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An adaptation of the famous Stern-Gerlach experiment has found important applications to nanomagnetism.
A beam of magnetic clusters is sent in a projectile through an inhomogeneous magnetic field and the resultant
deflected spots are collected on a detector screen. The difference with the historic experiment is that the beam
deflection during the traversal through the magnetic region is influenced by rotational diffusion of the magne-
tization vector across an anisotropy barrier. In this paper we provide a complete analysis of the line profile of
the deflected spots and a detailed comparison with experimental data.
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I. INTRODUCTION

Interest in single-domain magnetic nanoparticles has been
rekindled in view of the recent upsurge of the importance of
nanotechnology.1 These particles are usually about 1 nm in
diameter and possess a giant magnetic moment because of
the large clusters,103 atomsd of magnetic moments being
coherently locked together.2 However, the direction of the
magnetic moment is not fixed in space as thermal fluctua-
tions cause it to fluctuate in time as it undergoes rotational
Brownian motion over an anisotropy energy barrier.3 The
characteristic time for rotational relaxation of the magnetiza-
tion vector, called the Néel relaxation timet, depends expo-
nentially on the volumeV and an anisotropy parameter.4

Thus,t is a very sensitive function of the size distribution of
the magnetic nanoparticles. Whent is larger than the typical
experimental time scaletE, the moments are “locked”
whereas fort smaller thantE, the particles exhibit magnetic
viscosity or superparamagnetism. This interplay oft andtE
leads to interesting relaxation behavior5 and history-
dependent effects6 that can have important applications to
magnetic memory devices.

One technique of studying magnetic nanoparticles is to
employ the celebrated Stern-Gerlach setup, as shown in Fig.
1, which also introduces some pertinent length scales. In-
stead of directing a beam of silver atoms through an inho-
mogeneous magnetic field, as in the historic experiment,

what is jettisoned from a hot oven is a beam of clusters that
are single-domain magnetic particles.7 As the beam traverses
through the inhomogeneous magnetic field for a time
tEs=L /vd, v being the speed of the jet in the forward direc-
tion, the barycentric motion is accelerated in the transverse
direction, which is also the direction of the inhomogeneity of
the field. The acceleration, however, is a stochastic process
because the mechanical force on the particle depends on the
relative anglesbetween the field and the magnetizationd,
which is a stochastic process, in view of the rotational relax-
ation phenomenon mentioned above. This in turn makes the
deflection of the beam in the transverse direction a stochastic
process. The purpose of this paper is to calculate the prob-
ability distribution of the spots at which the beam impacts
the screen i.e., the line shape of the profile of deflections
around their mean.

In a previous papershenceforth referred to as Id, we com-
puted the mean deflection with the aid of a Fokker-Planck
equation for the probability distribution of the angles sub-
tended by the magnetic moment vector along the anisotropy
axis.8 In this paper we extend that theory for evaluating the
entire line shape of the deflections in order to facilitate a
direct comparison with experiments. While presenting the
theoretical results, we stay faithfully close to the experimen-
tal paper of Douglasset al. shenceforth referred to as IId,
which provides a comprehensive review of the conditions
under which the measurements are carried out.9 In the pro-
cess we delineate the important roles of two distinct tempera-
tures: the temperature of the sourcesovend Ts, and the vibra-
tion temperature Tv, which characterizes the lattice
temperature of the particle inside the magnetic environment.

In Sec. II we continue our work from I and present our
theoretical results for the variance of the deflections. Some of
the details of the calculation are needed to be given in view
of the intricate nature of time ordering of the arguments in
the required integrals. In Sec. III we discuss a rather surpris-
ing result concerning the validity of the central limit theorem
in that we are able to fit the experimental line shapes to
Gaussians, which are characterized by just two parameters:
the mean deflection and the variance. Our principal conclu-
sions are presented in Sec. IV.FIG. 1. A typical Stern-Gerlach experimental setup.
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II. THEORY

The principal result of I is the mean deflectionfcf Eq.
s13dg which, in terms of all dimensionless entries, is given by

kd̄l = po +
pl

2
+ sp − podS1 −

l

a
DF1 −

1

a
s1 − e−adG , s1d

where

po = kcosuol,

p = kcosuleq,

l =
L

D
,

a = ltE, s2d

l being the Néel relaxation rate given by Eq.s11d of I. The
initial polarization, i.e., the value ofkcosu0l, is governed by

the source temperatureTs of the oven. As discussed in I,kd̄l
has two limiting expressions, one for the “locked moment”
case governed by “slow relaxation” and the other for “super-
paramagnetic” case characterized by “fast relaxation.” We
may further recall that the equilibrium polarizationp, for
weak anisotropy appropriate for transition-metal clusters of
cobalt, nickel, or iron, is expressed as a Langevin function

p = cothSNBomo

kBTv
D −

kBTv

NBomo
, s3d

whereN is the number of intracluster atoms,Bo is the homo-
geneous part of the magnetic field,mo is the atomic magnetic
moment, andTv is the so-called vibrational temperature. On
the other hand, for large anisotropy as is relevant for rare-
earth clusters such as those of gadoliniumsand its isotopesd,
p is given by

p = tanhSNBomo

kBTv
D . s4d

The corresponding expressions forpo are obtained by replac-
ing Tv by Ts in Eqs.s3d and s4d.

We now go beyond the calculation of the mean deflection,
as was done in I, and extend the treatment to evaluate the
line shape of the beam deflections. For this purpose the first
step is to compute the second moment of the line shape, i.e.,
the mean square deflection. Before we do that we want to
point out one minor modification of the result given in I
necessitated by the experimental finding of II. Referring to
Fig. 2, which is scanned from the line shape of Co115 clusters
as given by Fig. 4 of II, we note that while the line shape for
the zero magnetic fieldsBo=0d and zero inhomogeneity
sB8s0d=0d is indeed centered around zero mean deflection,
as expected, it is, however, considerably broadened. Since,
for zero inhomogeneity, the mechanical force has to vanish,
there can be no nonzero magnetic contribution to the second
moment. We therefore infer that the observed broadening
sfor zero magnetic fieldd has to be attributed to the thermal
fluctuation of the velocity of the beam in the transversesi.e.,
zd direction scf. Fig. 1d. Thus we write

vzstd = Dvz + bE
o

t

cosust8ddt8, s5d

where

b =
NmoB8s0d

m
, s6d

as defined in I,m being the mass of the cluster, andDvz is the
pure thermalskineticd contribution. It is the second term in
Eq. s5d that has led to Eq.s1d abovesin which the parameter

b has been subsumed ind̄d whereas the first term has a zero
mean but has a second moment given by the equipartition
theorem

ksDvzd2l =
kBTs

m
. s7d

Henceforth we shall ignore the first term in Eq.s5d but re-
member to add the thermal contribution, Eq.s7d to the com-
puted second moment of the deflectionsdue purely to mag-
netic effectsd while comparing with experimental data.

Having set aside the issue of residual line broadening we
discuss next the deflectiond, which, from Eq.s5d, can be
written as

d = SD

v
DvzstEd +E

o

tE

vzstddt = SbD

v
DE

o

tE

cosust8ddt8

+ bE
o

tE

dtE
0

t

cosust8ddt8. s8d

In Eq. s8d tE is the experimental time scale defined in the
second paragraph of sec. I andD is the distance between the
magnet and the detector, depicted in Fig. 1. Thus the beam
deflectiond consists of two contributions: one a single time
integral and the other a double time integral of the basic
stochastic process, viz., cosustd. The latter has its dynamics
governed by a Fokker-Planck equation appropriate to rota-
tional Brownian motion of the orientation of the magnetic
moment of a magnetic particle, as mentioned in the begin-
ning of the third paragraph of Sec. I and described in detail
in I. Therefore,d itself is a driven stochastic process, the
average of which has been computed in I and reproduced in
Eq. s1d above.

Our stated objective, as mentioned earlier, is to calculate
the line shape of the beam deflection for which we need the
knowledge of the mean square deflection, which is given
from Eq. s8d by

FIG. 2. Deflection profile of Co115 clusters atTvib=247K and
zero magnetic field, after Fig. 4 of II.
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kd2l =
b2D2

v2 E
o

tE

dt8E
o

tE

dt9kcosust9dcosust8dl

+
2b2D

v
E

0

tE

dtE
o

t

dt8E
o

tE

dt9kcosust9dcosust8dl

+ b2E
o

tE

dt1E
o

tE

dt2E
o

t1

dt8E
o

t2

dt9kcosust9dcosust8dl,

s9d

where the angular bracketsk¯l denote the average over the
underlying stochastic process, the probability distribution of
which follows a Fokker-Planck equationfcf. Eq. s6d of Ig.
The treatment required for evaluating the multiple integrals
in Eq. s9d is relegated to Appendix .

Having rewritten the integrals in Eq.s9d in such forms
that t8 is ensured to be larger thant9, as discussed in the
Appendix, the correlation function can be expressed as10

kcosust9dcosust8dl =
/

sinu9du9sinu8du8psu9,t9d

3cosu8cosu9Psu9,t9uu8,t8d, s10d

wherepsu9 ,t9d is the probability that the angleu takes the
valueu9 at timet9 andPsu9 ,t9 uu8 ,t8d is the conditional prob-
ability that given the angle to beu9 at timet9, u assumes the
valueu8 at the timet8st8. t9d. As mentioned earlier, it is the
function Psu9 ,t9 uu8 ,t8d that obeys a Fokker-Planck equation
for the rotational relaxation process at hand. Further, when
the ratio of the anisotropy energy and the thermal energy
si.e., NK/kBTd is sufficiently large, the dynamics of the mag-
netization vector is concentrated near the anglesu=0 andu
=p and the solution of the probability function can be writ-
ten as8

Psu9,t9uu8,t8d = Peqsu8d + fdscosu9 − cosu8d

− Peqsu8dge−lst8−t9d, t8 . t9 s11d

wherePeqsu8d is the Boltzmann probability for the equilib-
rium distribution of the angleu appropriate for the vibra-
tional temperatureTv, and given by Eq.s7d of I. It may be

noted that the probability function is taken to depend only on
the time differencest8− t9d reflecting the fact that the under-
lying process is stationarysand Markoviand. We may then set
st8− t9d=t and identify the epocht=0 with the time at which
the beam just enters the magnetic region. Hence, the angleu9
entering the argument ofpsu9 ,t9d in Eq. s10d can be taken as
the initial projection of the magnetic moment; concomitantly

psu9,t9d = pssuod, s12d

independent oft9, wheres stands for “source.”
Collecting all the terms, the correlation function in Eq.

s10d can be rewritten as

kcosust9dcosust8dl ; Cstd = kcos2uole−lt

+ pops1 − e−ltd, t = t8 − t9.

s13d

Substituting in Eq.s9d, we obtain

kd̄2l = l2E
o

tE

dtstE − tdCstd

+ 2lE
o

tE

dtE
t

tE

dt8E
t8−t

t8
Cstddt

+ 4lE
o

tE

dtE
o

t

dt8E
o

t8
Cstddt

+E
o

tE

dt1E
o

t1

dt2E
t2

t1

dt8E
t8−t2

t8
Cstddt

+E
o

tE

dt1E
o

t1

dt2E
o

t2

dt8E
o

t8
Cstddt, s14d

where

d̄2 =
d2

btE
2l

. s15d

Using the expression for the correlation functionCstd,
given by Eq.s13d, the mean deflectionkd̄l in Eq. s1d and
after some straightforward but tedious algebra, the variance
of the deflection is derived as

ksDd̄d2l ; kd̄2l − kd̄l2 = 2Fppo

2
+ hp̄o − ppojH 1

a
−

1

a2s1 − e−adJG
+ lFppo

2
+ hp̄o − ppojH2e−a

a2 +
2

a
−

2

a2JG
+ l2Fppo

4
+ hp̄o − ppojH 2

3a
−

1

a2 −
2e−a

a3 −
2

a4se−a − 1dJG
− Fpo

a
Hs1 − e−ad +

l

a
sa + e−a − 1dJ

+
pl

a
Ha

2
+

1

la
sa − ldsa + e−a − 1dJG2

, s16d
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where the symbols have their usual meanings as defined be-
fore andp̄o;kcos2u0l.

In Eq. s16d, nothing has been assumed about eitherp0
=kcosu0l or p̄o=kcos2u0l, which can have different values
depending on whether the beam is polarized, unpolarized, or
partially polarized. In every state of the beam we can also
examine Eq.s16d in both slow and fast relaxation regimes.

A. Polarized Beam

In this casep0= p̄o=1. sid Fast relaxationsltE@1d: In this
limit the variance of the deflection profile is given by

ksDd̄d2l = 2Fp

2
+ s1 − pdS 1

a
−

1

a2DG + lFp

2
+ 2s1 − pd

3S 1

a
−

1

a2DG + l2Fs1 − pdS−
1

a2 +
2

3a
+

2

a4D +
p

4
G

− FS1 +
l

2
Dp +

1

a
s1 + lds1 − pdG2

. s17d

sii d Slow relaxationsltE!1d

ksDd̄d2l = 1 + lS1 −
p

2
D +

l2

4

− HS1 +
l

2
D −

a

2
FS1 +

l

3
Ds1 − pdGJ2

. s18d

B. Unpolarized Beam

In this casekcosu0l=0, but

p̄o = kcos2ul =E
0

p

cos2u0sinu0du0 =
1

3
. s19d

Therefore, forsid slow relaxation

ksDd̄d2l =
l2

12
+

l

3
+

1

3
−

p2a2

4
S1 +

l

3
D2

, s20d

and sii d fast relaxation

ksDd̄d2l =
2

3
lS 1

a
−

1

a2D +
2

3
l2S 1

3a
−

1

2a2 +
1

a4D
+

2

3
S 1

a
−

1

a2D − p2FS1 +
l

2
D −

1

a
s1 + ldG2

.

s21d

In reality the initial beam may be partially polarizedssee IId.

III. COMPARISON WITH EXPERIMENTS

As mentioned in Sec. I and discussed further below, we
are able to fit the experimentally observed line shapes for the
deflection to a Gaussian:

Isd̄d =
1

Î2pksDd̄d2l
e−fsd̄ − kd̄ld2g/f2ksDd̄d2lg. s22d

Thus only two parameters, the mean deflectionkd̄l and its

varianceksDd̄d2l, are required to characterize the measured
profiles, both in the locked moment as well as the superpara-
magnetic regimes. The fitting procedure is as follows. We
took the deflection profiles of cobalt and gadolinium clusters
from the experimental paper of Douglaset al. sII d and fitted
them to the function

fsxd =
a

Î2pb2
e−sx − cd2/s2b2d. s23d

Note that in addition to the parametersb andc, depicting the
width and the mean respectively, we have taken recourse to
an additional parametera in order to adjust the height of the
profiles, as the various intensities are measured in arbitrary
units. The fitted curves are shown in Fig. 3 and Fig. 4. From
the fitted values ofb andc, and a comparison with the theo-
retically computed mean deflectionfEq. s1dg and the variance
fEq. s16dg, we can deduce the value ofa, for a given
dos=btE

2ld and initial polarization, as the value ofp can be
estimated from the vibrational temperatureTv of the clusters.
A knowledge ofas=ltEd yields important data for the aniso-
tropy parameter of the single-domain cluster.

Turning to the experimental data for Gd22 at high mag-
netic fieldsssee II and Fig. 5 in the textd, we notice a two-

peak structure of the profile. Becausekd̄l andkd̄2l depend on
the relaxation ratel sthrough the dependence onad, which,
in turn, depends exponentially on the size of the clusterscf.
Id, we surmise that the sample of Gd22 consists of two char-
acteristic cluster sizes. One size yields the locked-moment

FIG. 3. Deflection profiles of Gd22 and Gd23 clusters fitted with
the Gaussian model of Eq.s22d. All experimentalscf. IId curves are
indicated by circles and squares appropriate toTvib=147 K.
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behavior appropriate to slow relaxation while the other size
leads to superparamagnetic behavior in accordance with fast
relaxation. This interpretation, based on bidispersity of clus-
ters, which is consistent with II, is further verified by fitting
the experimental line shape to two Gaussians, as shown in
Fig. 5. Naturally the second peak which shows up as a shoul-
der is discernible only at high magnetic fields because the
corresponding Zeeman energy also appears in the exponent
of l.

Finally, we may point out that the dependence of the
width of the profile linearly on the inhomogeneityB8s0d of
the magnetic fieldfcf. Eqs.s6d ands15dg is also borne out by
the simulation data of de Heeret al..11

IV. CONCLUSION

The Stern-Gerlach measurement of magnetic deflection of
a beam of single-domain magnetic nanoparticles is a useful
and complementary techniquesto susceptibility,12 Mössbauer
spectroscopy,13 etc.d for extracting important parameters,
e.g., the anisotropy barrier, size dependence of Néel relax-
ation, magnetic polarization, etc. It also allows elucidation of
the roles of two distinct temperatures, the temperatureTs of
the sourcesor the ovend from which the beam is ejected, and
the vibration temperatureTv which characterizes thermal
equilibration via lattice phonons. In this paper, we show how
these parameters can be evaluated by fitting the experimental
data to a theoretically computed line shape of the beam de-
flections.

While fitting the data, we come across an unexpected
finding in that the line shapes are Gaussian. This implies that
only two parameters—the variance, which is the cumulant of
the second moment of the deflection, and the mean
deflection—are adequate for a satisfactory analysis of the
experimental results. In the theory of ordinary Brownian mo-
tion the velocity of the tagged particle, which is the basic
stochastic process, is a stationary Gaussian-Markov
process.14 The displacement, which is the time integral of the
velocity, is a driven stochastic process and its probability
distribution, with open boundary conditions, does turn out to
be a Gaussian. In the present case, however, the driven sto-
chastic variable, viz., the beam deflection, is adouble time
integral of the basic stochastic process, i.e., cosustd. Thus, it
is not obvious why the line profile of the beam deflection
should end up being a Gaussian, especially when we solve
the underlying Fokker-Planck equation approximately, in the
Kramers’ regimessee Id. This point can of course be checked
by showing that all cumulants of the deflection, higher than
the second, vanish; however, that calculation is very cumber-
some and not attempted here.

The analysis presented in this paper demonstrates the use-
fulness of the Stern-Gerlach setup in studying rotational re-
laxation of the magnetization of clusters. It would be inter-
esting to extend the investigation to very low vibrational
temperatures at which the magnetization is expected to
quantum-mechanically tunnel rather than get thermally acti-
vated to a different configuration.15
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APPENDIX

In order to evaluate the integrals in Eq.s9d we need to
time order the argumentst8 and t9. For instance, if we want
t8. t9 time ordering would lead to

E
o

tE

dt8E
o

tE

dt9kcosust9dcosust8dl

= 2E
o

tE

dt8E
o

t8
dt9kcosust9dcosust8dl. sA1d

Following this idea, the second term on the right-hand side
of Eq. s8d can be decomposed as

E
o

tE

dtE
o

t

dt8E
o

tE

dt9

=E
o

tE

dtE
o

t

dt8E
o

t

dt9 +E
o

tE

dtE
o

t

dt8E
t

tE

dt9

= 2E
o

tE

dtE
o

t

dt8E
o

t8
dt9 +E

o

tE

dtE
t

tE

dt8E
o

t

dt9,

sA2d

FIG. 4. The deflection profiles of cobalt clusters at different
magnetic fields fitted with the Gaussian function of Eq.s22d. The
unfilled circles and the squares are from the experimental data of II.

FIG. 5. Experimentalscirclesd scf. IId deflection profile of Gd22

clusters, which shows two peaks due to bidispersive nature, is fitted
with the superposition of two Gaussian functionsssolid linesd fEq.
s22dg appropriate toTvib=147 K.

LINE SHAPE OF BEAM DEFLECTION OF MAGNETIC… PHYSICAL REVIEW B 71, 014442s2005d

014442-5



where in the last term we have interchangedt8 and t9 and
used the fact that the correlation function is symmetric int8

andt9. Finally the third term can be manipulated as follows:

E
o

tE

dt1E
o

tE

dt2E
o

t1

dt8E
o

t2

dt9 = 2E
o

tE

dt1E
o

t1

dt2E
o

t1

dt8E
o

t2

dt9

= 2E
o

tE

dt1E
o

t1

dt2FE
o

t2

dt8E
o

t2

dt9 +E
t2

t1

dt8E
o

t2

dt9G
= 4E

o

tE

dt1E
o

t1

dt2E
o

t2

dt8E
o

t8
dt9

+ 2E
o

tE

dt1E
o

t1

dt2E
t2

t1

dt8E
o

t2

dt9. sA3d
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