with
the dimuon invariant mass requirement inverted, where the residual Z signal is negligible.
The QCD component has been checked using the same-sign dimuon events and dimuon
events with both muons failing the isolation requirement, and was found to be in agreement
with the simulation predictions. The conclusion from the maximum amount of measured
data-simulation discrepancy was that the uncertainty in the residual background subtrac-
tion has a negligible effect on the Z — p*u~ measured yield. The backgrounds to the
Z — ptu~ categories having one global and one looser muon are significantly larger than
in the golden category. Simulation estimates in this case are not used for such backgrounds
and fits to the dimuon invariant mass distributions are performed including parameterized
background components, as described in section 8.3.

Backgrounds estimates in the Z — ete™ and Z — ptu~ analyses are summarized in
table 10.

8.2 The Z — e'e™ signal extraction

In the following sections the use of a pure Z — ete™ sample for the determination of the
residual energy-scale and resolution corrections is first discussed. Then the signal extraction
with the counting analysis and the simultaneous fit methods are presented.

8.2.1 Electron energy scale

The lead tungstate crystals of the ECAL are subject to transparency loss during irradiation,
followed by recovery in periods with no irradiation. The magnitude of the changes to the
energy response is dependent on instantaneous luminosity and was, at the end of the 2010
data taking period, up to 1% in the barrel region, and 4% or more in parts of the endcap.
The changes are monitored continuously by injecting laser light and recording the response.
The corrections derived from this monitoring are validated by studying the variation of the

70 mass peak as a function of time for different regions of the ECAL (using 7° data
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Processes Z — eTe™ sel. Z — putp sel.

Diboson production | (0.157 4+ 0.001)% | (0.158 +0.001)%
tt (0.117 +0.008)% | (0.141 £0.014)%
AR (0.080 £ 0.006)% | (0.124 % 0.005)%
Wtjets (0.010 = 0.002)% | (0.008 = 0.002)%
Total EWK plus tt | (0.365 = 0.010)% | (0.430 + 0.015)%
QCD (0.06 £ 0.14)% | (0.013 + 0.001)%
Total background (0.42+0.14)% | (0.444 +£0.015)%

Table 10. Estimated background-to-signal ratios in the Z — eTe™ and Z — ptu~ (only for
candidates in the golden category) channels. The QCD background for the Z — eTe™ channel
has been estimated with data, while all other estimates are based on MC simulations, and their
corresponding uncertainties are statistical only.

collected in a special calibration stream), and by studying the overall Z — eTe™ mass peak
and width. With the current corrections, residual variations of the energy scale with time
are at the level of 0.3% in the barrel and less than 1% in the endcaps.

The remaining mean scale correction factors to be applied to the data and the resolution
corrections (smearing) to be applied to the simulated sample are estimated from Z — ete™
events. Invariant mass distributions for electrons in several n bins in the EB and EE are
derived from simulations and compared to data. A simultaneous fit of a Breit-Wigner
convolved with a Crystal-Ball function to each Z — eTe™ mass distribution is performed
in order to determine the energy scale correction factors for the data and the resolution
smearing corrections for the simulated samples. The energy scale correction factors are
below 1% while the resolution smearing corrections are below 1% everywhere, with the
exception of the transition region between the EB and the EE, where they reach 2%.
Those corrections are propagated in the analysis and proper systematic uncertainties for
the cross section measurements are estimated as discussed in section 9.1.

8.2.2 Counting analysis

After energy scale corrections, applied to electron ECAL clusters before any threshold
requirement, 10 fewer events (—0.12%) were selected compared to the number of selected
events before the application of the energy scale corrections. This brings the final Z — ete™
sample to 8442 and, after background subtraction, the Z yield is 8406 + 92 events. This
yield is used for the cross section estimation.

The dielectron invariant mass spectra for the selected sample with the tight selection
before and after the application of the corrections are shown in figure 21 along with the
predicted distributions. The data and simulation distributions are normalized to account
for the difference in selection efficiency.

8.2.3 Simultaneous fit

The Z event yield and the electron efficiencies can be extracted from a simultaneous fit.
Two categories of events are considered: events where both electrons satisfy the tight
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Figure 21. Distributions of the dielectron invariant mass for the selected Z — eTe™ candidates on a
linear scale (top) and on a logarithmic scale (bottom) before (left) and after (right) applying energy-
scale correction factors. The points with the error bars represent the data. Superimposed are the
expected distributions from simulations, normalized to an integrated luminosity of 36 pb~!. The
expected distributions are the Z signal (yellow, light histogram), other EWK processes (orange,
medium histogram), and tt background (red, dark histogram). Backgrounds are negligible and
cannot be seen on the linear-scale plots.

selection with E1 > 25GeV, and events that consist of one electron with Er > 25GeV
that passes the tight selection, and one ECAL cluster with Ep > 25GeV that fails the
selection, either at the reconstruction or electron identification level.

In each category, a signal-plus-background function is fitted to the observed mass
spectrum. The signal shape is taken from signal samples simulated with POWHEG at the
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NLO generator level, and is convolved with a Crystal-Ball function modified to include an
extra Gaussian on the high end tail with floating mean and width. In the first category,
the nearly vanishing background is fixed to the value reported in table 10. In the second
category of events, the background is modeled by an exponential distribution.

Assuming that N2***° is the number of signal events of the first category and N2l

signal signal
is the number of the signal events of the second category, then:
pass 0 2 2
Nsignal - Neeerec,tight[l - (1= 6t&p—trg) ] ) (8.1)
fail 0
Nsiaglnal = 2Nee6rec,tight(1 - 6rec,tight)et&p-trg , (82)

where N2, is the number of the expected signal events within the acceptance Az(e) defined
in section 5, €rec tight = €rec€tight 1S the measured product of efficiencies as they are defined
in section 6.1, and €y p-trg are the values reported in table 2.

The estimated cross section is 988 + 10 (stat.) & 4(syst.) pb. The cross section is in
good agreement with the counting analysis estimate of 992 & 11 (stat.) pb, considering only
the statistical uncertainty. Both techniques give equivalent results. The counting analysis
estimate is used for the cross section measurement in the Z — eTe™ channel.

8.3 The Z — u™u~ signal extraction

The yield of the Z — uTp~ events is determined from a fit simultaneously with the
average muon reconstruction efficiencies in the tracker and in the muon detector, the
muon trigger efficiency, as well as the efficiency of the applied isolation requirement.
Z — ptp~ candidates are obtained as pairs of muon candidates of different types and
organized into categories according to different requirements:

® Z,,: a pair of isolated global muons, further split into two samples:

- ZinLT: each muons associated with an HLT trigger muon;

— Z}LELT: only one of the two muons associated with an HLT trigger muon;
e 7,5: one isolated global muon and one isolated stand-alone muon;

e 7, one isolated global muon and one isolated tracker track;

° Zﬁznisoz a pair of global muons, of which one is isolated and the other is nonisolated.

With the exception of the Z}ELT category, each global muon must correspond to an
HLT trigger muon. The five categories are explicitly forced to be mutually exclusive in the
event selection: if one event falls into the first category it is excluded from the second; if it
does not fall into the first category and falls into the second, it is excluded from the third,
and so on. In this way non-overlapping, hence statistically independent, event samples are
defined. The expected number of events in which more than one dimuon combination is
selected is almost negligible. In those few cases all possible combinations are considered.

The five signal yields in each category can be written in terms of the five unknowns,
the Z signal yield N Su and four efficiency terms, as follows:

2HLT _ a70 2 2 2 2
Nu,u - Np,p,eHLTeisoetrkﬁsav (83)
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Figure 22. Distributions of the dimuon invariant mass for the selected Z — u™p~ golden can-
didates on a linear scale (left) and on a logarithmic scale (right). The points with the error bars
represent the data. Superimposed are the expected distributions from simulations, normalized to
an integrated luminosity of 36 pb~!.
histogram), other EWK processes (orange, medium histogram), and tt background (red, dark his-
togram). Backgrounds are negligible and cannot be seen on the linear-scale plots.

The expected distributions are the Z signal (yellow, light

Nt = 2N ennr (1 — enur) e i Eon, (84)
Nus = 2NBM€HLT€?SO€trk(1 — €k ) €2, (8.5)
Nyt = 2N eHur 6o €rrcsa(l — €sa), (8.6)

Nf}ﬁmso = QNS#GIQ{LTeiSO(l — €is0) €L L. (8.7)

The various efficiency terms in egs. (8.3) to (8.7), the average efficiencies of muon recon-
struction in the tracker, €,), in the muon detector as a stand-alone muon, €g,, the average
efficiency of the isolation requirement, e€is,, and the average trigger efficiency, eprr, can
be factorized because the muon selection factorizes the requirements on the tracker and
muon detector quantities separately. Neither selection on y? per degree of freedom nor
requirement of the muon reconstruction through the tracker-muon algorithm is applied in
order to avoid efficiency terms that cannot be described as a product of contributions from
the tracker and the muon detector.

The dimuon invariant mass spectra for the five categories are divided into bins of dif-
ferent sizes, depending on the number of observed events. The distributions of the dimuon
invariant mass for the different categories can be written as the sum of a signal peak plus
a background component.

Figure 22 shows the dimuon invariant mass spectrum for the Z — ™~ golden events
on both a linear scale and a logarithmic scale, and figures 23 and 24 show the invariant
mass distributions for the remaining categories. The spectra are in agreement with the
simulation.
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Figure 23. Distributions of the dimuon invariant mass for the selected Z,; (left) and Z,, (right)
candidates. The points with the error bars represent the data. Superimposed are the expected
distributions from simulations, normalized to an integrated luminosity of 36 pb~—!. The expected
distributions are the Z signal (yellow, light histogram), other EWK processes (orange, medium
histogram), tt background (red, dark histogram) and QCD background (violet, black histogram).

non isolated dimuons CMS
L L A
10° b 36pb’ at\s=7TeV |
> E 3
0] B * data ]
S 102 I A T VR
o O E = Ewd '3
s m Bep ]
>
210 E
° ]
6 .
'E ]
5 1 E
ey =
10
5 T T T T T T
X 0 l*§§$$§,,,i§,§‘,§§..;l;l‘ ; l+ ll l
5 |

50 100 150 200
M(uw) [GeV]

Figure 24. Distributions of the dimuon invariant mass for the selected Zzi“iso candidates. The
points with the error bars represent the data. Superimposed are the expected distributions from
simulations, normalized to an integrated luminosity of 36 pb~!. The expected distributions are the
Z signal (yellow, light histogram), other EWK processes (orange, medium histogram), tt background
(red, dark histogram), and QCD background (violet, black histogram).

The signal-peak distribution can be considered to be identical in the categories 7,
and Z,; because the momentum resolution in CMS is determined predominantly by the
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Quantity | Fit results from data | Data/simulation
Ny, 13728 + 121
€HLT 0.9203 £+ 0.0019 0.9672 £ 0.0020
€iso 0.9813 + 0.0010 0.9962 + 0.0011
€sa 0.9762 £ 0.0012 0.9964 + 0.0013
Etrk 0.9890 + 0.0006 0.9949 + 0.0007

Table 11. Signal yield and efficiencies determined from data with the simultaneous fit, and ratios
of efficiencies determined from the fit and the simulation.

tracker measurement for muons with pt < 200 GeV. The binned spectrum of the dimuon
invariant mass in the Z,, category, which has the most events of all categories, is taken as
shape model for all categories but Z,;. The large size of the golden sample ensures that the
statistical uncertainty of the invariant mass distribution has a negligible effect on the cross
section measurement. The small presence of background is neglected in this distribution.
The uncertainty due to this approximation has been evaluated and taken as the systematic
uncertainty as described in section 9.2.

Because only tracker isolation is used, the shape obtained from golden events can also
be used to model the Zﬁzniso peak distribution. A requirement on calorimetric isolation
would have distorted the dimuon invariant mass distribution of events with one nonisolated
muon because of FSR, as has been observed both in simulation and data.

The model of the invariant mass shape for the Z,,; category is also derived from golden
dimuon events. The three-momentum for one of the two muons is taken from only the
muon detector track fit, in order to emulate a stand-alone muon. To avoid using the same
event twice in forming the Z,, shape model, the higher-pr (lower-pr) muon is chosen for
even (odd) event numbers.

Background shapes are modeled as products of an exponential times a polynomial
whose degree depends on the category. Different background models and different binning
sizes are considered for the categories other than Z,,, and a systematic uncertainty related
to the fitting procedure is determined accordingly.

A simultaneous binned fit based on a Poissonian likelihood [43] is performed for the
different categories. Table 11 reports the signal yield and single-muon efficiencies deter-
mined from the simultaneous fit and the ratios of the fitted to simulation efficiencies. A
goodness-of-fit test gives a probability (p-value) of 0.36 for this fit.

The background in the Z,,,, golden category (of the order of few per mille) was neglected
in the fit. In order to correct the fitted yield IV, Bu for the presence of this background, we
subtract the small estimated irreducible background fraction.

A (1.0 £ 0.5)% overall efficiency correction due to the loss of muon events because of
trigger prefiring is also applied (section 6.2).

The estimated cross section is 968 £ 8(stat.) pb.
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Source W—ev | Wopuv|Z—ete |Z—putp
Lepton reconstruction & identification 1.3 0.9 1.8 n/a
Trigger prefiring n/a 0.5 n/a 0.5
Energy/momentum scale & resolution 0.5 0.22 0.12 0.35
Fr scale & resolution 0.3 0.2 n/a n/a
Background subtraction / modeling 0.35 0.4 0.14 0.28
Trigger changes throughout 2010 n/a n/a n/a 0.1
Total experimental 1.5 1.1 1.8 0.7
PDF uncertainty for acceptance 0.6 0.8 0.9 1.1
Other theoretical uncertainties 0.7 0.8 1.4 1.6
Total theoretical 0.9 1.1 1.6 1.9
Total (excluding luminosity) 1.7 1.6 24 2.0

Table 12. Systematic uncertainties in percent for inclusive W and Z cross sections. The “n/a”
entry means that the source does not apply. A common luminosity uncertainty of 4% applies to
all channels.

As cross-check, a simpler analysis based on event counting was also performed. The
same selection was applied, and the number of events with two global muon, reported in
Sec 4.3, was used as signal yield. The signal yield was then corrected for the relevant effi-
ciencies that have been evaluated with a T&P method in a single pr and 7 bin, resulting
in a cross section estimate of 969 4 8(stat.) pb, in good agreement with the simultaneous
fit method.

9 Systematic uncertainties

The largest uncertainty contribution on the measured cross sections is related to the inte-
grated luminosity [44], and amounts to 4%.

The next most important source of systematic uncertainty is due to the lepton effi-
ciency correction factors obtained from the T&P method. In the Z — p*p~ analysis, the
efficiency uncertainties are absorbed in the statistical uncertainty of the measurement, via
the simultaneous fit to the yield and efficiencies.

Table 12 shows a summary of systematic uncertainties for the W and Z cross section
measurements. Tables 13 and 14 show a summary of systematic uncertainties for the
individual cross sections (W™, W™) and the ratios (W /W~, W/Z). Details of systematic
uncertainties for the muon and electron channels are described in the following subsections.

9.1 Electron channels

The propagation of statistical and systematic uncertainties on the data/simulation effi-
ciency correction factors (p) from the T&P method (reconstruction, identification, and
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Source W+ (e) | W™ (e) | WH/W™ (e) | W/Z (e)
Lepton reconstruction & identification 1.4 14 1.5 1.1
Energy scale & resolution 0.5 0.6 0.1 0.2
Py scale & resolution 0.3 0.3 0.1 0.3
Background subtraction / modeling 0.3 0.5 0.4 0.3
Total experimental 1.5 1.6 1.6 1.2
PDF uncertainty for acceptance 0.7 1.2 1.6 0.6
Other theoretical uncertainties 1.0 0.7 1.2 1.2
Total theoretical 1.2 1.4 2.0 1.4
Total (excluding luminosity) 2.0 2.1 2.6 1.8

Table 13. Systematic uncertainties in percent for individual W cross sections and the ratios in the

electron channel. A common luminosity uncertainty of 4% applies to all cross sections.

Source W* (p) | W™ () | WH/WT () | W/Z (n)
Lepton reconstruction & identification 0.9 0.9 1.3 0.9
Trigger prefiring 0.5 0.5 0 0
Momentum scale & resolution 0.19 0.25 0.06 0.35
Py scale & resolution 0.2 0.2 0.0 0.2
Background subtraction / modeling 0.4 0.5 0.2 0.4
Total experimental 1.1 1.2 1.3 1.1
PDF uncertainty for acceptance 0.9 1.5 1.9 0.9
Other theoretical uncertainties 0.9 0.8 0.8 14
Total theoretical 1.3 1.7 2.1 1.6
Total (excluding luminosity) 1.7 2.1 2.5 2.0

Table 14. Systematic uncertainties in percent for individual W cross sections and ratios in the
muon channel. A common luminosity uncertainty of 4% applies to all cross sections.

trigger) results in uncertainties of 1.3% and 1.8% for the W — ev and Z — ete™ anal-
yses, respectively. The uncertainties on the W+ and W™ cross sections are larger than
that for the inclusive W because of the larger statistical uncertainty when efficiencies are
estimated per charge. The systematic uncertainty, which depends on the efficiency under
study, is determined by considering alternative signal and background models. The size of
the systematic uncertainty is 0.3% for the electron selection efficiencies and 1.0% for the
electron reconstruction efficiency. The estimation of the trigger efficiency is considered to
be background-free so there is no need to perform a fit for the signal estimation. Theo-

retical uncertainties on the corrected efficiencies related to the PDF uncertainties and the
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PDF choice were found to be negligible.

The electron energy scale has an impact on the Er distribution for the signal. To
study this effect, the energy-scale corrections obtained from the shift of the Z mass peak
(section 8.2.1) are applied to electrons in the EB and EE in simulation (before the Er
requirement) and the missing Er is recomputed. The obtained variations on the signal
yield from the UML fit are 0.5% for the inclusive W, 0.5% for the W+, and 0.6% for the W~
samples and 0.1% on the W+ /W™ ratio. All the charge-related studies (determination of
individual W+ and W~ yields and W+ /W™ ratio and associated systematic uncertainties)
include data/simulation charge misidentification scale factors, estimated from the fraction
of same-sign events in the Z — eTe™ data and simulated samples.

The energy scale of electrons has an impact on the Z yield because of the Er > 25 GeV
requirement on the two electrons and the mass window requirement. Applying the energy-
scale corrections mentioned above to the EB and EE electrons and reprocessing the data,
the Z yield is decreased by 10 events (8452 — 8442). A systematic uncertainty equal to this
decrease of 0.12% is assigned to the Z signal yield. The energy-scale uncertainty for the
W selection is included in the systematic uncertainty described in the previous paragraph.
There, the systematic uncertainty is larger than that for the Z selection because the energy
scale also affects the P shape used for the signal extraction. The W selection itself is
affected by the energy scale at the level of 0.12%.

The Pr shape used in the W fits is also distorted by energy resolution uncertainties;
this induces a change in the W signal yield of 0.02%.

The Pr energy scale is affected by our limited knowledge of the intrinsic hadronic recoil
response. From the discrepancies found in the data/simulation comparisons (section 7.1),
uncertainties due to the Jp energy scale are estimated to be 0.3% for inclusive W, W,
and W~ yields, and 0.1% for the W /W™ ratio.

The systematic uncertainties on the background subtraction address the possible differ-
ence between the true background distribution and the modified Rayleigh function that is
used in the UML fit. We make the assumption that any such difference can be accounted for
by an additional oy parameter (defined in section 7.3), which affects the resolution at large
values of Fr (below the signal). The value of o9 is first determined for three samples: the
control sample in the data, the control sample in the QCD simulation, and the selected sam-
ple in the QCD simulation. The values obtained are oo = 0.0009 GeV~!, 0.0010 GeV~!,
and 0.0007 GeV~!, respectively for WT and oo = 0.0007 GeV~!, 0.0009 GeV~!, and
0.0008 GeV~! for W—. The three values of o9 are then fixed in turn, and oo and o7 are
set to their values from data to generate distributions (of the size of our sample) with
the three-parameter function, which we then fit with our nominal two-parameter function.
The maximal relative difference in the yields is quoted as the systematic uncertainty on
background subtraction: 0.35% for inclusive W, 0.33% for W™, 0.48% for W, and 0.39%
for the ratio. The systematic uncertainties of the fixed shape and the ABCD methods,
which were also explored in order to cross check the extraction of the inclusive W signal
yield, were found to be 0.40% and 0.70%, respectively.

The QCD background in the Z — eTe™ channel is estimated, as discussed earlier, using
the shape information of the relative track isolation distribution. The relative uncertainty
(approximately 0.14%) of the total Z yield is used as the systematic uncertainty.
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9.2 Muon channels

The total uncertainty of 0.9% (statistical plus systematic) on the correction factors p is
used as the systematic uncertainty due to muon efficiency (reconstruction, identification,
selection, isolation, and trigger) for the W — puv yield. The systematic uncertainty as-
signed to the efficiencies is evaluated using a large simulated sample including the Z signal
and all potential backgrounds. Additional uncertainties are evaluated by varying the ini-
tial Z preselection criteria and the mass window to perform the background subtraction
fit, and by using alternative parameterizations to model the background. The statistical
uncertainties on the fit parameters describing the background correction are also included.
The effect of the uncertainties due to the choice of PDFs used in the Z simulation is also
studied and found to be negligible.

A conservative systematic uncertainty of 0.5%, due to the correction for the trigger
prefiring inefficiency (section 6.2), is assigned to both the Z — ™~ and W — pv cross-
section estimates.

Dedicated studies comparing the peak position and width of the observed Z distribution
with the expected one indicate a muon momentum scale effect of ~0.25% for 40 GeV muons.
In order to evaluate the impact on the W cross-section measurement, the fitting procedure
with a new signal distribution where the muon pr in the simulations is modified according
to the observed effect, is performed. The difference with respect to the value quoted above
is 0.22% for the inclusive W sample, 0.19% for W+, and 0.25% for W, and for the W+ /W~
ratio it reduces to 0.06%. Muon momentum scale and resolution affect the measurement
of the Z — pu™p~ cross section with a 0.35% uncertainty.

The QCD background shape for the W analysis is tested by applying fits to the Jor
spectrum with the two extreme Fp shapes, corresponding to the maximal variations of the
correction factor, a. The variation in the signal yield with respect to that obtained using
the reference distribution is 0.4% for the inclusive W sample, 0.4% for W+, 0.5% for W,
and 0.2% for the W /W™ ratio.

The recoil modeling in the signal shape is also a potential source of uncertainty. This
uncertainty is estimated by applying the signal shape predicted by the simulation to the
fits of the Jp distribution. The variation in the signal yield with respect to the reference
result is 0.2%.

The systematic uncertainty on the Z — p*pu~ signal extraction procedure has been
evaluated as follows. The uncertainty of the fit model is estimated by varying in different
ways the background models and changing the dimuon mass binning of the various dimuon
categories. Half of the difference between the maximum and minimum fitted yields across
all the tested variations is taken as a systematic uncertainty. This amounts to 0.2%.

The signal shape has been determined assuming that the golden samples are
background-free. A flat distribution is added as background contribution to the signal
shapes and this produces a relative change in the fitted Z yield equal to one third of the
introduced background fraction. An irreducible contamination is known to be present from
simulation with the given selection. It amounts to less than 0.5%, so a conservative estimate
of 0.2% systematic uncertainty due to neglecting the background in the signal shapes used

— 492 —



Quantity Acteq (%) | Amstw (%) | Axnepr (%) | Asets (%) Syst. (%)
W acceptance (e) +0.5 +0.3 +04 0.2 (NNPDF-MSTW) 0.7
W~ acceptance (e) +0.9 +0.5 +0.7 0.5 (NNPDF-MSTW) 1.2
W acceptance (e) +0.5 +0.3 +04 0.2 (MSTW-CTEQ) 0.6
Z acceptance (e) +0.7 +0.4 +0.6 0.3 (NNPDF-MSTW) 0.9
W+ /W~ correction (e) +1.6 +0.5 +0.7 0.7 (NNPDF-MSTW) 1.6
W/Z correction (e) +0.6 +0.2 +0.3 0.2 (NNPDF-MSTW) 0.6
W acceptance (1) +0.7 +0.4 +0.6 0.3 (NNPDF-MSTW) 0.9
W~ acceptance (u) +1.1 +0.6 £0.9 0.5 (MSTW-CTEQ) 1.5
W acceptance (1) +0.7 +0.4 +0.6 0.2 (MSTW-CTEQ) 0.8
Z acceptance (1) +1.0 +0.6 +0.9 0.2 (NNPDF-MSTW) 1.1
W+ /W~ correction () +1.9 +0.6 +0.9 0.8 (NNPDF-MSTW) 1.9
W/Z correction () +0.8 +0.2 +0.3 0.2 (NNPDF-CTEQ) 0.9

Table 15. Systematic uncertainties from the PDF choice on estimated acceptances and acceptance
correction factors after the analysis selections.

for the fit is assigned. Adding those two contributions in quadrature, a total systematic
uncertainty due to the fit method of 0.28% is assigned.

The stability of the measured Z yields was also checked in the two run periods with
different trigger thresholds and the corresponding variation of the signal yield of 0.1% is

taken as a conservative systematic uncertainty.

9.3 Theoretical uncertainties

The main theoretical uncertainty on the cross section estimation arises from the com-
putation of the geometrical and kinematic acceptance of the detector. Uncertainty due
to the PDF choice, and uncertainties in the PDFs themselves are studied using the full
PDF eigenvector set and comparing among PDFs provided by the CTEQ, MSTW, and
NNPDF groups. For the estimation of the acceptance uncertainties, we followed the recipe
prescribed by the PDF4ALHC working group [45].

Systematic uncertainties on the acceptances due to the PDF choice are reported in
table 15. Here A; denotes the uncertainty (68% confidence level (CL)) within a given set
i (i = CT10 [46], MSTWOSNLO [47], NNPDF2.1 [48]). The quantity Agets corresponds to
half of the maximum difference between the central values of any pair of sets. The final
systematic uncertainty (last column) considers half of the maximum difference between
the extreme values (central values plus positive or minus negative uncertainties), again
for any pair of the three sets, plus the remaining ag uncertainties. As can be seen from
table 15, the W™ acceptance uncertainties are larger than the W+ ones. This is true for
each PDF set as well as for the total assigned acceptance uncertainty and reflects the
larger d-quark PDF uncertainties with respect to those for the u quark. The acceptance
estimates obtained using the different PDF sets are summarized in table 16.
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Quantity CTEQ | MSTW | NNPDF
Aw+ (e) 0.5017 | 0.5016 | 0.5036
Ay (e) 0.4808 | 0.4855 | 0.4804
Aw(e) 0.4933 | 0.4951 | 0.4942
Ag(e) 0.3876 | 0.3892 | 0.3872
Aw-(e)/Aw+(e) | 0.9583 | 0.9488 | 0.9626
Ag(e)/Aw(e) 0.7857 | 0.7853 | 0.7880
Aw+ (1) 0.4594 | 0.4587 | 0.4617
Aw- (1) 0.4471 | 0.4519 | 0.4472
Aw (1) 0.4543 | 0.4559 | 0.4557
Az (w) 0.3978 | 0.3990 | 0.3973
Aw— (1) Aw=+ () | 0.9732 | 0.9614 | 0.9778
Az (1) /Aw (1) 0.8756 | 0.8761 | 0.8796

Table 16. Predictions of the central values of the acceptances and the ratios of acceptances for
various PDF sets.

Quantity ISR+NNLO ppg,ur Scales PDF FSR  EWK | Total
W acceptance (e) 0.63% 0.77% 0.7% 0.17% 0.14% | 1.2%
W™ acceptance (e) 0.31% 0.50% 1.2% 020% 0.29% | 1.4%
W acceptance (e) 0.53% 0.34% 0.6% 0.13% 0.14% | 0.9%
Z acceptance (e) 0.84% 0.39% 0.9% 0.54% 0.84% | 1.6%
W /W~ correction (e) 0.32% 1.14% 1.6% 0.26% 0.25% | 2.0%
W /Z correction (e) 0.31% 0.48% 0.6% 0.44% 1.00% | 1.4%
W acceptance (u) 0.72% 0.49% 0.9% 0.34% 0.14% | 1.3%
W™ acceptance (u) 0.50% 0.37% 1.5% 0.16% 0.39% | 1.7%
W acceptance (pu) 0.65% 0.44% 0.8% 0.21% 0.13% | 1.1%
Z acceptance (u) 1.08% 0.20% 1.1% 0.25% 1.08% | 1.9%
W+ /W~ correction (p) 0.23% 0.61% 1.9% 0.31% 0.43% | 2.1%
W /Z correction (u) 0.43% 0.38% 09% 0.27% 1.22% | 1.6%

Table 17. Uncertainties on acceptances due to theoretical assumptions. The different contributions
are due to ISR plus NNLO effects, factorization and renormalization scales, PDF uncertainties, FSR
modeling, and EWK corrections.

Table 17 summarizes the different theoretical uncertainties on the acceptance due to
ISR and NNLO, higher order effects, PDFs, FSR, and missing EWK contributions.
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The baseline MC generator used to simulate the W and Z signals, POWHEG, is
accurate up to the NLO in perturbative QCD, and up to the leading-logarithmic (LL)
order for soft, nonperturbative QCD effects. A description accurate to just beyond the
next to next to LL (NNLL) can be attained with a resummation procedure [49, 50].
The RESBOS generator [51] implements both the resummation and NNLO calculations,
which are missing in the baseline generator, and its predictions for the W boson pr
spectrum show agreement with pp data at /s = 1.96 TeV [52]. Final state radiation is
incorporated in REsBos via PHOTOS [53]. The effect of soft nonperturbative effects,
hard higher-order effects, and initial-state radiation (ISR), which are not accounted for
in the baseline generator, is studied by comparing RESBOS results with POWHEG, and the
difference is taken as a systematic uncertainty (second column in table 17).

Fixed-order cross section calculations depend on the renormalization (ug) and factor-
ization (pr) scales. Higher-order virtual processes influence the W and Z boson momentum
and rapidity distributions. RESBOS fixes up and pp to the boson mass, so FEWZ [54, 55]
code is used to estimate the effect of scale dependence of NNLO calculations that is quoted
as a systematic uncertainty. The acceptance is computed by varying up and down the
renormalization and factorization scales within a factor of two, keeping urp = pp. Half
of the maximum excursion range from half to twice the central scale value is taken as a
systematic uncertainty (third column in table 17). The PDF uncertainties from table 15
are reported in the fourth column of table 17 and added in quadrature to the other contri-
butions to determine the total theoretical uncertainties, shown in the last column.

At the energy scale of weak boson production, NLO EWK corrections have magnitude
of comparable order to NNLO QCD effects. In the baseline POWHEG samples, QED ISR
and FSR are simulated using PYTHIA with a parton shower approximation, while vir-
tual corrections and photon emission from W are missing. The magnitude of NLO EWK
corrections has been estimated using the HORACE event generator [56-59] which imple-
ments both FSR and virtual and nonvirtual corrections. HORACE also uses a parton
shower approximation to account for FSR beyond single photon emission, and has been
interfaced to PYTHIA in order to generate MC samples with full detector simulation and
reconstruction. The difference in acceptances between PYTHIA and HORACE samples,
generated enabling FSR simulation only, is taken as systematic uncertainty due to FSR
modelling (fifth column in table 17). The difference in acceptances between HORACE
samples simulated using the full suite of corrections and enabling FSR simulation only is
taken as systematic uncertainty due to virtual corrections and radiation from W (sixth
column in table 17). The effect of QED ISR on the acceptance was found to be negligible
comparing PYTHIA samples generated with QED ISR enabled and disabled.

10 Results

The results for the electron and muon channels are presented separately. Assuming lep-
ton universality, we combine our measurements in the different lepton decay modes. The
electron and muon channels are combined by calculating an average value weighted by the
combined statistical and systematic uncertainties, taking into account the correlated un-
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certainties. For the cross-section measurements, correlations are only numerically relevant
for theoretical uncertainties, including the PDF uncertainties on the acceptance values.
For the cross section ratio measurements, the correlations of lepton efficiencies are taken
into account in each lepton channel. In the combination of lepton channels, fully correlated
theoretical uncertainties are assumed for the acceptance factor, with other uncertainties as-
sumed uncorrelated. The luminosity uncertainty cancels exactly in the cross-section ratios.

We separate the quoted uncertainties in the statistical contribution (stat.), the contri-
bution due to experimental systematic uncertainties (syst.), which have been described in
section 9.1 and 9.2, the total theoretical uncertainty (th.), described in section 9.3, which
affects the acceptance determinations, and the uncertainty on the integrated luminosity
(lumi.), which cancels in the measurements of cross section ratios.

The NNLO predictions of the total cross sections and their ratios were estimated using
FEWZ and the MSTW 2008 PDF. The uncertainties, at 68% CL, include contributions
from the strong coupling g [60, 61], the choice of heavy quark masses (charm and bottom
quarks) [62] as well as neglected higher-order corrections beyond NNLO, by allowing the
renormalization and factorization scales to vary in a similar way to that described in
section 9.3.

The following cross sections for inclusive W production are measured:

o(pp — WX) x B(W — er) = 10.48 £ 0.03 (stat.) £ 0.15 (syst.) & 0.09 (th.) £ 0.42 (lumi.) nb,
o(pp — WX) x B(W — pv) = 10.18 £ 0.03 (stat.) £ 0.12 (syst.) £ 0.11 (th.) & 0.41 (lumi.) nb,
o (pp — WX) x B(W — fv) = 10.31 £ 0.02 (stat.) % 0.09 (syst.) & 0.10 (th.) = 0.41 (lumi.) nb.
The corresponding NNLO prediction is 10.44 4+ 0.27 nb. The results for charge-specific W
production are
o(pp = W'X) x B(W" —efv) = 6.15 £ 0.02 (stat.) = 0.10 (syst.) £ 0.07 (th.) £ 0.25 (lumi.) nb,
o(pp = W'X) x B(W" — p*v) = 5.98+0.02 (stat.) £ 0.07 (syst.) & 0.08 (th.) & 0.24 (lumi.) nb,
o(pp— WX) x B(WH — ¢fv) = 6.04 £ 0.02 (stat.) & 0.06 (syst.) & 0.08 (th.) & 0.24 (lumi.) nb,

and

o(pp = W X) xB(W™ —e ) = 4.34£0.02 (stat.) + 0.07 (syst.) £ 0.06 (th.) £ 0.17 (lumi.) nb,
o(pp— W X) x B(W™ — pu ) = 4.20 4 0.02 (stat.) + 0.05 (syst.) & 0.07 (th.) & 0.17 (lumi.) nb,
o(pp — W X) x B(W™ — (") = 4.26+ 0.01 (stat.) + 0.04 (syst.) & 0.07 (th.) + 0.17 (lumi.) nb.
The NNLO predictions for these cross sections are 6.15+0.17 nb for WT and 4.2940.11 nb
for W~. The following cross sections for inclusive Z production are measured:
o (pp — ZX) x B(Z — e"e™) = 0.992 + 0.011 (stat.) + 0.018 (syst.) = 0.016 (th.) + 0.040 (lumi.) nb,
o(pp — ZX) x B(Z — p ™) = 0.968 & 0.008 (stat.) £ 0.007 (syst.) £ 0.018 (th.) & 0.039 (lumi.) nb,
o(pp — ZX) x B(Z — £7¢7) = 0.974 £ 0.007 (stat.) = 0.007 (syst.) & 0.018 (th.) £ 0.039 (lumi.) nb.

The reported Z cross sections correspond to the invariant mass range 60 < my+,- <
120 GeV, and are corrected for the kinematic acceptance but not for v* exchange. The
NNLO prediction for Z production is 0.97 + 0.03 nb.

The ratio of cross sections for W and Z production is

ow Nw ez Az

o7 Nz ew Aw’
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where Az and Aw are the acceptances for Z and W selections, respectively. For the ratio
measurement in the muon channel, the signal yield determined by the simultaneous fit
N 2“ is used in place of the ratio Nz /eyz. The two different decay channels are combined by
assuming fully correlated uncertainties for the acceptance factors, with other uncertainties
assumed uncorrelated. The resulting ratios are:

o(pp = WX) x B(W — ev)
o(pp — 2ZX) x B(Z — ete™)
o(pp = WX) x B(W — uv)
o(pp — ZX) x B(Z — pFp~)
o(pp — WX) x B(W — {v)
o(pp — ZX) x B(Z — ¢+¢7)

= 10.56 + 0.12 (stat.) & 0.12 (syst.) = 0.15 (th.),

= 10.52 =+ 0.09 (stat.) & 0.10 (syst.) = 0.17 (th.),

= 10.54 =+ 0.07 (stat.) & 0.08 (syst.) = 0.16 (th.).

The NNLO prediction for this ratio is 10.74 £ 0.04, in good agreement with the measured
value.
The ratio of cross sections for Wt and W~ production is given by

ow+ _ Nw+ ew- Aw-

ow-  Nw- ew+ Aw+’

where A+ and Ay - are the acceptances for Wt and W, respectively. The two different
decay channels are combined by assuming fully correlated uncertainties for the acceptance
factors, with other uncertainties assumed uncorrelated. This results in the measurements:

o(pp — WHTX) x BOWT — eTv)

= 1.418 £ 0.008 (stat.) 4+ 0.022 t.) £ 0.029 (th.
olpp = W=X) x BW- — e 1) (stat.) (syst.) (th.),
olpp — WHTX) x BWT — utv)

= 1.423 £ 0.008 (stat.) £ 0.019 t.) & 0.030 (th.
olpp = W=X) x BW™ — u=0) (stat.) (syst.) (th.),
o(pp — WHTX) x B(WT — (1)

= 1.421 £ 0.006 (stat.) & 0.014 t.) £ 0.029 (th.).
o(pp — W-X) x BW- — (D) (stat.) (syst.) (th.)

The NNLO prediction for this ratio is 1.43 £+ 0.01, which agrees with the presented
measurement.

Summaries of the measurements are given in figures 25, 26, and 27, illustrating the
consistency of the measurements in the electron and muon channels, as well as confirming
the theoretical predictions computed at the NNLO in QCD with state-of-the-art PDF sets.
For each reported measurement, the statistical error is represented in black and the total
experimental uncertainty, obtained by adding in quadrature the statistical and systematic
uncertainties, in dark blue. For the cross-section measurements, the luminosity uncertainty
is added to the experimental uncertainty, and is represented in green. The dark-yellow
vertical line represents the theoretical prediction, and the light-yellow vertical band is the
theoretical uncertainty, interpreted as a 68% confidence interval, as described earlier.

The ratios of the measurements to the theoretical predictions are listed in table 18
and displayed in figure 28. The experimental uncertainty (exp.) is computed as the sum
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CcMs 36 pb’at Vs=7TeV CcMs 36 pb”'at Vs=7TeV
—— — ——T T T T T T
NNLO, FEWZ+MSTWO08 prediction NNLO, FEWZ+MSTWO08 prediction, 60-120 GeV
[with MSTWO08BNNLO 68% CL uncertainty] [with MSTWO08BNNLO 68% CL uncertainty]
10.44 £ 0.27 nb 0.97 £ 0.03 nb
W — ev e Z—ee HoH
10.48+0.03 ,, £ 017, +0.42, ; nb 0.992+0.011,,, +0.024  , + 0.040,,,, nb
W — uv pot Z-uu Hot
10.18+0.03,, +0.16, +0.41,,; nb 0.968+0.008 ,,, +0.019,, +0.039,,, nb
W—lv (combined) fot Z- 1 (combined) m
10.31£0.02,,, +0.13, +0.41,,, nb 0.974+0.007 ,,, +0.019, +0.039,,, nb
P S RS ST BRI | P R I L L L L L L
0 2 4 10 12 0 0.2 0.4

66(pp—>8\NX)><B(W—>Iv) [nb] ° G(pp0'—8>ZX)><B1(Z—>II)1'2[nb]
Figure 25. Summary of the W and Z production cross section times branching ratio measurements.
Measurements in the electron and muon channels, and combined, are compared to the theoretical
predictions (yellow band) computed at the NNLO in QCD with recent PDF sets. Statistical un-
certainties are represented as a black error bars, while the red error bars also include systematic
uncertainties, and the green error bars also include luminosity uncertainties.

CcMS 36 pb’'at Vs=7TeV CcMs 36 pb’'at Vs=7TeV
T T T T
NNLO, FEWZ+MSTW08 prediction NNLO, FEWZ+MSTW08 prediction
[with MSTWO08BNNLO 68% CL uncertainty] [with MSTWO0BNNLO 68% CL uncertainty]
6.15+0.17 nb 4.29+0.11 nb
W* setv ot W —eVv bot
6.15+0.02, +0.12_ +0.25, . nb 4.34£0.02,,, +0.09, +0.17,,, nb
W* —>u*v o W —>up-v fot
5.98+0.02, + 0.1, +0.24, . nb 4.20+0.02,,, +0.09,, +0.17,,, nb
W* = 1*V (combined) to} W™ 51"V (combined) 1ot
6.04+0.02,, +0.10_, +0.24, . nb 4.26+0.01,, +0.08, +0.17,,. nb
1 L L 1 L L 1

0 0

2 )1 6 4 6
o(pp>W*X)xB(W*=1*v) [nb] o(pp>W X)xB(W—17V) [nb]

Figure 26. Summary of the W and W~ production cross section times branching ratio mea-
surements. Measurements in the electron and muon channels, and combined, are compared to the
theoretical predictions computed at the NNLO in QCD with recent PDF sets. Statistical uncer-
tainties are negligible in this plot; the red error bars represent systematic uncertainties, and the
green error bars also include luminosity uncertainties.

in quadrature of the statistical uncertainty and the systematic uncertainties aside from the
uncertainty on the integrated luminosity and the theoretical uncertainties associated with
the acceptance. The theoretical uncertainty (th.) is computed by adding in quadrature
the theoretical uncertainties of the acceptance (or the acceptance ratio) and the NNLO
prediction, assuming that they are uncorrelated.

Figure 29 shows the CMS W and Z cross section measurements together with mea-
surements at lower center-of-mass energy hadron colliders. The predicted increase of the
cross sections with center of mass energy is confirmed by our measurements.

Table 19 reports the cross sections as measured within the fiducial and kinematic
acceptance, thereby eliminating the PDF uncertainties from the results. In effect, these
uncertainties are transferred to the theoretical predictions, allowing for a cleaner separation
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CcMs 36 pb’at Vs=7TeV CcMs 36 pb”'at Vs=7TeV
T T T T T
NNLO, FEWZ+MSTWO08 prediction NNLO, FEWZ+MSTWO08 prediction
[with MSTWOSNNLO 68% CL uncertainty] [with MSTW08NNLO 68% CL uncertainty]
10.74 + 0.04 1.43+0.01
W —>ev, Z—ee Hell W —ev H
10.56+0.12,, +0.19 1.418+0.008 ,, + 0.036
W - uv, Z-upn HeH W - puv HH
10.52+0.09,,, +0.20_ 1.423+0.008 ,,, +0.036,
W v, Z—> Il (combined) HH W — v (combined) Fed
10.54 +0.07,,, +0.18 1.421+0.006 ,,, +0.032_,
0 2 4 6 14 0.5

8 10 12
Rwz=[0xB]IW)/[cxB](Z)

1 15
R,.= [6xBIJW?*)/[cxB]W")

Figure 27. Summary of the measurements of the ratios of W to Z and WT to W~ production
cross sections. Measurements in the electron and muon channels, and combined, are compared
to the theoretical predictions computed at the NNLO in QCD with recent PDF sets. Statistical
uncertainties are represented as a black error bars, while the red error bars also include systematic
uncertainties. Luminosity uncertainties cancel in the ratios.

CcMS 36 pb’at Vs=7TeV
I lumi. uncertlainty: +4% I '
oxB(W) [ 0.987+0.009,, + 0.028
oxB(W*) a 0.982+0.009,,, +0.030
oxB (W) [ 0.993+0.010,, + 0.029,,
oxB(Z) o 1.002+ 0.010,, + 0.032,
Rwiz HeH 0.981+0.010,,, +0.015
R,. HsH 0.990+ 0.011,,, +0.023
0.6 0.8 A 1.2 1.4
Ratio (CMS/Theory)

Figure 28. Summary of ratios of the CMS measurements to the theoretical predictions. The
experimental uncertainties are represented as black error bars, while the red error bars also include
the combining of theoretical uncertainties on the predictions and measured quantities. The yellow
band around the vertical yellow line at one represent the luminosity uncertainty (4%) that affects
the cross-section measurements.

of experimental and theoretical uncertainties. For each channel the fiducial and kinematic
acceptance is defined as the fraction of events with lepton pr greater than 25 GeV
(20 GeV for Z — p*p™), including no final-state QED radiation, and with pseudorapidity
in the range |n| < 2.5 for electrons and |n| < 2.1 for muons. Table 20 reports the ratios of
cross sections for W and Z production and for W and W~ production within the fiducial
and kinematic acceptances, separately for electron and muon channels.
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Quantity Ratio (CMS/Theory)

o x B(W¥) 0.987 £ 0.009 (exp.) £ 0.028 (th.) = 0.039 (lumi.) [£0.049 (tot.)]
o x B(WH) 0.982 = 0.009 (exp.) = 0.030 (th.) = 0.039 (lumi.) [£0.050 (tot.)]
o x B(W™) 0.993 £ 0.010 (exp.) £ 0.029 (th.) = 0.040 (lumi.) [£0.050 (tot.)]
o x B(Z) 1.002 = 0.010 (exp.) = 0.032 (th.) £ 0.040 (lumi.) [£0.052 (tot.)]
o x B(W)/o x B(Z) 0.981 = 0.010 (exp.) £ 0.015 (¢h.) [+0.018 (tot.)]
o x B(W+) /o x B(W™) | 0.990 £ 0.011 (exp.) & 0.023 (th.) [£0.025 (tot.)]

Table 18. Summary of ratios of CMS measurements to the theoretical predictions. The experi-
mental uncertainty (exp.) is computed as the sum in quadrature of the statistical and experimental
systematic uncertainties, aside from the uncertainty on the integrated luminosity, which is shown

separately.
€2 [« cMs,36pb', 2010 W
m . W* S Iy
% 10 CDF Run i Wby
o - = DORunl
o + UA2
i «~  UA1 7T
1 y
. pp
107 =
- Theory: FEWZ and MSTW08 NNLO PDFs
C 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I 1
1

Collidé(r) energy (TeV)

Figure 29. Measurements of inclusive W and Z production cross sections times branching ratios
as a function of center-of-mass energy for CMS and experiments at lower-energy colliders. The lines
are the NNLO theory predictions.

10.1 Extraction of B(W — /(v) and I'(W)

The precise value of the ratio of the W and Z cross sections obtained from the combination
of the measurements in the electron and muon final states can be used to determine the
SM parameters B(W — ¢v) and I'(W).
The ratio of W and Z cross sections can be written as
olpp — WX) B(W — lv)
o(pp — ZX) B(Z — t+i~)

In order to estimate the value of B(W — {v) the predicted ratio of the W and Z
production cross sections and the measured value of the B(Z — ¢T¢~) are needed. The
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Channel o x B in acceptance A (nb) A
W — ev 5.688 & 0.016 (stat.) &= 0.090 (syst.) £ 0.228 (lumi.) | 0.543 £ 0.003
W+ — etv |3.404 4 0.012 (stat.) £ 0.064 (syst.) + 0.136 (lumi.) | 0.554 £ 0.004 | pr > 25 GeV
W™ — e 7 | 2.284 +0.010 (stat.) 4 0.040 (syst.) & 0.091 (lumi.) | 0.527 + 0.006 In| < 2.5
Z—eTe 0.452 £ 0.005 (stat.) 4= 0.010 (syst.) & 0.018 (lumi.) | 0.456 4= 0.004
W — uv 4.736 & 0.012 (stat.) & 0.067 (syst.) £ 0.189 (lumi.) | 0.465 £ 0.004
pr > 25 GeV
W — uv | 2.815 4+ 0.009 (stat.) & 0.042 (syst.) £ 0.113 (lumi.) | 0.471 & 0.004 ) < 2.1
< 2.
W™ — puv | 1.921 £ 0.008 (stat.) & 0.027 (syst.) & 0.077 (lumi.) | 0.457 £ 0.007 7
pr > 20 GeV
Z — pt T |0.396 + 0.003 (stat.) & 0.007 (syst.) £ 0.016 (lumi.) | 0.409 4= 0.005 il < 2.1
nl < 2.

Table 19. Summary of production cross section measurements and ratios in restricted fiducial
and kinematic acceptances. The pr and |n| requirements restricting the acceptance for electrons
and muons, and the resulting acceptance values, are also given. The quoted uncertainties on the
acceptances (evaluated without FSR effect) are due to the PDF uncertainties.

Channel Ratio of ¢ x B in acceptances A ratio
W/Z (e) 12.58 £ 0.14 (stat.) & 0.21 (syst.) | 0.839 £ 0.005
WT /W~ (e) | 1.490 £ 0.009 (stat.) & 0.029 (syst.) | 0.952 + 0.015
W/Z (u) 11.95 £+ 0.10 (stat.) £ 0.20 (syst.) | 0.880 + 0.008
W /W~ (u) | 1.466 + 0.008 (stat.) 4 0.023 (syst.) | 0.971 4+ 0.018

Table 20. Ratios of cross sections for W and Z production and for W+ and W~ production
in restricted fiducial and kinematic acceptances for electron and muon channels. The pr and |7
requirements are the same as those quoted in table 19.

NNLO prediction of the ratio, based on the MSTWO08 PDFs, is ow /o7 = 3.34 &+ 0.08. The
current measured value for B(Z — £7¢7) is 0.033658+0.000023 [63]. Those values lead to
an indirect estimation of

B(W — ¢v) = 0.106 & 0.003,

in agreement with the measured value, B(W — fv) = 0.1080 £ 0.0009 [63].
Using the SM value for the leptonic partial width, (W — fv) = 226.6 £ 0.2 MeV [64,
65], an indirect measurement of the total I'(W) can be obtained through the formula

W — (v)

B(W — tv) = W)

Based on the above values we obtain

I'(W) = 2144 + 62 MeV .

~ 51 —



The SM prediction is 2093 + 2MeV [65] and the world average of experimental results
is 2085 £+ 42MeV [63]. The indirect measurement of I'(W) is in good agreement with the
world average and the theoretical prediction, as well as other published measurements.

11 Summary

Measurements of the inclusive W and Z production cross sections have been performed
using a data sample of pp collision events at /s = 7TeV collected with the CMS detector
at the LHC in 2010 and corresponding to an integrated luminosity of 36 pb~!. The
inclusive production cross sections of W+ and W~ have been measured separately as
well as the ratios of the W /W~ and W/Z production cross sections. All measurements
are dominated by systematic uncertainties, the main uncertainty originating from the
integrated luminosity (4%), which cancels in the ratios. Experimental systematic uncer-
tainties range from 0.7 to 1.8%, and theoretical uncertainties range from 0.9 to 2.1%. The
measurement of the W/Z cross-section ratio also leads to an indirect determination of
I'(W), which is in agreement with the current world average.

The results agree with the ATLAS measurement [20] and with previous CMS re-
sults [21]. All measurements are consistent with the SM NNLO predictions.
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