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Line shape of beam deflection of magnetic nanopatrticles in a Stern-Gerlach setup
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An adaptation of the famous Stern-Gerlach experiment has found important applications to nanomagnetism.
A beam of magnetic clusters is sent in a projectile through an inhomogeneous magnetic field and the resultant
deflected spots are collected on a detector screen. The difference with the historic experiment is that the beam
deflection during the traversal through the magnetic region is influenced by rotational diffusion of the magne-
tization vector across an anisotropy barrier. In this paper we provide a complete analysis of the line profile of
the deflected spots and a detailed comparison with experimental data.
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[. INTRODUCTION what is jettisoned from a hot oven is a beam of clusters that
are single-domain magnetic particleas the beam traverses
Interest in single-domain magnetic nanoparticles has beetinrough the inhomogeneous magnetic field for a time
rekindled in view of the recent upsurge of the importance ofr=(=L/v), v being the speed of the jet in the forward direc-
nanotechnology.These particles are usually about 1 nm intion, the barycentric motion is accelerated in the transverse
diameter and possess a giant magnetic moment because difection, which is also the direction of the inhomogeneity of
the large clustef~10° atomg of magnetic moments being the field. The acceleration, however, is a stochastic process
coherently locked togethérHowever, the direction of the because the mechanical force on the particle depends on the
magnetic moment is not fixed in space as thermal fluctuatelative angle(between the field and the magnetizajion
tions cause it to fluctuate in time as it undergoes rotationajvhich is a stochastic process, in view of the rotational relax-

Brownian motion over an anisotropy energy barfighe  ation phenomenon mentioned above. This in turn makes the

characteristic time for rotational relaxation of the magnetiza-defleCtion of the beam in the transverse direction a stochastic

tion vector, called the Néel relaxation timedepends expo- PrO¢ess. The purpose of this paper i.s to calculate Fhe prob-
nentially on the volumeV and an anisotrop)r/j paramept‘er ability distribution of the spots at which the beam impacts
Thus, 7 is a very sensitive function of the size distribution of the screen i.e., the line shape of the profile of deflections

the magnetic nanoparticles. Wheiris larger than the typical around their mean.
ag anop ’ 9 " yp . In a previous papethenceforth referred to ag, we com-
experimental time scalerg, the moments are “locked

. T . puted the mean deflection with the aid of a Fokker-Planck
whereas forr smaller thanrg, the particles exhibit magnetic gqation for the probability distribution of the angles sub-
viscosity or superparamagnetism. This interplayr@nd e tgpged by the magnetic moment vector along the anisotropy
leads to interesting relaxation behaviomnd history-  axis® In this paper we extend that theory for evaluating the
dependent effectsthat can have important applications to entire line shape of the deflections in order to facilitate a
magnetic memory devices. direct comparison with experiments. While presenting the
One technique of studying magnetic nanoparticles is tQneoretical results, we stay faithfully close to the experimen-
employ the celebrated Stern-Gerlach setup, as shown in Figa| paper of Douglaset al. (henceforth referred to as))l
1, which also introduces some pertinent length scales. Inyhich provides a comprehensive review of the conditions
Stead of direCting a beam of SiIVer atoms through an inhOUnder Wthh the measurements are Carriedgdntlhe pro_
mogeneous magnetic field, as in the historic experimentgess we delineate the important roles of two distinct tempera-
tures: the temperature of the soufogen T, and the vibra-
7 axis tion temperature T,, which characterizes the lattice
‘ temperature of the particle inside the magnetic environment.
In Sec. Il we continue our work from | and present our
[;U theoretical results for the variance of the deflections. Some of
m the details of the calculation are needed to be given in view
) b of the intricate nature of time ordering of the arguments in
the required integrals. In Sec. Il we discuss a rather surpris-
ing result concerning the validity of the central limit theorem
in that we are able to fit the experimental line shapes to
Gaussians, which are characterized by just two parameters:
the mean deflection and the variance. Our principal conclu-
FIG. 1. Atypical Stern-Gerlach experimental setup. sions are presented in Sec. IV.
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Il. THEORY

g e enn0,0095 Variance=0.53
The principal result of | is the mean deflectipef Eq. ER = arance=t
(13)] which, in terms of all dimensionless entries, is given by § 061 -
g T
— pl | 1 o 204 =
<d>=po+§+(p-po) 1-—)|1-—1-e9 |, (1) E T
o o 0.2 . . | . . | . —
where 2 DBhfiection(tam) 2 3
Po = (c0S6,), FIG. 2. Deflection profile of Cgs clusters afT,;,=247K and
zero magnetic field, after Fig. 4 of Il.
p=(COSb)eq,
t
L v(t)=Av,+ bf cosd(t)dt’, (5)
| = -, o
D
where
a=\T y (2) 2
. o ot V) 6
\ being the Néel relaxation rate given by Edl) of I. The = m (6)

initial polarization, i.e., the value dftos#), is governed by _ _ _ _
the source temperatuf® of the oven. As discussed in ) as defined in Im bgmg the mass of th? cluster, aid, is the_
. b e o ~pure thermalkinetic) contribution. It is the second term in

has two limiting e>§preSS|ons, o_ne”for the “locked mtzment Eq. (5) that has led to Eq(1) above(in which the parameter
case governed by “slow relaxation” and the other for “super- —

paramagnetic’ case characterized by “fast relaxation.” wé has been subsumed @) whereas the first term has a zero
may further recall that the equilibrium polarizatign for ~ Mean but has a second moment given by the equipartition
weak anisotropy appropriate for transition-metal clusters ofh€orem

cobalt, nickel, or iron, is expressed as a Langevin function o kaTg
A =—. 7
o r<NBoﬂo> kT, o (A0 ="2 (7)
keT, NBoko’ Henceforth we shall ignore the first term in E&) but re-

whereN is the number of intracluster aton®, is the homo- Member to add the thermal contribution, @) to the com-
geneous part of the magnetic field, is the atomic magnetic Puted second moment of the deflecti@hie purely to mag-
moment, andT, is the so-called vibrational temperature. On netic effecty while comparing with experimental data.

the other hand, for large anisotropy as is relevant for rare- Having set aside the issue of residual line broadening we
earth clusters such as those of gadolinitand its isotopes ~ discuss next the deflectios, which, from Eq.(5), can be

p is given by written as
D TE bD) ("
p=tan NBoo . (4) d:<_>UZ(TE)+J vz(t)dt:<—>J cos(t')dt’
kBTv v o] % o
The corresponding expressions fgrare obtained by replac- E t o
ing T, by Tsin Egs.(3) and(4). +b . dt . cosé(t")dt’. (8)

We now go beyond the calculation of the mean deflection,
as was done in I, and extend the treatment to evaluate the Eq. (8) 7 is the experimental time scale defined in the
line shape of the beam deflections. For this purpose the firsfecond paragraph of sec. | abds the distance between the
step is to compute the second moment of the line shape, i.anagnet and the detector, depicted in Fig. 1. Thus the beam
the mean square deflection. Before we do that we want tdeflectiond consists of two contributions: one a single time
point out one minor modification of the result given in | integral and the other a double time integral of the basic
necessitated by the experimental finding of Il. Referring tostochastic process, viz., cég&). The latter has its dynamics
Fig. 2, which is scanned from the line shape of alusters  governed by a Fokker-Planck equation appropriate to rota-
as given by Fig. 4 of Il, we note that while the line shape fortional Brownian motion of the orientation of the magnetic
the zero magnetic fieldB,=0) and zero inhomogeneity moment of a magnetic particle, as mentioned in the begin-
(B'(0)=0) is indeed centered around zero mean deflectionning of the third paragraph of Sec. | and described in detail
as expected, it is, however, considerably broadened. Sincey |. Therefore,d itself is a driven stochastic process, the
for zero inhomogeneity, the mechanical force has to vanishaverage of which has been computed in | and reproduced in
there can be no nonzero magnetic contribution to the seconflg. (1) above.
moment. We therefore infer that the observed broadening Our stated objective, as mentioned earlier, is to calculate
(for zero magnetic fieldhas to be attributed to the thermal the line shape of the beam deflection for which we need the
fluctuation of the velocity of the beam in the transvelise, = knowledge of the mean square deflection, which is given
z) direction (cf. Fig. 1). Thus we write from Eq. (8) by
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b2D?2 € noted that the probability function is taken to depend only on
() =— dt’ [ dt’{cose(t")cos6(t’)) the time differencdt’ —t”) reflecting the fact that the under-
0 0 lying process is stationarfand Markovian. We may then set
202D (! e (' -t")=7and identify the epoch=0 with the time at which
+ f dtf dt'f t’(cos(t")cosa(t’)) the beam just enters the magnetic region. Hence, the @hgle

entering the argument @f(¢”,t”) in Eq. (10) can be taken as
the initial projection of the magnetic moment; concomitantly

TE TE ty )
+b2f dtf dtf dt’f dt"{cosé(t")cosa(t")), .
, g, ) dv ] dricostticosdt)) p(6".t") = po6,). (12)

(9) independent of”, wheres stands for “source.”
Collecting all the terms, the correlation function in Eq.

where the angular brackets -) denote the average over the (10) can be rewritten as

underlying stochastic process, the probability distribution of , ) o

which follows a Fokker-Planck equatidef. Eq. (6) of I]. (cosd(t")cosd(t')) = C(r) = (cosb,)€

The treatment required for evaluating the multiple integrals +pp(l-e™), 7=t/ -t
in Eqg. (9) is relegated to Appendix .

Having rewritten the integrals in Eq9) in such forms 13
thatt’ is ensured to be larger thafi, as discussed in the Substituting in Eq(9), we obtain
Appendix, the correlation function can be expressefl as

(d?) = lzf dr(7g - 7)C(7)
(cos#(t")cosH(t")) = ﬂ sin §'d#"sin 0'd6’'p(6",t") 0
E TE t’
xcos@' cosd'P(¢',t"|0',t'), (10) + 2If dtf dt’f C(ndr
t'-t
where p(#’,t”) is the probability that the anglé takes the
value @’ at timet” andP(#",t"| ¢’ ,t') is the conditional prob- +4|f dtf dt f C(ndr
ability that given the angle to b€’ at timet”, # assumes the
value ¢’ at the timet’ (t’ >t"). As mentioned earlier, it is the
function P(¢",t"| 6’ ,t’) that obeys a Fokker-Planck equation +f dtlf dtzf dt’f C(ndr
for the rotational relaxation process at hand. Further, when t'-t,
the ratio of the anisotropy energy and the thermal energy
(i.e.,NK/kgT) is sufficiently large, the dynamics of the mag- +f dtlf dtzf dt'f C(n)dr, (14
netization vector is concentrated near the angte® and 6
=4 and the solution of the probability function can be writ- h
ten a8 where
_ d?
P(6',t"]60/ t') = P 0) + [Scos#’ - cost') &= (15
E

_ ’ “\(t'-t") ’ "
Ped 0 )le , U=t (11) Using the expression for the correlation functi@ir),

where P #') is the Boltzmann probability for the equilib- given by Eq.(13), the mean deflection{ﬁ) in Eqg. (1) and
rium distribution of the angled appropriate for the vibra- after some straightforward but tedious algebra, the variance
tional temperaturd,, and given by Eq(7) of I. It may be  of the deflection is derived as

(AD?) = () - (dh? = {p§°+ Do - ppo}{———u e'”‘)H
e 2 2
+|{%+ Po— ppo}{ ° +;—;2H

2 1 2 2 _
+|2[ppo+ Po~ Ppo}{———z——3——4(e“—1)ﬂ
a a a a

3
{p"{(l &) + (a+e 1)}
[ 2
%{E+I—(a |)(a+e-a—1)H, (16)
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where the symbols have their usual meanings as defined be-
fore andp,=(coS6,).

In Eqg. (16), nothing has been assumed about eithgr
=(cosfy) or p,={coh,), which can have different values
depending on whether the beam is polarized, unpolarized, or
partially polarized. In every state of the beam we can also
examine Eq(16) in both slow and fast relaxation regimes.

08
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o Gd,, Mean=2.66 ,Variance=2.23 |
B=0.405T, dB/dz=1494T/m -]

2 Gdy

Mean=1.21, Variance=1.2 ]

A. Polarized Beam

In this casepy=p,=1. (i) Fast relaxatiofA r=>1): In this
limit the variance of the deflection profile is given by

«A$%:4§+u—p%§—£ﬁ]+{§+a1—m

1 1 1 2 2
X(:zﬂ*'{”‘m(‘z*z*z)*g]
[( |> 1 ]2
-[l1+=|p+—(A+H(1-p)| .
2 o

(i) Slow relaxation(A7g<<1)

«AE%:1+(1—§)+§

(-

B. Unpolarized Beam
In this case(coséy) =0, but

_ g 1
Do = (COZ6) :J COSHsin Oy by = 3 (19
0
Therefore, for(i) slow relaxation
— 12 11 p2a2< |>2
Ad)=—+—-+=-"—1+=], 20
(Ad) 12 3 3 4 3 (20

and (ii) fast relaxation

— 21 1 2 1 1 1
BT IR
((Ad 3\a & " 3 \3a 242 " ot

2/1 1 | 1 2
*5(;‘3)‘&[(“5)‘;(“”] -
(21)

In reality the initial beam may be partially polarizéske I).

IIl. COMPARISON WITH EXPERIMENTS

® B=0.335, dB/dz=126.6T/m |
)\ «Gd,

Intensity(arb. unit)

Mean=0.38 Variance=0.83 7
B=0.135T, dB/dz=50.6T/m

R o Gd,, Mean=0.114 Variance=0.6 -

°

P N BT BT B
2 0 2 4 6 8 10
Deflection(mm)

FIG. 3. Deflection profiles of Gg and Gd; clusters fitted with
the Gaussian model of ER2). All experimental(cf. II) curves are
indicated by circles and squares appropriaté fg=147 K.

(- (@2I2Aadd]

I(d) = —
2m((Ad)?)

(22)

Thus only two parameters, the mean deflec(ﬁ)nand its

variance((Ad)?), are required to characterize the measured
profiles, both in the locked moment as well as the superpara-
magnetic regimes. The fitting procedure is as follows. We
took the deflection profiles of cobalt and gadolinium clusters
from the experimental paper of Douglasal. (II) and fitted
them to the function

& -0 op?).

f(x) = —
®) V2mh?

(23

Note that in addition to the parametdrandc, depicting the
width and the mean respectively, we have taken recourse to
an additional parameterin order to adjust the height of the
profiles, as the various intensities are measured in arbitrary
units. The fitted curves are shown in Fig. 3 and Fig. 4. From
the fitted values ob andc, and a comparison with the theo-
retically computed mean deflectipg. (1)] and the variance
[Eq. (16)], we can deduce the value af, for a given
do(:bTE2|) and initial polarization, as the value pfcan be
estimated from the vibrational temperatdrgeof the clusters.
A knowledge ofa(=A¢) yields important data for the aniso-
tropy parameter of the single-domain cluster.

Turning to the experimental data for gdat high mag-
netic fields(see Il and Fig. 5 in the textwe notice a two-

peak structure of the profile. Becausk and(@) depend on
the relaxation rate. (through the dependence @), which,

As mentioned in Sec. | and discussed further below, wen turn, depends exponentially on the size of the clugtér
are able to fit the experimentally observed line shapes for th, we surmise that the sample of &donsists of two char-

deflection to a Gaussian:

acteristic cluster sizes. One size yields the locked-moment
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B U U N While fitting the data, we come across an unexpected
° g=—g’4§;ér/dﬁdz=149 Tm finding in that the line shapes are Gaussian. This implies that
— - only two parameters—the variance, which is the cumulant of
the second moment of the deflection, and the mean
deflection—are adequate for a satisfactory analysis of the
experimental results. In the theory of ordinary Brownian mo-
tion the velocity of the tagged particle, which is the basic
stochastic process, is a stationary Gaussian-Markov
process? The displacement, which is the time integral of the
velocity, is adriven stochastic process and its probability
distribution, with open boundary conditions, does turn out to
FIG. 4. The deflection profiles of cobalt clusters at different & @ Gaussian. In the present case, however, the driven sto-
magnetic fields fitted with the Gaussian function of £29). The ~ chastic variable, viz., the beam deflection, islaubletime
unfilled circles and the squares are from the experimental data of lintegral of the basic stochastic process, i.e., @®s Thus, it
is not obvious why the line profile of the beam deflection
behavior appropriate to slow relaxation while the other siz should end_ up being a Gaussian, espemally \_Nhen we solve
X F SIZ&he underlying Fokker-Planck equation approximately, in the
) e . o _ aRtamers’ regimgsee ). This point can of course be checked
relaxation. This interpretation, based on bidispersity of clusby showing that all cumulants of the deflection, higher than
ters, which is consistent with I, is further verified by fitting ne second, vanish; however, that calculation is very cumber-
the experimental line shape to two Gaussians, as shown i&yme and not attempted here.
Fig. 5. Naturally the second peak which shows up as a shoul- The analysis presented in this paper demonstrates the use-
der is discernible only at high magnetic fields because theness of the Stern-Gerlach setup in studying rotational re-
corresponding Zeeman energy also appears in the exponggkation of the magnetization of clusters. It would be inter-
of ": . esting to extend the investigation to very low vibrational
_Finally, we may point out that the dependence of thejemperatures at which the magnetization is expected to
width of the profile linearly on the inhomogeneiB/(0) of  gyantum-mechanically tunnel rather than get thermally acti-
the magnetic fieldcf. Egs.(6) and(15)] is also borne out by  vated to a different configuratios.
the simulation data of de Heet al.'!

Intensity(arb. unit)
e o 9o
2 & >

I
>

A IR I B PR |

(=3

[v-y

Deflection(mm)
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IV. CONCLUSION

APPENDIX

E E
these parameters can be evaluated by fitting the experimental f dt’ f dt’(cosd(t")cosa(t’))
data to a theoretically computed line shape of the beam de- 0 0
flections. e t/
= ZJ dt’f dt’(cosf(t")cosH(t")). (A1)
06F T v T T T ' 1T - o [o]
Gd22 B=0.405T . L . )
= ° Bl=1494T/m | | Following this idea, the second term on the right-hand side
20.4 - of Eqg. (8) can be decomposed as
:5 e t TE
§oz| f dtf dt'f dt”
= ¢ { o 0 o
. "‘ . “:.._:ﬂ_:_.__:“ ] e t t T t e
= oz 4+ 6 “s° :f dtjdt’fdt”+f dtJdt’f dt”
Deflection(mm) o o o o o t
FIG. 5. Experimentalcircles (cf. II) deflection profile of Gg, E t , t' , E E , t )
clusters, which shows two peaks due to bidispersive nature, is fitted =2 dt| dt dt’ + dt dt' | dt’,
with the superposition of two Gaussian functiaisslid lines [Eq. 0 ° 0 0 ¢ 0
(22)] appropriate tor,i,=147 K. (A2)

014442-5



DAS, KONAR, AND DATTAGUPTA

where in the last term we have interchandgédandt” and

used the fact that the correlation function is symmetrit’in

E E t tp

f dtlf dtzf dt’f dt" =2 dtl
o o o o

o

2

fT
0
f

0
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andt”. Finally the third term can be manipulated as follows:

ty ty ty
dtzf dt'f dt”
o [0}
t t t ty 2
dtz{f dt’f dt”+f dt’J dt"]
o o ty o
E ty to t’
4f dtlf dtzf dt'f dt”
(o} (o] o (o]
e ty ty t
+ 2] dtlf dtzf dt’f dt”.
0 0 ty 0

(A3)

1A. N. Goldstein, Handbook of Nanophase Materialdarcel
Dekker Inc. New York 199y

2]. S. Jacobs and C. P. Bean, Magnetism (Ill) edited by G. T.
Rado and H Suh{Academic, New York 19683

SW. F. Brown, Jr., Phys. Rev130, 1677(1963.

4L. Néel, Ann. Geophys(C.N.R.S) 5, 99 (1949; Adv. Phys. 4,
191 (1955.

SE. P. Wohlfarth, J. Phys. F: Met. Phyd0, L 241 (1980; R.
Street and J. C. Woolley, Proc. Phys. Soc., London, Se@&2A
562 (1949.

henceforth referred to as I.

9D. C. Douglass, J. P. Bucher, and L. A. Bloomfield, Phys. Rev.
Lett. 68, 1774(1992; D. C. Douglass, A. J. Cox, J. P. Bucher,
and L. A. Bloomfield, Phys. Rev. Bl7, 12 874(1993, hence-
forth referred to as II.

103, DattaguptaRelaxation Phenomena in Condensed Matter Phys-
ics (Academic, Orlando, 1987 Chaps. XIl and XIII.

11w, A. de Heer, P. Milani, and A. Chatelain, Phys. Rev. L&,
488(1990.

12D, Kumar and S. Dattagupta, J. Phys.16, 3779(1983.

6S. Chakraverty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta®See, for instance, M. F. Hansen, C. B. Koch, and S. Morup, Phys.

A. Frydman, S. Sengupta, and P. A. Sreeram, Phys. Réto B

be publishegl

Rev. B 62, 1124(2000.
145, Chandrasekhar, Rev. Mod. Phyiss, 1 (1943.

7J. P. Bucher, D. C. Douglass, and L. A. Bloomfield, Rev. Sci.®See, for instance, P. C. E. Stamp, E. M. Chudnovsky, and B.

Instrum. 63, 5667 (1992.
83, Dattagupta and S. D. Mahanti, Phys. Re\6B 10 244(1998,

Barbara, Int. J. Mod. Phys. B, 1355(1992.

014442-6



