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ABSTRACT: A nonperturbative, time-dependent (TD) quantum mechanical approach
is described for studying the collision dynamics between the He atom and a fully
stripped ion. The method combines quantum fluid dynamics and density functional
theory to solve two coupled equations: one for the trajectory of the projectile nucleus and
the other for the electronic charge distribution of the target atom. The computed TD and
frequency-dependent properties provide detailed features of the collision process. Inelastic
and ionization cross sections are also reported. © 1998 John Wiley & Sons, Inc. Int ] Quant

Chem 67: 251-271, 1998

Introduction

E lectronic processes occurring in collisions be-
tween two simply structured few-electron
systems at low-, intermediate-, and high-projectile
velocities are of great interest because such pro-
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cesses play an important role in fusion plasmas
and astrophysics. Theoretical studies on collision
dynamics mostly deal with one-electron [1-5],
two-electron [6—15], and quasi-one-electron sys-
tems [16-19], while experimental works [20-23]
range from one- to many-electron systems. Based
on those works, the main processes (“’channels”)
for excitation and/or ionization during collisions
between a fully stripped ion A7* and a He atom
can be listed as (gs means ground state, * means
singly excited, ** means doubly excited):

(i) He(gs) + A7" — A"+ He(gs),
(i) He(gs) + A7" — He* + A7,
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(All the singly excited states of He can contribute.)
(iii) He(gs) + A7 — He** + A7*.
(All the doubly excited states of He can contribute.)

Giv) A"+ He » A7+ He" + ¢,
(v) A7"+ He —» A7+ He?"+ e, + e,,
i) A7+ He - AT4™D 4+ He",

where the single electron can stay in different
excited states of He™ and A1~ D,

(vii) A"+ He » AT@~D 4+ He? + ¢,
(viii) A77+ He — (He A77%).

Thus, a number of processes, (i)—(viii), can take
place in varying proportions. Theoretically, all the
atomic collisions can be divided into the following
three different regions [24] depending on the rela-
tive magnitudes of the collision velocity v and the
classical orbiting velocity of the active electron v,
corresponding to max(Z,/n,, ), where Z, is the
nuclear charge of the fully stripped projectile; n,,
the quantum number of the electron when it moves
into the projectile’s state; and &;, the electronic
orbital energy of the target He atom: (a) adiabatic
region (v < v,), (b) intermediate region (v = v,),
and (c) high-energy region (v > v,). High-energy
collisions can again be of two types [23]: soft
collisions, characterized by small momentum
transfer, and hard collisions, characterized by com-
paratively large momentum transfer.

There are many theoretical methods available
for studying collision dynamics and all these stud-
ies aim at one/few channel(s) out of many as
listed above. The high-energy region is accessible
to perturbative approaches since the target elec-
tronic states are only weakly perturbed by the fast
projectile and a description in terms of the target
or projectile eigenstates is possible [25]. At very
high velocity, excitation processes (ii) and (iii) can
be accurately described by the first-order Born
approximation [26] while the electron-transfer pro-
cess (vii) can be dealt with by the second-order
Born approximation [27]. The intermediate regions
are usually tackled by coupled-channel calcula-
tions or variational procedures.

Low-energy collisions falling in the adiabatic
region have been discussed infrequently. To our
knowledge, most of the collision studies for two-
electron systems lie in the intermediate- and high-

energy regions, i.e.,, E > 1 keV. However, some
noteworthy works for one-electron systems in the
low-energy region exist [3-5]. In this low-energy
region, although energy transfer to the electron is
low, the fraction of energy transfer is higher than
in high-energy collisions because the total time of
the interaction is large. Thus, the electron has
sufficient time during the interaction to adjust
itself to the instantaneous two-center potential cre-
ated by the two nuclei so that an intermediate
moleculelike complex is formed [28]. The excita-
tions (i) and (iii) or transfers (vi) and (vii) also
occur by the variation of the two-center potential
with time [29]. Although a third body is required
to absorb the energy released in molecule forma-
tion, a recent calculation by Macek and Wang [9]
shows a significant population of the quasi X
molecular level in a H*—He collision.

Some of the theoretical methods available for
studying collision dynamics from low to high ve-
locities are (i) T-matrix calculation for a particular
channel [10]; (ii) the unified atomic orbital-molec-
ular orbital (AO-MO) matching method [6] where
the time-dependent wave function (TDWF) is ex-
panded in terms of traveling AOs; (iii) the multi-
ple scattering method with a continuum
distorted-wave approximation [7]; (iv) the MO ex-
pansion method with electron translation factors
[12]; (v) differential and integrated density matrix
calculation for a particular channel [30]; (vi) the
AO close-coupling method [15, 31-33]; (vii) the
direct solution of TD Hartree—Fock (HF) equations
[11, 34, 35]; (viii) the direct solution of the time-de-
pendent (TD) Schrodinger equation (SE) using
molecular basis functions [9]; (ix) the TD quantum
fluid density (QFD) functional method [13, 36]; (x)
the Car—Parrinello method [37-39]; and (xi) the
TD density functional method [40]. All the above
studies adopt an impulse approximation, i.e., a
straight-line trajectory for the projectile.

Obviously, one requires a conceptually trans-
parent and computationally tractable formalism
which can visualize the collision dynamics from
“start’”” to “finish”” by calculating the movements
of both the projectile and the electron density
under the combined field of two nuclei. The
method should be equally applicable to high-, in-
termediate-, and low-energy regions; in the last
case, the impulse approximation is no longer valid.
The present work essentially deals with low- and
intermediate-energy collisions (100 eV-10 keV).

The present article studied the collision dynam-
ics between He and a fully stripped nucleus for
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different energy and impact parameters, in terms
of the trajectory of the stripped nucleus and sev-
eral density-based TD quantities of the interacting
system. It considers the collisional system to con-
sist of two bodies, viz., the projectile and the
electronic charge of the fixed residual target atom
[41, 42]. This mixed quantum classical approach
allows one to describe the projectile using classical
mechanics with the feedback of electron density of
the target which is treated using quantum mechan-
ics. In treating the electronic charge of the target
quantum mechanically, we adopted a method
which is essentially an amalgamation of density
functional theory (DFT) [43, 44] and quantum fluid
dynamics (QFD) [45-47], called time-dependent
quantum fluid density functional theory
(TDQFDEFT). Successful applications of TDQFDFT
have already been made in intense-laser-atom dy-
namics leading to photoionization [48] and photoe-
mission [49]; superintense-laser-atom dynamics
leading to the suppression of ionization [50]; and
high-energy H*—Ne and H"*—He collisions [13,
36]. We hope that these works would lead to
extensive applications of TDQFDFT to molecular
dynamics, e.g., dissociation of molecules by an
external field where the calculation of both nuclear
and electronic motions ought to be considered.

The layout of the article is as follows: The next
section describes the present approach. The third
section summarizes the numerical method adopted
to solve the resultant equations. The third section
also lists different TD quantities required to visual-
ize and understand the dynamical changes in elec-
tronic motion in the time-varying two-centered
potential field. The fourth section discusses the
results, while the fifth section makes several con-
cluding remarks.

The Approach

The present time-dependent quantum fluid
density functional method is based on a fluid
dynamical interpretation of the quantum mechani-
cal probability density and current. It regards all
the electrons in the system to be distributed in 3-D
space like a continuous ““classical” fluid [13, 36, 45,
46, 48, 49] which behaves in a collective manner to
any external influence. Such a consideration of
electron distribution arises from a hydrodynamical
“wave function,” W(r, t) given by (atomic units
employed throughout unless otherwise men-
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tioned)
W(r, t) = p(r, )"/ %6500, (1)

which directly delivers the two essential ingredi-
ents, viz., density, p(r, t) and current density, J(r, t)
required to describe a many-electron system
uniquely,

p(r,t) = U*(xr, )V (r, t)
J(x, t) = p(x, t)VS(x, t).

2

It is shown in time-dependent DFT [51, 52] that (i)
the density p(r, t) and p'(r, t) evolving from the
same initial density p(r, t) under the influence of
two potentials V(r,t) and V'(x, t) are always dif-
ferent provided that the potentials differ by more
than a purely TD function, viz.,

V(r, t) LLCRN p(x, t) 3)

)
Ve, ) 225 o', 1)

if V'(r,t) # V(x,t) + C(t), then p(x,t) # p'(x, t).

(i) %[J(r, £) = J'(x, )]t=¢,

= —pV(V(r, t,) — V'(r, t,)). (4

Thus, if V(r, t,) # V'(r, ty), then J(, t) #
3G Ol

Hence, unlike stationary DFT, in TDDFT, one
needs two variables p and J to characterize the
many-electron system. Therefore, one must have
two equations to describe the system within the
density-based formalism, viz., the continuity equa-
tion

ap(r, t)
at

+ div](, ) = 0 (5)

and the force equation for the fluid consisting of
constituents which interact with each other by a
potential V' depending on the probability density
of the constituent p(r, t) at position r:

dv E h dv ov ( )

* .
7 ~F= VV,weredt—at+vVv
(6)

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 253



DEY AND DEB

In view of the many-body effects among the fluid
constituents, the various terms in V can be written
as

V=Vl pl + VI pl + V, [ pl
+ Vel + V.l pl
= + +
op op op
aEx[ p] SEext[ P]
- - :
op op

(7)

In the time-dependent Thomas—Fermi (TDTF)
method [53], &E,/6p = 8E./6p =0 and
STl pl/6p = 8T/ dp. Hence, the shell structure
is missing in the density p(r,t) in the TDTF
method. Also, the TDTF method does not resemble
the TDSE. In the method developed in our labora-
tory (see [13, 36, 45, 46, 48, 49]), V takes the form

8Glpl  SE;[pl SE,[p]
= + +

74 , (8
[ p] 5 5 5p (®
where
6Glpl  8T,[ p] N SE,[ p]
op B op op
SElp]l S8E,_,lp]
+ Pl oy maarp , )
op op

where T, [ pl, E.[ pl, and EJ p] are Weizsacker
kinetic energy, exchange energy, and correlation
energy functionals, respectively. E;u[ pl is a cor-
rection for the kinetic-energy functional required
to obtain the correct kinetic energy for many-elec-
tron systems. T,[ p] and E ;u[ p] jointly take care of
the structure of the fluid density p(r, t). However,
for one-electron systems, 6E(,/8p = 0, which is
also true for two-electron HF systems. T,[ p] is
given by

dr. (10)

The two coupled Egs. (5) and (6) can be combined
together with the help of Egs. (1) and (8) to obtain
a generalized nonlinear Schrodinger equation

(GNLSE) [13] provided that E;u[ p] does not con-

tain any gradient term. The GNLSE is given as

A V?
17 =|-7 + Veff( p;r, )|V, (11)
where
Vegr = OE, O 9L + OE;. + Oext
Sp dp Sp op dp

(12)

This is the quantum mechanical equation for the
charge density which moves in the field of the two
nuclei, the fixed target (T) and the projectile (P).
Below, we describe how the effect of the projectile
is taken care of in the present approach.

MIXED QUANTUM-CLASSICAL (MQC) MODEL

Let the electronic charge density be described
by the space coordinates r € R® and the projectile
described by its space coordinate r, € R®. The
target is kept fixed in R>. Let m and M be the
masses of the electron and the projectile, respec-
tively. Obviously, the interaction potential be-
tween the electrons and projectile is V,; =
Veff( 0; rp,r). The basic assumption of the MQC
model is that the masses differ significantly, m <
M, and, therefore, the heavier particle can be mod-
eled classically while the lighter one remains a
“quantum particle.” In other words, the quantum
particle (the electron) is described by a wave func-
tion, which, however, is a hydrodynamical “wave
function” in the present case and obeys the GNLSE

KA

1
— = |-—V. + V,(p;1,
T 2m eff(’”q)}

oy (13)

with a parametrized potential which depends on
the location r,(#) of the “classical” particle. The
location r, = r,(f) is the solution of a classical
Hamiltonian equation of motion:
Mi, =P
P= -V U, (14)

in which the TD potential U is obtained from V,,
weighted with the probability of finding the quan-
tum particle,

UCp;t, B = [p(r, 1, DV, (p;r, 1) dr. (15)
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Thus, the forces in Eq. (14) are the so-called Hell-
mann—Feynman forces [54]. Together, Egs. (13) and
(14) are the basic equations of motion of our pre-
sent MQC approach.

TWO WAYS TO COMPUTE V,”U

Case I: Let the two arguments r, and p of U be
independent unknowns, i.e., r, is just a constant
parameter when p is varied and vice versa. Then,

VU= [p, 1,0, Ve pir, 0 dr. (16)

This can be evaluated directly (see, e.g., [55, 56)).

Case II: The dependence of p on q may be taken
into account, i.e.,

V,pu = fp(rp,r, t)Vquff( p;q,1)dr

q=r,

17)

+ fVeff( p,q, 0V, pdr o

=1,

This necessitates much more effort in real applica-
tions [57, 58]. In the present study, we follow
case .

The generalized nonlinear Schrodinger Eq. (11)
takes the following form [48, 50] in cylindrical
coordinates (0 < p <o, —0 <Z < 0 < ¢ <

2ar):
vazz (p;ﬁ/ ZrﬁPIZP/t)
XW(p,Z, pp,Zp,t)
. (9 ~ ~ ~ ~
=1E\I’(p,z,pp,zp,t), (18)
where

Veff( P ﬁ/ 5/ ﬁPl 2-P/ t)
SE“([ P] SEC[ p] 6Eelfel[ P]
= - -+
op dp op
SEr ulpl  OE, ulpl  SELp]
+ + + .

op op op
(19)

For the present two-electron system, 8E;,[ pl/dp
= 0. The azimuthal angle ¢ in Eq. (18) has been
integrated out. Within a local density approxima-
tion, we employ the Dirac expression for the ex-
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change energy E.[p] and a Wigner-type
parametrized expression for the correlation energy
E[ p] because a combination of the two is a very
good approximation for E, [ p] due to partial can-
cellation of errors [59]. E,,_,, is the Coulomb inter-
action energy between the electrons and E;_, is
the same between the target nucleus (He**) and
the electrons. E,[ p] is the interaction energy be-
tween the electrons and the projectile nucleus.
Below, the different terms on the right-hand side
of Eq. (19) are given by

SE.[ p] 4
ELpl = — [e,p" (0 dr; —== = = ¢ p'V3;
5p
3
¢, = —@r2)"’ (20)
47
EL) = = [ e
SE[ pl a+cp /3
- P, 1)

8p (a + bp~1/3)"
a=9.812, b = 21.437, c = 28.582667
pr, t)p’, t)

el el[ p] = f—

m— r' dr;
8Eel—el[ p] p(I',, t) ,
5y / e L (22)
z SEr_l pl
Eralpl = = [Srp 0 dr ——=—
Z
= -= (23)
.
Zop(x, t)
EP*L’I[ p] f|r_rp(t)|
oEp el[ pl Zp
5 f =1, (D) @)
r=¢6p+eézr=(p +22)7? (25)
I‘P(t) = é\ﬁﬁp(t) + ézip(t)/
() = (pR(H) + 22(4)"72, (26)

where Z, and Z; are nuclear charges of the pro-
jectile and target, respectively. Relativistic contri-
butions are not taken into account in this work
because the velocity of the electron given by v, =
vy + vp (see Appendix A) is relatively small com-
pared with the speed of light. In Egs. (20)-(26), the
position vector r,(t) of the projectile is measured
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from the origin (site of target nucleus) and e; and
e; are the unit vectors along the radius and axis of
the cylinder, respectively.

Provided that one evaluates both Z,(f) and
pp(t), which jointly determine the trajectory of the
projectile, Egs. (18)—(26) describe the complete dy-
namics of stripped ion—helium atom collisions in
terms of the time evolution of the hydrodynamical
“wave function” W(r,t), which yields the TD
charge density, the current density, and the pulsat-
ing two-center effective potential V, ff( p, L, 1p, ) on
which the collision process occurs. Two previous
studies [13, 36] in our laboratory on collisions at
high-projectile velocities assume the impulse ap-
proximation and, in one study [13], head-on colli-
sion. The present work does not make either of
these two assumptions.

As mentioned before, the classical equation of
motion for the projectile is given by

2
d°rp

Mp—o = =V, WEp, p(e,x,, ); Z1, Zp, t}, (27)

where M), is the mass of the projectile, and E,, its
kinetic energy in the laboratory coordinate system.

Numerical Solution

Equations (18) and (27) have to be solved nu-
merically and simultaneously. The solution of Eq.
(27) yields the position of the projectile in the
(p, 2) space at any time and follows the solution
of Eq. (18) for p(r, t). The projectile is shot with a
kinetic energy E,, from a position such that it is b
distance apart (impact parameter) from the target
nucleus (He?") along the p-axis and Z} distance
apart along the Z-axis. The incident velocity of the
projectile makes an angle 9, with the axis of the
cylinder. Starting from this, we perform the nu-
merical solution by discretizing the (g, Z) grid as
follows:

2

pr = X;

X, =xy+(U=Dh, 1=1,23,...,N

Zm: _Zo"_(m_l)h, m=1,2,3,,,,,N2 (28)
N, -1

.7:0=( 22 )h.

Such a discretization effectively deals with the
singularity problem arising out of the Z;/r term

in Eq. (23). The time domain is discretized as

t=nAt; n=1,2,3,...,N,. (29)

THE SOLUTION OF EQ. (27)

In the cylindrical coordinate system, Eq. (27)
can be written in a compact matrix form as fol-
lows:

d d
&2 [ e app | (U
MPE(ZP = 4 3 u, |’ (30)
dZp  IZp
Z,Z
u, = . 1/27 (D
=2 ~2
(P Pp)
and
U, = [Vyp(r, 1, t) dr. (32)

Considering case I for evaluating the first deriva-
tive with respect to Z, and p, as well as the form
of Vs given by Eq. (19), Eq. (30) can be simplified
into two equations, viz.,

dpp ZpZypp

P dr? - (2123 4 ﬁg)s/z

- ZP[[/P( p, 2, 8)]o(kp) i (kpp)

X e kIZ=2] dk} dr (33)
and
dzip 3 ZpyZ2:%Z,
P2 T T T . 1\3/2
at (23 + p?)

v 2,f| [, 2 01D Ik
Xe_k'i_ip{ikdk}] dr. (34)

In Eq. (34), the ““ —"" sign is taken if Z — Z, > 0 and
the “+” sign is taken if Z — Z, < 0. In Egs. (33)
and (34), J, and J, are the zeroth-order and first-
order Bessel functions, respectively.
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The finite-difference (central) forms of Egs. (33)
and (34) can be written as

~n+1 ~n ~n—1 Fﬁ;ll’(dt)z
pp =2pp —pp + Tp (35)
and
2
Z§+1 =22} —Zp 14 fggfﬁz—, (36)

Mp

where the index n defines the discretized time
domain. F;! on the right-hand side of Eq. (35) is
given by

ZpZ1 Py

{7 + (o)

}3/2

= 2o [ [, 2 e
X e kIZ= 7] dk}er[) dpdz, 37)

while F! on the right-hand side of Eq. (36) is
given by
ZpZrZp

{7 + (o)

}3/2

= 2of| [, 2 D1 R)
Xe‘k'f‘ff‘{ikdk}]zwﬁ dpdz. (38)

Equations (35) and (36) indicate that in order to
obtain the projectile’s position (p5*!, Z3*!) at any
advanced (n + 1)-th time step from the nth time
step, one needs the following quantities: (i) the
electron density p(p, Z, p,, Z,, 1), (ii) the projec-
tile’s position at the nth time step (p,, Z,), and
(iii) the projectile’s position at the (n — 1)-th time
step (pp— 1, 257 1.

The electron density of the colliding system for
any position ( g}, Z}) of the projectile can be calcu-
lated by solving Eq. (18). At any time, the second
and third quantities above can be obtained from
the knowledge of the same at the first and second
time steps. The projectile’s position at the first time
step (t = 0) is taken as

ED = —£0; 5O = b, (39)

STRIPPED ION-HE ATOM COLLISION DYNAMICS

while that at the second time step (t = At) is taken
as

29 = —2%) + v, cos 9, At (40)
pP = p& + v, sin 9, At.
Here, v, is the projectile’s incident velocity,
2E, 1/2
vp = ( M, ) . (41)

Thus, over a range of time, the realistic path of the
projectile at any incident energy can be calculated.
The integrals appearing in Egs. (37) and (38) have
been calculated by the trapezoidal method for the
p’' and Z' variables, while a three-point Gauss
quadrature has been employed for the variable k.

THE SOLUTION OF EQ. (18)

Following the discretization of the cylindrical
space as described in the beginning of this section
and with the position of the projectile, p,(t) and
Zp(t) as described in the above subsection, one
solves the GNLSE [Eq. (18)] over a number of
steps to obtain the two-centered hydrodynamical
“wave function”

W(p, 2, pp, Zp, At), V(P Z, Pp, Zp,248),...,
W(p, 2, pp, Zp, N3AtL).

The parameters needed to launch the computa-
tions are included in Egs. (18)—(41) and listed in
Table I. The initial hydrodynamical density
p(r, rp, 0) was calculated when r; is infinitely large
so that the entire density is concentrated in the
target atom. The evaluation of p(r, rp, 0) is done by
following an imaginary-time evolution of the hy-
drodynamical Eq. [60].

The calculated hydrodynamical “wave func-
tion” gives rise to various TD density-based prop-
erties. Details of the numerical scheme are re-
ported elsewhere [48—50]. All computations were
performed in double precision on a workstation.

DIFFERENT TIME-DEPENDENT PROPERTIES

Electronic Charge

The total electronic charge N(t) within the en-
tire grid as well as the charge N, (t) within a small
window (w) of size 1.0 X 1071 < p < 2.92, —0.78
< Z <0.78 that resides inside the full grid are
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TABLE |
Parameters appearing in Eqs. (18) — (41); atomic
units employed unless otherwise mentioned.

Parameters Values

23 -18.0

¥y 0°

Zp 1.0(H"), 6.0(C®*)
Z; 2.0

Total mesh along p, N, 100

Total mesh along z, N, 257

Step-size, h 0.03

Step-size in time, At 0.08

X, [Eq. (28)] 1.0x10°¢
Lowest value for p 1.0 x 1012
Highest value for p 8.82090594
Lowest value for z —-3.84

Highest value for Z 3.84

Total mesh for time, N, 6160

My 1836.0(H™), 11,016(C®*)

calculated as

Nt = [p(p,2,0pdpdzdd (42)

N(B = [ p(p, 5, Dpdpdzd.  (43)

The value of N(t) at any time indicates directly
whether ionization is taking place or not, whereas
N, (t) depicts the movement of electron density
gliding in and out of the window.

Average Distances

The expectation values { p)(t) and (r)(t) are
given by

()6 = [p(p, 5, Dp* dpdzdd  (44)

(X0 = [p(p, 2, Drpdpdidd,  (45)

where

1/2

r=(p*+z2%) (46)

Autocorrelation Function and Energy
Spectrum

The complex autocorrelation function C(t) with
respect to the initial (+ = 0) state is given by

c(t) = f\P*(ﬁ, Z2,0W(p, 2, )pdpdidd. (47)

The survival probability of the initial (f = 0) state
P (1) is

P, (1) = [C(DI”. (48)

Obviously, the survival probability of the initial
state depends on the energy spectrum.

The energy spectrum is calculated by a fast
Fourier transform (FFT) of the time variable of the
complex autocorrelation function [Eq. (47)], viz.,

2
ESD(w) = fe’i"”<\If(0)|\If(t)>W(t)dt . (49)

where W(t), the window function used to narrow
down the integration limit from (0,%) to (0, T), is
taken as

W(t) =1 — cosQmt/T), (50)

with T = 327.6 au, which corresponds to 2'* time
steps.

Dipole Moment and External Z -Directional
Field

The most important TD property for under-
standing the effect of the field due to the ap-
proaching projectile on the movement of electronic
charge is the Z-directional dipole moment of the
electron, u’(t), which has been calculated as

Wt = [p(p,2,0Zpdpdidg.  (51)
The perturbing Z-directional field due to the
projectile, which causes electron density to par-

tially move away from the target nucleus, was
calculated as follows:

(E)(1) = [p(p, 2, DE. aV, (52)

where

Z»Z
E=-V.|- p4T
Ir — 1,

These two parameters indicate how electron den- 9 7.7 (53)
sity spreads in the two-center potential as the = —~( PoT )

interaction progresses. IZ | It — rp|
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In other words,

—ZpZTfIO(kﬁ)]o(kﬁp)efk\z'fmdk,
if£-2,>0
ZPZTfIO(kﬁ)]O(kﬁP)g—k\f—z'pldk/
if Z -2, <0.
(54)

Coulomb Energy

To understand the role of the projectile nucleus
and correlation between the two electrons, one
needs to calculate the Coulomb attraction energy
due to the target nucleus and the interelectronic
repulsion energy as follows:

Zr B
Evi-a(D) = = [—Fp(5, 2,05 dpdzdd (55)
Ey_o(t) = fp( 5,2, 0p(p', 2", )] (kp)e K7

X J,(kp") pp' dkdp dp’ dzdz' dd d’.(56)

Here, the integration with respect to k was per-
formed by the Gauss—Legendre quadrature, that
with respect to p’ and Z’ by the trapezoidal
method, and that with respect to p and Z by the
Simpson method.

Single-ionization Cross Section and Total
Inelastic Cross Section

Assuming that the electronic charge reaching
the periphery of the cylindrical grid experiences no
force from the target nucleus, we describe the
former by a free wave packet as

6 = e'*?, (57)

where k = mv/h is the electronic wave number
and v = (2E,,/m)"/%. Thus, if one of the two elec-
trons of the target atom becomes completely free,
one can describe the single-ionization state as

Y, = NOW,,. ., (58)

where N is the normalization constant and Wy, -
is the wave function for He™ in its ground state.

STRIPPED ION-HE ATOM COLLISION DYNAMICS

Under such considerations, we define the single
ionization probability P;°"(t) as

Pion(4) = (W (1) Wy (1)) 17, (59)

which has been calculated with

2|E,, — Epyl "2
v = ( g FIT ) (60)
m
and
Vo= i Z3/%e %1, (61)
where E . and FIT are the ground-state energy

and first ionization threshold, respectively, of the
He atom.

The first ionization cross-section o/°"
lated as

is calcu-

2

‘ 1.
o (b, Ep) =‘b?fPl‘°“(b,E)dt o (62)

while the total elastic and inelastic cross sections
o°'(b, E) and o™ (b, E), respectively, are given
by

(63)

o'(b, E) —‘ /p (t)dt

and
2

O_inel(b, E) =‘b%/[l — Pgb(t)] dt , (64)

with P, (t) given by Eq. (48).

TD Difference Density

The topographical change of electronic distribu-
tion in the cylindrical space due to the two-centered
potential can be vividly described by the TD dif-
ference density,

Ap(p,2,t)=p(p,2,t) —p(p,2,0). (65

Results and Discussion

The mechanism of A7"-He collisions is studied
through the time-evolution of the initial electron
density p(r, t) which describes the collective dy-
namical behavior of all the electrons. The calcu-
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FIGURE 1. Perspective plots (au) of the initial (t = 0)
hydrodynamical density p( p, Z, 0) corresponding to the
xZ(x2 = p) plane.

lated p(r,0) (see the subsection on the solution of
Eq. (27)), displayed in Figure 1, is cylindrically
symmetric. The accuracy of this p(r,0) is gauged
by different quantities listed in Table II which
shows a good agreement with HF values.

The projectile interacts with the He atom and
affects the electron density which now comes un-
der the force field of both the nuclei. The forward
motion of the projectile continues until it is pushed
back by the repulsive force of the target nucleus.
Figure 2 shows the trajectories of the projectile
obtained by solving the classical Hamilton’s equa-
tion with the feedback of the electron density as
described in the second section. The scattering of
the projectile (Fig. 2) differs from that of Ruther-
ford scattering in the sense that here the projectile’s
motion is governed by both the nuclear—nuclear

TABLE 11

Comparison between the initial hydrodynamical
wave function (HDWF) and the Hartree-Fock wave
function (HFWF) for He in terms of different
quantities (au.); the overlap integral between the
two functions is 0.9943.

Quantities HDWF HFWF
(ry) 1.8539 1.8544
/1) 2.1013 2.0520
(=2Z/r) —6.7497 —6.7492
(Z) 0.0 0.0

7.068

3
6.366 | Y
f
5.600 |
4.900 |
4.200 |
. 3.500.
$ \
2.800
& \ |
2.1600 |
f -
D ,/’//,
1.400 | ¢
0.760 |
0.000 , , , ,
-] (] -] > - [--3 [—3 (-3 [—3 [—3 [
> -~ -3 [—J (== [-=3 D [--] =3
g & o8 5 ¢ 2 & & 0 0 g
1 1 ] 1 1 [--3 - [--} - -~ &~
4

FIGURE 2. Trajectory of the projectiles in the (p, 2)
space. (A) corresponds to the projectile H* with £ = 100
eV, b =1.2 au; (B) to the projectile H* with £ = 1000
eV, b =1.2 au; (C), to the projectile H* with E = 10,000
eV, b = 1.2 au; (D), to the projectile H* with £ =100 eV,
b = 0.4 au; (E), to the projectile H* with E = 1000 eV,
b = 0.4 au; (F), to the projectile H* with £ = 10,000 eV,
b = 0.4 au; and (G), to the projectile C®* with £ =100
eV, b=1.2 au.

repulsive (central field) as well as the
nuclear—electron attractive forces. However, con-
sidering the motion of the projectile only under the
influence of a central field, the nuclear—nuclear
repulsive force, one obtains the Rutherford scatter-
ing angle ® = tan '[(Z;Z,)/(2E,b)] for different
trajectories as @(A) = 25.55°, O(B) = 2.59°, O(C)
= 0.2598°, O(D) = 68.45°, O(E) = 7.78°, O(F) =
0.779°, and O(G) = 107.37°, where the alphabets
indicate different trajectories specified in Figure 2.
Comparing the trajectories in Figure 2, we notice a
deviation of the present scattering from Ruther-
ford scattering. The deviation is greater for a
smaller impact parameter (b) and a smaller projec-
tile energy (E,). For a high-projectile energy and
high-impact parameter (e.g., b = 1.2 and E = 10
keV, trajectory C in Fig. 2), we see that the path of
the projectile is almost the same as that of Ruther-
ford. Again, for the projectile of larger mass (e.g.,
C®*, b=1.2, E =100 eV, trajectory G in Fig. 2),
the path is also nearly the same as that of Ruther-
ford. Figure 2 shows that (i) the projectile moves
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faster along the axis than along the radius of the
cylinder, (ii) the projectiles C** (E = 100 eV, b =
1.2) and H" (E = 100 eV, b = 1.2) could not pene-
trate into the field of the target nucleus, whereas
other projectiles could. Note that if the recoil en-
ergy of the projectile Ep(t) at any time ¢ is (i)
greater than

to

(r) zZ 7
—f|p dr + pT,
T

P

then the projectile will come to a standstill at a
distance r, from the target nucleus and the forma-
tion of a pseudomolecule can be assumed; or (iii)
less than

then after a certain time, the projectile will recede
backward and there will be less energy transfer to
the electron.

Although at any time the highest energy trans-
ferred to the electron is quite small, the total en-
ergy transferred to the electron from the projectile
during the collision process from 0 to 492.8, 195.0,
57.25, 580.25, 202.0, 57.5, and 738.25 au for projec-
tiles A, B, C, D, E, F, and G, respectively, in Figure
2 is substantial enough to cause the electron den-
sity to partly move away from the target nucleus
and redistribute itself depending on the potential.
The analysis provided in Appendix A would help
explain the projectile—electron energy transfer. The
fraction of energy transferred to the electron is 0.56
(T = 256.48), 0.21 (T = 95.5), 0.06 (T = 28.5), 0.63
(T = 289.75), 0.21 (T = 96.75), 0.06 (T = 28.75), and
0.18 (T = 488.75) for projectiles A, B, C, D, E, F,
and G, respectively, in Figure 2. Thus, for a small
impact parameter, the extent of energy transfer is
higher, and for a fast projectile, it is lower. Fur-
thermore, for a heavy projectile (C°*), the energy
transfer to the target electron is small. However, it
is the total time of interaction which affects the
extent of mixing of excited states of the He atom to
the hydrodynamical “wave function” based on the
symmetry of W(r,0). The displacement of electron
density away from the target nucleus can occur
due to the attraction of the projectile.

STRIPPED ION-HE ATOM COLLISION DYNAMICS

The excitation probability in slow collisions is
very small [31] unless the two electronic states
involved are nearly degenerate. This can be under-
stood from an argument [61] according to which
transitions are improbable unless

Aed,

hov

<1,

where A¢ is the spacing between the energy lev-
els; d,, the range of interaction; and v, the relative
velocity of the colliding species. Clearly, for small
v (= 100 eV), the excitation probability will be
quite small. Again, defining At = d,,/v as the time
of interaction of the colliding partners, the elec-
tronic energy is defined by the uncertainty princi-
ple only to within Ae = £ /At. Thus, excitation to
states having energies within this energy range of
the initial state can only occur with high probabil-
ity, but transitions to other states will be much less
probable. Thus, for small v, although the time of
interaction is high, A¢ is small and, hence, higher
excitation is hardly to occur; therefore, ionization
is also unlikely.

Figure 3 shows N(t) (label A), N,(t) (label C),
and P,(t) (label B) for H* with E =100 eV and
b =12 au only. Plots for other projectiles show
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FIGURE 3. Plot of total number of electrons against
time in au (A) within the full grid, N(t), (C) within the
window, N, (t), and (B) the survival probability of the
initial (t = 0) state. This corresponds to the projectile H*
with E =100 eV and b =1.2 au.
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near-similar behavior. From these figures, we see
that N(t) remains fixed at 2, whereas a loss of
density occurs from the vicinity of the He nucleus.
For example, at t = 214.72 au, the window has lost
39.3% of its initial electronic charge (0.9602) when
the projectile’s position is Z, = —8.0249 and p, =
1.5681. A monotonic fall in N,,(¢) is observed up to
t = 140.0 au, after which its rate of change be-
comes quite small; for t > 256.48 au, N,(t) be-
comes nearly constant. This implies that once the
projectile has altered its direction of motion the
target nucleus resumes control of the residual elec-
tron density. The loss of electron density from the
nuclear site leads to an increase in the expectation
values of p and r (refers to the target nucleus).

A smooth monotonic increase in both {r) and
(p) is observed in Figure 4 (A) and (B), respec-
tively, up to t = 295.04 au. For t > 295.04 au the
values change with time to a lesser extent. The
highest value of (p) is found to be 4.6734 at
t = 386.4 au when Z, = —10.739 and p, = 3.9079,
whereas the highest value for (r) is 5.0017 au at
t =386.32 au when Z,= —10.7324 and p, =
3.9061. However, at the time of the closest ap-
proach of the projectile, t = 256.48 au, {p) =
42119, and (r) = 4.6393. Again, the plots of {r)
and (p) are given for the projectile H" with
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FIGURE 4. Time-dependent (A) {r)(t), (B) { pX(t), (C)
{1/r15)(t), and (D) —{Z;/r)(t) plotted against time, in
au. The projectile is H* with E =100 eV and b = 1.2 au.

E =100 eV and b = 1.2 au. The increase in the
average electronic distance (Fig. 4) measured from
the target nucleus is due to the change in the
Coulomb attraction energy { — Z/r) of the elec-
tron with respect to the residual target nucleus
and the interelectronic Coulomb repulsion energy,
(1/7,,7, shown in Figure 4 (D) and (C), respec-
tively. An increase in the { — Z/r) and a decrease
in (1/ry,» occur as the projectile approaches closer
to the target. However, once the projectile’s direc-
tion of motion is altered, both the values change
very little. In other words, as already mentioned,
the target nucleus reasserts control over the elec-
tronic density that is left to itself. Note, however,
that as the proton recedes, the electron density
does not return to its original state. The projectile-
to-electron momentum transfer leading to the elec-
tron density moving away from the target nucleus
will be facilitated if the nucleus has greater elec-
tron density around itself. Thus, Figure 4 shows
that with the passage of time the rate of electrons
moving away from the target nucleus decreases
because of the lesser density around the nucleus,
whereas, initially, the spread of density away from
the target nucleus was larger. This leads to an
initial, faster fall of both { — Z/r) and {1/r,)
which become near-asymptotic as the projectile
alters its direction. The values of { — Z/r) and
(1/r;,7? at t = 256.48 au are —3.809 and 0.5242,
respectively. Note that the total Coulombic attrac-
tion for the electron density is given by

r.

B _prp(r t) 1r_fZTp(r,t‘) p

It — rpl

Figure 4 shows the attraction due to the target
only; the total Coulombic attraction will be more
negative than the value shown in Figure 4.

The phenomenon of collision at low-projectile
energy can be regarded as a competition between
the target (by its attraction energy ( — Z / r)) and
the projectile (by its attraction energy ( — Z,/Ir —
rp))) for the electrons. Since the electrons were
initially in the target, and the nuclear charge of the
target is twice that of the projectile (H*), most of
the electron density remains under the control of
the target. However, by transferring some of its
momentum to the target-controlled electron den-
sity, the projectile can cause a part of the density
to move away from the target nucleus and by
attraction drag the density on to its direction of
approach. However, since the momentum trans-
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ferred to the electron cannot be taken away, elec-
tron density does not go back to its original state
even when the projectile has effectively left (see
below for density plots).

Figure 3 (B) depicts the survival probability
P,(t) of the initial target state which helps to keep
track of the extent of electron loss by the target
nucleus and consequent excitation by the projectile
H" with E=100 eV and b =12 au. A near-
asymptotic value of P,(t) is reached once the
projectile alters its direction. Being a cosine func-
tion [Eq. (48)], the survival probability decreases
monotonically from its initial (+ = 0) value of unity,
and at t = 256.48 au, Pgs falls to 0.6634. Thus,
electronic excitation occurs as a result of projec-
tile—electron momentum transfer.

Figures 5 and 6 display the TD Z-directional
external average field and dipole moment w*(t),
respectively, for a number of projectiles. A corre-
spondence between these two quantities can be
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FIGURE 5. Time-dependent average Z-directional
external perturbative field, (F;)(t) X f, for different
projectiles plotted against time, in au, where f = 10,000,
1, 50, 2, 2, 2, and 10,000 for (A), (B), (C), (D), (E), (F),
and (G), respectively. (A) corresponds to projectile H*
with £ =100 eV, b = 1.2 au; (B), to projectile H* with
E =10 keV, b =1.2; (C), to projectile H* E =100 eV,
b = 0.4 au; (D), to projectile H* with E =1 keV, b=0.4
au; (E), to projectile H* with £ = 10 keV, b = 0.4 au; (F),
to projectile H* with E =1 keV, b =1.2 au; and (G), to
projectile C®* with E =100 eV, b =1.2 au.
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FIGURE 6. Time-dependent, Z-directional dipole
moment of the electronic charge distribution, Mf(t) X f,
for different projectiles plotted against time, in au, where
f= 10,000, 1000, 100, 2, 1000, 100, and 1000 for (A),
(B), (C), (D), (B), (F), and (G), respectively. (A)
corresponds to projectile H* with E=100 eV, b=1.2
au; (B), to projectile H* with E = 10 keV, b = 1.2; (C), to
projectile H* with E =100 eV, b = 0.4 au; (D), to
projectile H* with E = 1 keV, b = 0.4 au; (E), to projectile
H* with E =10 keV, b =0.4 au; (F), to projectile H*
with E =1 keV, b = 1.2 au; and (G), to projectile C®+
with E =100 eV, b =1.2 au.

seen from Figures 5 and 6 in the sense that (i) both
are small-valued and (ii) the negative (positive)
external field gives rise to a negative (positive)
dipole moment. Figure 5 clearly shows that during
its approach the projectile drags electron density
toward itself. However, a time lag in the response
of the electron density to the projectile is noticed in
all the cases, e.g., for H*, with E = 100 eV and
b = 1.2 au, the minimum in the average field [Fig.
5 (A)] occurs at t = 236.5 au, whereas that in the
dipole moment [Fig. 6 (A)] occurs at t = 317.6 au.

Figure 7 displays the energy spectral density
ESD(w) corresponding to p(r, t) at t = 327.6 au for
the projectile H* with E =100 eV and b = 1.2.
ESD(w) arises from different elementary states
corresponding to the hydrodynamical density at
this instant. The logarithmic energy spectrum (Fig.
7) gives the distribution of eigenstates over an
energy domain —42.15 < E < 36.37. The largest
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FIGURE 7. The logarithm of the energy spectral density, IN(ESD X 1000), plotted against w, in au. A continuum band
of very low ESD was calculated. This corresponds to the projectile H* with £ =100 eV and b = 1.2 au.

contributions to the spectrum arise from the bound
states (negative energy) of the He atom which lie
close to the ground state. The continuum (positive
energy) band appearing on the right-hand side of
the main peak has very little (ESD = 107° au)
contribution to the energy spectrum at ¢ = 327.6
au. This fact can also be explained from the imagi-
nary part of autocorrelation function. We have

cm=— Y o, sin(E,t)

m=bound

- X

n=continuum

la,|? sin(E, t) = A — B,

where A and B are the contributions from bound
and continuum states, respectively. Obviously, the
above expression can lead to an irregular behavior
of C'™ in the course of time. The ground state of

the He atom (E = —2.90349 au) has the highest
ESD (0.8398 au). Accordingly, the elastic cross sec-
tion calculated has the value o =2.087 X 107
cm?, whereas the value of the inelastic cross sec-
tion, o' =3.170 X 10'® cm®.

The TD single-ionization probability (Fig. 8) in-
dicates that although this is initially small its value
increases when the projectile alters its direction.
The highest value of the single-ionization probabil-
ity is 0.1635 at + = 386.56 for H* with E = 100 eV,
b=1.2; 01799 at t = 402.0 for H* with E = 100
eV, b=04; 0138 at t = 384.5 for H" with E =
1000 eV, b = 0.4; 0.152 at t = 384.5 for H* with
E =1000 eV, b =1.2; and 0.184 at ¢t = 401.75 for
C®* with E =100 eV, b = 1.2. Thus, very little or
no ionization takes place. Table III shows the sin-
gle-ionization cross sections (o/°") for different
projectiles: (i) o/°" decreases with increase in the
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FIGURE 8. Time-dependent single-ionization
probability, Pi°"(t), plotted against time, in au, for
different projectiles, viz., (a) C®* with E=100eV, b = 1.2
au; (b) H* with E=100 eV, b =0.4 au; (c) H" with
E=100eV, b=1.2au; (d) H* with E=1keV, b=1.2
au; and (e) H* with E =1 keV, b =0.4 au.

projectile energy because of the lesser time of
interaction, (i) o,/°" decreases with decrease in the
impact parameter, and (iii) for C®*, o/ is less
than that for H* with the same b and E because
C®" remains farther away from the target atom.
The detailed features of electron density depend
on the states mixed in the hydrodynamical “wave
function” due to the TD interaction. Expressing
the hydrodynamical “wave function” W(r, t) in
terms of different elementary states (¢,), one can
obtain a number of coupled equations for the mix-
ing coefficients of the states. Based on the symme-
try of the colliding system, it is possible to obtain
information about those states which only would
contribute to ¥(r, t) and thus the number of cou-
pled equations can be reduced. The electronic
Hamiltonian in the present case is symmetric un-
der reflection with respect to the Cartesian x and
y axes, whereas it is antisymmetric in the z-axis. In
other words, the electronic Hamiltonian appearing
in Eq. (11) is such that it is biased along the Z-axis
(because the projectile is approaching from the left
along Z) and unbiased along the p = (x* + y*)!/?
axis. Note that the initial hydrodynamical state is
symmetric in the (p, Z)-collision plane. Thus, at

STRIPPED ION-HE ATOM COLLISION DYNAMICS

TABLE Il

Total single-ionization cross sections.

Projectile E, (eV) b (au) a°" (cm?)
H* 100 1.2 1.628 X 10~ "®
H* 1000 1.2 1.213 x 10~
H* 10,000 1.2 2.136 x 1020
H* 100 0.4 1.141 x 10~ 2°
H* 1000 0.4 1.309 x 10~ 2°
H* 10,000 0.4 2.320 X 10~ 2"
ce+ 100 1.2 1145 x 10~ °

any time during the interaction, the hydrodynami-
cal “wave function” will have contributions from
those states which are (i) Z-antisymmetric (““—"
sign below) and/or (ii) p-symmetric (“+" sign
below). Thus, we have the following selection rules
in the present A7*-~He collision:

v(p, Z,0) > +( p-direction)
W(p,%,0) > —(Z-direction).

In other words, states such as p,, d.2,d,,, and d,,
cannot contribute to W, whereas p,, p,, d.2_2,
d, ,, etc, can contribute. Thus, one expects that
density would spread more along the p-direction
than along the Z-direction. This fact is clearly seen
from the topographical change of the electron den-
sity in the ( p, ) space for, e.g., H" with E = 100
eV and b = 1.2 au, shown in Figure 9. Density is
accumulated more along the p-direction than along
the Z-direction while being depleted at the He
nucleus.

The direction of the unit electronic current vec-
tor at different points in the ( p, Z)-space can also
be seen from Figure 10 for, e.g., H* with E = 100
eV and b =12 au. The movement of electron
density at different points in the ( p, Z) space is in
the opposite direction to that of the current vector.

Conclusion

In terms of density-based quantities, the quan-
tum fluid dynamical equation of motion provides
an effective, alternative way of looking at TD pro-
cesses such as ion—atom collisions. Because of the
simplicity associated with the electron density, de-
tailed insights into the mechanism of the collision
process can be obtained, without great computa-
tional labor, by following the process from start to
finish in real time. At any instant of time, the TD
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p) plane. (a) t = 144.4 au; (b) t = 204.4
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(b)

au; (c) t = 264.4 au; (d) t = 354.4 au. This corresponds to the projectile H* with £ =100 eV and b = 1.2 au.

FIGURE 10. Unit current density vectors (au) at different points in the xZ(x2
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electron density can be analyzed through, e.g., a
fast Fourier transform to identify the various ex-
cited states which could mix with the initial state
as a result of the interaction. In view of the diffi-
culties associated with the solution of the TD
Schrodinger equation for real systems, the results
and their interpretations presented in this article
demonstrate that one now has a general TD quan-
tum mechanical equation of motion in three-di-
mensional space which not only deals with weak,
strong, very strong, and extremely strong interac-
tion with high accuracy, but also yields attractive
and transparent physical insights. Following the
present approach, trajectory calculations for atomic
and molecular collisions may now be performed,
subject to the TD electron density.
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Appendix A

Since no third body is present to drain away
either the energy or the momentum, the total en-
ergy and momentum will be conserved at any
time, i.e.,

2 2 2
Mo Mpvp mo;

= + Al
2 2 2 (A1)

and
Mpv, = Mpvp + mu,, (A2)

where v, vp, and v, denote the incident speed of
the projectile, the speed of the projectile, and the
speed of electron at any time, respectively.

From Egs. (A.1) and (A.2), we have

v, = Up + 0,, at any time. (A3)
Since v, < v,, v, < 20,; hence, v,;""* = 2v,.
(A4)

The total energy transferred to the electron at any
time is given by

1 1 )

Emvf = Em(v0 + vp)". (A5)

The total energy transferred to the electron for the
entire duration of collision (0 to T) is given by

Tl 2
f vy +0p)” dt. (A.6)
0

The highest energy transferred to the electron from
Oto T is

—mvo4f dt = 2modT. (A7)

The fraction of energy transferred is

4molT A m . (AS)
—2 = - . .
M, vg M,
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