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The slow dynamics and concomitant memory (aging) effects seen in nanomagnetic systems are

analyzed on the basis of two separate paradigms :

superparamagnets and spinglasses. It is argued

that in a large class of aging phenomena it suffices to invoke superparamagnetic relaxation of indi-
vidual single domain particles but with a distribution of their sizes. Cases in which interactions and
randomness are important in view of distinctive experimental signatures, are also discussed.

PACS numbers: 75.75.4-a,75.50.Lk,75.50.Tt,75.47.Lx

I. INTRODUCTION

The subjects of both superparamagnetism and spin-
glasses are quite old and well studied h B8 488, ﬁ]
Yet they have been rejuvenated in recent years in the
context of fascinating memory and aging properties of
nanomagnets. These properties, which are believed to be
of great practical usages, have been recently investigated
in a large number of experiments on magnetic nanopar-
ticles E, 4, hd, i, 19, b3, 4, E] The observed slow dy-
namical behavior has been variously interpreted, based
on the paradigm of either superparamagnet or spinglass,
sometimes even obscuring the difference between the two
distinct physical phenomena. The purpose of this paper
is to reexamine some of the data, others’ as well as our
own, and critically assess the applicability of the physics
of either superparamagnets or spinglasses and occasion-
ally, even a juxtaposition of the two. Our main point is,
spinglasses are marked by Complexity, arising out of two
separate attributes —— Frustration and Disorder. While
the manifested properties, such as stretched exponential
relaxation and concomitant aging effects, can also occur
due to ‘freezing’ of superparamagnetism, especially in a
polydisperse sample, the physics of spinglasses is natu-
rally much richer than that of superparamagnets. A dis-
cernible experimental signature of superparamagnetism
versus spinglass behavior seems to be the magnitude of
the field-cooled (FC) magnetization memory effect that
is significantly larger for the interacting glassy systems
than the one in non-interacting superparamagnetic par-
ticles ﬂm] Therefore, invoking spinglass physics in in-
terpreting data on the slow dynamics of nanomagnets
can sometimes be like ‘killing a fly with a sledge ham-
mer’, especially if a simpler interpretation on the basis of
superparamagnetism is available. We explore such situ-
ations in this paper.

Superparamagnetism was discussed quite early by
Frenkel and Dorfman and later by Kittel, as a property
arising out of single-domain behavior when a bulk ferro-
magnetic or an antiferromagnetic specimen is reduced to
a size below about 50 nm ﬁ] For such a small particle-
size the domination of surface to bulk interactions yields
a mono-domain particle inside which nearly 10° magnetic
moments are coherently locked together in a given direc-

tion, thus yielding a giant or a supermoment. Clearly, for
this to happen, the ambient temperature must be much
less than the bulk ordering temperature, so that the in-
tegrity of the super moment is maintained. However, as
Neel pointed out, in the context of magnetic properties
of rocks in Geomagnetism, the direction of the supermo-
ment is not fixed in time ﬂ] Indeed, because of thermal
fluctuations, this direction can undergo rotational relax-
ations across an energy-barrier due to the anisotropy of
the single-domain particle, governed by the Neel relax-
ation time:
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In Eq. (1), the preexponential factor 7y is of the order
of 107 sec, V is the volume of the particle, and K is the
anisotropy energy, the origin of which lies in the details
of all the microscopic interactions. For our purpose K
would be treated as a parameter whose typical value is
about 107! Joule/cm?. Therefore, at room temperature,
7 can be as small as 107! sec for a particle of diame-
ter 11.5 nm but can be astoundingly as large as 10° sec
for a particle of diameter just about 15 nm. Thus, a
slight polydispersity (i.e., a distribution in the volume
V), can yield a plethora of time scales, giving rise to in-
teresting slow dynamics. For instance, if 7 < 7, where
Tg is a typical measurement time in a given experiment,
the supermoment would have undergone many rotations
within the ‘time-window’ of the experiment, thereby av-
eraging out to zero the net magnetic moment. One then
has superparamagnetism. On the other hand, if 7 > 75,
the supermoment hardly has time to rotate within the
time-window, thus yielding a ‘Frozen-moment’ behavior.
The consequent nonequilibrium features have led to the
phrase: “Magnetic Viscosity” while depicting the time-
dependent freezing of moments B,E,lﬂ, |E] Further, the
transition from superparamagnetism to frozen-moment
behavior occurs at a temperature, referred to in the lit-
erature as the blocking temperature Tj, defined by
K
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When the measurement temperature T is less than
T, the magnetic particles are blocked whereas in the
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other extreme they display facile response to applied
fields. Therefore, we emphasize that even within a
single particle picture, sans any form of inter-particle
interactions, such as in a dilute nanomagnetic specimen,
one can obtain apparently intriguing effects such as
‘stretched exponential’ relaxation simply because of
size distributions. The latter will be shown to be
responsible for much of the data on slow relaxations in
nanomagnets.

Turning now to spinglasses, historically the phe-
nomenon was first observed in dilute alloys such as
Auy_zFe, (or Cuj_pMn,) in which magnetic im-
purities Fe (or Mn) in very low concentrations were
“quenched-in” from a solid solution with a host metallic
system of Au (or Cu) [19]. The localized spin is cou-
pled with the s-electron of the host metal which itself
interacts with the other conduction electrons via what
is called the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
Hamiltonian, thereby setting up an indirect exchange
interaction between the localized moments. Because
the coupling constant of the exchange interaction, in
view of the RKKY coupling, alternates in sign (between
ferro and antiferromagnetic bonds), the system is
‘frustrated’. Thus the ground state is highly degenerate
yielding a zero-temperature entropy. An additional
effect is due to disorder. Because the dilute magnetic
moments are quenched-in at random sites, the exchange
coupling-strengths are randomly distributed. The dual
occurrence of frustration and disorder has led to novel
concepts in the Statistical Mechanics of spinglasses
such as configuration-averaging, replica-techniques (for
computing the free energy), broken-ergodicity, etc.
m] Experimentally, spinglasses are characterized by
a ‘cusp’ in the susceptibility and stretched exponential
relaxation of time-dependent correlation functions ﬂE]
It is no wonder then that spinglasses also exhibit slow
dynamics with associated memory and aging effects,
albeit the root causes are much more complex than a
system of polydisperse, noninteracting single-domain
nanomagnetic particles, discussed earlier. Indeed spin-
glasses, because of their complexity, have been employed
as paradigms for studying real structural glasses, an
lﬂ%lresolved problem of modern condensed matter physics

].

Given this background on two distinct physical
phenomena (and yet manifestly similar properties) of
superparamagnets and spinglasses, a natural question
to ask is: can there be spinglass-like physics emanat-
ing from a collection of single-domain nanomagnetic
particles embedded in a non-metallic, non-magnetic
host? The answer is clearly an YES when the system
is no longer a diluted one such that the supermoments
start interacting via dipole-dipole coupling. Because the
dipolar interaction (like the RKKY-mediated exchange
interaction) is also endowed with competing ferro and
antiferromagnetic bonds ﬂﬂ], as well as randomness due
to random locations of the magnetic particles, all the
attributes of spinglasses can be simulated in interacting

single-domain particles. This will be analyzed below.
With the preceding discussion the plan of the paper
is as follows. In Sec. II we discuss the relaxation
of non-interacting single-domain particles based on a
rudimentary rate theory. The results of this rate theory,
coupled with polydispersity of the particles, are applied
in Sec. III to a large body of recently published data
on the slow dynamics of nanomagnets. Section IV
deals with a different set of experiments that necessarily
requires incorporation of interactions between the
nanoparticles and hence spinglass-like physics.

II. RATE THEORY OF RELAXATION OF
SINGLE-DOMAIN PARTICLES

The Neel formula (Eq. (1)) of relaxation time is the
outcome of a generic class of ‘Escape over Barriers’ prob-
lems studied by Kramers m] The supermoment of
a single-domain magnetic particle, due to spontaneous
thermal fluctuations, is envisaged to undergo rotational
Brownian motion across an anisotropy barrier. The lat-
ter, in a large class of systems characterized by uniaxial
anisotropy, can be described by the energy

E(f) = KV sin? 0, (3)

where K and V have been introduced earlier, and © is
the angle between the anisotropy axis, chosen as 7 (de-
termined by the host crystal) and the direction of the
supermoment. Thermal fluctuations of the system can
be studied in terms of the Fokker-Planck equation for
P(©,t), which defines the probability that the supermo-
ment makes an angle © with the anisotropy axis, at a
time t [, [18):
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where d (having the dimension of frequency) is the rota-
tional diffusion constant. Application of Kramers’ anal-
ysis to Eq. (4) not only yields the Neel relation (Eq. (1))
but also a set of rate equations in the high barrier / weak
noise limit, i.e. KV >> kpT'. In this limit the dynam-
ics is basically restricted to © = 0 and © = 7 regions
and consequently, the Fokker-Planck equation reduces to
a set of two-state rate equations:

d d

Eno(t) = —Enﬂ(t) = —Ao—rno(t) + Arong(t), (5)

where the subscripts on n indicate the two allowed values
of © and the rate constants are as follows:

V(K + M,h)

e, (6)
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Ar—o being obtained by switching the sign of h. Here M,
is the saturation magnetization per unit volume. Note



that Eq. (6) is a generalization of Eq. (1) in order to take
cognizance of an external magnetic field h. As discussed
in Ref. E] the rate equations can be solved analytically
for any temperature and field protocol represented by
T(t) and h(t), from a given initial condition. For the
sake of completeness we rewrite the main result for the
time dependent magnetization M(t):
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where
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The observed magnetization of the system is obtained by
averaging over a volume distribution

M@:/WHWM@W. (8)

The superposition of relaxation rates, caused by the vol-
ume distribution P(V), can alter the exponential relax-
ation indicated in Eq. (7) into a variety of forms, e.g.
stretched exponential or logarithmic ﬂﬁ,, |E] Several
models of P(V) are extant in the literature, all leading
to aging effects. Examples are bimodal distribution E], a
flat distribution bounded by two volumes V,,,;, and Vinee
[17] or a log-normal distribution (assumed below)

exp[—In(V?)/(29?)]
(YVv2m) ’

v being a fitting parameter.

Until now we have discussed the relaxation effects of
isolated (i.e. non-interacting) single-domain nanomag-
netic particles. The question we would like to next ad-
dress is : what happens when these particles are brought
closer and the dipolar interaction between their magnetic
moments starts becoming non-negligible? Recall that the
interaction between two dipole moments 73; and ni;, lo-
cated at the sites 1 and j at a distance |r;| apart is given

by 4]

P(V) = 9)
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Here 7; and +; are the gyromagnetic ratios of the ith
and j" particles respectively, 7;; is the vector distance
between the ‘sites’ at which the two magnetic particles
are located, and 7;; is the corresponding unit vector. It
is well known that dipolar couplings, being long-ranged,
anisotropic and alternating in the sign of interaction,
can indeed lead to frustration and very complex mag-
netic order of the ground state, depending on the crystal
structure m] Incorporation of the dipolar interaction
into the dynamics is a further complication involving a
multi-particle Fokker-Planck equation in which the ‘drift
term’, proportional to E(©) in Eq. (4), would have to
be replaced by Eq. (10). The underlying theory is quite

daunting and is not attempted here, as a simpler treat-
ment is possible for nanoparticles with large anisotropy,
as is sketched below.

Recall that the rate equation abstraction of the Fokker-
Planck equation is itself a discrete version of a continuous
stochastic process, applicable in the high barrier/weak
noise limit when the basins of dynamical attractors are
restricted to the © = 0 and © = 7 regions. In the context
of the dipolar coupling, which is after all an anisotropic
Heisenberg interaction, this approximation implies that
we are in the so-called Ising limit. In this, only the Z-
components of the magnetic moments are relevant. The
dipolar interaction can now be described by its truncated
form [24]:

(1 — 3cos?6;;)

P
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cos ©; cos O,

(11)
where 6;; is the angle between 7j; and the anisotropy axis
and m; is replaced by uV cos©;, p being the magnetic
moment per unit volume and ©; defined after Eq. (3).
The Fokker-Planck dynamics including Eq. (11) is still
very formidable. For our purpose we invoke a mean field
theory in which the i** nanoparticle say, is envisaged to
be embedded in an effective medium that creates a local
mean field (MF) at the site i which is proportional to
the average magnetization itself. Therefore, Hy_4 in Eq.
(11) may be replaced by its MF form
2
H,]}{Fd = V2 cos© Z thw

J
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(12)
wherein the angular brackets (...) represent thermal av-
eraging. In addition, and in conformity with our stated
assumption about the largeness of the anisotropy energy,
cos © can be replaced by the two-state Ising variable o :
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Héw,Fd:'YM2V2UZ’Y]h( ])

J

(o). (13)

[rij |°

If the nanoparticles are located at random sites of the
host matrix, such as grown by the sol-gel technique (for
instance NiFes04 magnetic particles in a SiOs host b]),
the interaction in Eq. (13) is random because of random
values of |7;| and is also alternating in sign due to differ-
ent allowed values of §;;. Within the spirit of the mean
field theory the local field H is to be derived self consis-
tently from the following expression:

uwVH
H = pAV tanh( T ), (14)
where A is a random variable ﬂﬂ] Since the local field can
point either along © = 0 or ©® = 7 direction, within the
two-state model, Eq. (14) naturally admits both positive
and negative solutions for H.

Summarizing, the effect of interaction within the sim-
plified mean field approximation, enumerated above, is



to modify the rate theory in which the rate constant in
Eq. (6) is replaced by

V(K + Msh+ H
Nomer = Mgexpl— L B )
kgT
Clearly Eq. (15) is an extremely crude attempt to

incorporate dipole-dipole interaction into the dynamics
of nanomagnetic particles, and is therefore, expected to
have limited validity. The actual spinglass dynamics is
a much more complex subject that requires application
of sophisticated theoretical tools [23]. Yet we find that
the simple-minded extension of two-state rate theory, as
encapsulated in Eq. (15), is adequate to interpret aging
data in interacting systems (Sec. IV).

III. SUPERPARAMAGNETIC SLOW
DYNAMICS

Recently Sun et al have made a series of measure-
ments on a permalloy (NigiFei9) nanoparticle sample
which demonstrate striking memory effects in the dc
magnetization [§]. These involve field-cooled (FC) and
zero-field cooled (ZFC) relaxation measurements under
the influence of temperature and field changes. We have
also observed very similar memory effects in NiFesOy
magnetic particles in a SiOs host ﬂﬂ] More recently
Sasaki et al [10] and Tsoi et al [L1] have reported similar
results for the noninteracting (or weakly interacting)
superparamagnetic system of v — FeaOs nanoparticles
and ferritin (Fe-N) nanoparticles respectively. Further,
to understand the mechanisms of the experimental
approach of Sun et al, Zheng et al ﬂﬂ] replicated the
experiments on a dilute magnetic fluid with Co particles
and observed similar phenomena. In this section we
present a comparison of simulated results with all the
above mentioned experimental observations on the basis
of our simple two-state noninteracting model plus a
log-normal distribution of particle size, described in Sec.
11
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FIG. 1: (color online) Temperature dependence of the dc mag-
netization for the FC and ZFC processes. Inset shows the M-H
curves below and above Tp. (Sun et al Phys. Rev. Lett. 91,
167206 (2003)).

We begin our discussion from the most basic and well

known protocol, viz. the measurement of the zero field-
cooled magnetization (ZFCM) and the field-cooled mag-
netization (FCM). Figure 1 shows the ZFCM and FCM
curves in a 50 Oe field for NigiFeig. The ZFCM has a
peak at Tynqr = 78K, which corresponds to the blocking
temperature Tj,. The magnetization of the FC curve con-
tinues to increase with decreasing temperature as would
be expected for a system in thermal equilibrium. The two
curves depart from one another at a temperature higher
than T),,.. The inset shows the M-H curve below and
above the blocking temperature. Figure 2 and Figure 3
show the simulated FC-ZFC curves and the M-H curve
respectively. Our simulations, based on the two-state
noninteracting model, match well with the experimental
results.

FIG. 2: (color online) Numerically calculated dc magnetiza-
tion for the FC and ZFC process.
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FIG. 3: (color online) Numerically calculated M Versus H
curve below and above Tj.

The most striking experimental observation of Sun et
al is the memory effect in the dc magnetization (Fig.
4) obtained from the following procedure. The sample
is cooled in 50 Oe field at a constant cooling rate of
2K /min from 200K (Tx) to 10K (Tpese). After reaching
Thase, the sample is heated continuously at the same rate
to Tp. The obtained M(T) curve is the normal FC curve
which is referred to as the reference curve. Then the
sample is cooled again at the same rate, but the cooling
is arrested three times (at T = 70, 50 and 30K) below
Ty with a wait of t,, = 4h at each stop. During t,,, the
applied field is also turned off to let the magnetization



decay. After each stop and wait period, the 50 Oe field is
reapplied and cooling is resumed. The cooling procedure
produces a step like M(T) curve. After reaching the
base temperature, the sample is warmed continuously at
the same rate to Ty in the continual presence of the 50
Oe field. Surprisingly, the M(T) curve obtained in this
way also shows the step like behavior. Similar memory
effects, following the same protocol were seen by us in
NiFe;0, sample in which the magnetic particles were
embedded in a host Si02 matrix E] The effects can be
explained in terms of a bimodal distribution of particle
size (i.e. P(V) a sum of two delta functions at volumes
Vi and Va) E] Our simulated results based on the two
state non-interacting model but accompanied by a log
normal distribution, are represented in Fig. 5, which
indicate satisfactory agreement with experiments.
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FIG. 4: (color online) “Memory effect” observed in the dc
magnetization measurements in Nig; Feig. (Sun et al Phys.
Rev. Lett. 91, 167206 (2003)).

M (arb. unit)
T

0.15

FIG. 5: (color online) Numerically simulated memory effect
observed in dc magnetization curves.

We further discuss the memory effect observed in
ZFC response measurements (Fig. 6). In the ZFC
experiment, the sample is cooled down to T, = 30K

in zero field. Then a field of 50 Oe is applied and the
magnetization is recorded as a function of time. After a
time ¢1, the sample is quenched to a lower temperature,
Ty — AT = 22K, and the magnetization is recorded
for time ty. Finally the temperature is turned back
to Tp and the magnetization is recorded for another
period t3. The field of 50 Oe is kept on during the
entire aging process. When the field is first turned
on, a slow logarithmic relaxation takes place following
an immediate jump. During the temporary cooling
the relaxation is rather weak. When the temperature
returns back to Ty, viz. 30K, the magnetization comes
back to the level it reached before temporary cooling.
Moreover it is found that the relaxation curve during ¢3
is a continuation of the curve during ¢;.
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FIG. 6: (color online) Magnetic relaxation measurements in
Nigi Ferg with temporary cooling for the ZFC method. Inset
shows the same data vs the total time spent at 30 K for both
normal and logarithmic time scales.(Sun et al Phys. Rev.
Lett. 91, 167206 (2003)).

In Fig. 7 we show the numerically calculated results
of ZFC relaxation, again on the basis of the two-state
non-interacting model, which are qualitatively similar
to those in experimental measurements (Fig. 6). When
a field of 50 Oe is applied, the magnetization reaches a
certain value which is determined by the particles with
T, < 30K. Then a logarithmic relaxation begins which
is due to those particles whose T}, are higher than 30
K m] The sudden increase in magnetization during
to is due to the particles with T < 22K which had
flipped during ¢; in order to reach their new equilibrium
state at T = 22K. On the other hand the particles
with T, > 30K are not in equilibrium state and relax
extremely slowly at 22K to yield an almost constant
curve during to. Finally, when the sample is heated
back to 30K, the particles with T, < 30K and those
flipped during t; + to, return back to the pre-quenching
equilibrium state and therefore the relaxation during t¢3
is the continuation of the curve in t;.

In Fig. 8 we show the relaxation measurements of
Sun et al in the FC method with temporary cooling, in
which the sample is cooled to Ty = 30K in a 50 Oe field
and the relaxation is measured for a time t; after the
field is cut-off. The sample is quenched to T' = 22K, and
the magnetization is recorded for time ¢5. Finally, the
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FIG. 7: (color online)(a) Numerically simulated ZFC relax-
ation curves with temporary cooling; the same data vs the
total time spent at 30 K (b) on a normal scale; (c) on a loga-
rithmic scale.

temperature is turned back to T, and the magnetization
is recorded for a time t3.
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FIG. 8: (color online) Magnetic relaxation measurements in
Nigi Feig with temporary cooling for the FC method. Inset
shows the same data vs the total time spent at 30 K for both
normal and logarithmic time scales. (Sun et al Phys. Rev.
Lett. 91, 167206 (2003)).

Fig. 9 shows our numerically simulated results of FC
relaxation measurements based on the same two-state
individual particle model. After the field is cut-off, the
particles with 7T < 30K show facile response but their
contribution to the magnetization is negligibly small,
because in their equilibrium state they have almost zero
magnetization. So there is a sharp initial drop in M. The
subsequent logarithmic relaxation is due to the particles
with T, > 30K. After t1, the sample is quenched to
22K. Now the remanent magnetization increases slightly,
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FIG. 9: (color online) (a) Numerically simulated FC relax-
ation curves with temporary cooling; the same data vs the
total time spent at 30 K (b) on a normal scale; (c) on a loga-
rithmic scale.

because of the reduced thermal agitation. Since the
particles with 73 > 30K are not in equilibrium, they
relax extremely slow at 22K. Thus we get an almost
constant curve during t5. Finally, when the sample
is heated to 30K the particles with 7, < 30K and
those flipped during t; + t2 come back to their previous
equilibrium state, and the relaxation in ¢3 is continuation
of the curve in ;.

Figure 10 represents the Sun et al measurements for
magnetic relaxation with temporary cooling and field
change for the ZFC method. In this, the sample is cooled
to Tp = 30K in zero field. Then a 50 Oe field is applied
and the magnetization is measured for a time t1. After
t1, the sample is quenched to temperature T = 22K in
the absence of an external field and the magnetization
is recorded for a time t5. Finally the temperature is
returned back to Ty and the field is turned on again.
The magnetization is measured for a time ¢3.

In Fig. 11 we show our corresponding numerically
simulated results. When a field of 50 Oe is applied
the magnetization immediately reaches a certain value,
because the particles with T3, < 30K equilibrate rapidly.
Then a slow logarithmic response begins which is due
to the energy distribution of the particles. Now as
the field is turned off, we observe a sharp jump in
M(t) due to those particles with T, < 22K which
reach their equilibrium state at T = 22K and hence
do not contribute to the magnetization. However the
particles with 7 > 30K are not in equilibrium and relax
extremely slow at T = 22K, so we get a constant curve
during t. Now as the field is turned on again and the
temperature of the sample is increased to T' = 30K, the
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FIG. 10: (color online) Magnetic relaxation measurements in
Nigi Feig with temporary cooling and field change for the
ZFC method. Inset shows the same data vs the total time
spent at 30 K on a logarithmic time scale. (Sun et al Phys.
Rev. Lett. 91, 167206 (2003))

particles with 7 < 30K and those flipped during time
t1 4 to come back to the new equilibrium state which is
same as that pertaining before quenching. Therefore the
relaxation in ¢3 is the continuation of that during the
time tl.
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FIG. 11: (color online) (a) Numerically simulated ZFC relax-
ation curves with temporary cooling and field change; (b) the
same data vs the total time spent at 30 K on a logarithmic
scale.

Figure 12 shows the experimental results of Sun et
al of the magnetic relaxation with temporary cooling
and field change in the FC method. In the latter, the
sample is cooled to Ty = 30K in a 50 Oe field and then
the relaxation is measured for a time t; after the field is
cut-off. The field is turned on again and the sample is
cooled to T' = 22K and the magnetization is recorded
for a time t5. Finally the temperature is turned back to
Ty and the field is switched off again. The relaxation is
now measured for a time ts.

We represent our numerical results for the same pro-
tocol in Fig. 13. When the field is cut-off the particles
with T < 30K do not contribute to the magnetization .

(10° emu)

= 1.8

L L L
6000 9000 12000

Time (second)

L
(0] 3000

FIG. 12: (color online) Magnetic relaxation measurements in
Nigi Feig with temporary cooling and field change for the FC
method. Inset shows the same data vs the total time spent
at 30 K on a logarithmic time scale. (Sun et al Phys. Rev.
Lett. 91, 167206 (2003)).
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FIG. 13: (color online) (a) Numerically simulated FC relax-
ation curves with temporary cooling and field change; (b) the
same data vs the total time spent at 30 K on a logarithmic
scale.

After t1, when the sample is quenched to 22K and the
field is turned on there is naturally a sudden jump in the
magnetization due to the particles with T, < 22K which
have much higher magnetization than the value just
before quenching. As discussed earlier the particles with
Ty, > 30K are not in equilibrium and their relaxation
is very slow at T = 22K, which explains an almost
constant curve during to. After ¢5, the field is turned off,
and the temperature is turned back to Tp. Naturally,
the magnetization jumps down, because the particles
with T < 30K reach a new equilibrium state which has
almost zero magnetization immediately following the
field and temperature changes and the system returns
back to its state prevailing before quenching.

T‘ime[‘t]‘ o



Finally, Sun et al have studied magnetic relaxation
after a temporary heating (instead of temporary cooling)
from 30K to 38K which do not exhibit any memory
effect.  After temporary heating, when temperature
returns back to Ty, the system does not come back to
its previous state before heating (Fig. 14). Sun et al
suggested that this asymmetric response with respect to
negative/positive temperature cycling is consistent with
a hierarchical model of the spin-glass phase. However,
we have numerically reproduced the same results as
that of Sun et al based on our two-state independent
particle model, as shown in Fig. 15. No memory effect
appears after positive heating which can be explained
as follows. In the FC method the sample is cooled to
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FIG. 14: (color online) Magnetic relaxation measurements
in NigiFeig with temporary heating for the ZFC and FC
methods. (Sun et al Phys. Rev. Lett. 91, 167206 (2003)).

Ty = 30K in the presence of a 50 Oe field and then the
field is cut-off and the relaxation is measured for a time
t1. So the magnetization decreases with time for a time
t1. Now as the temperature is increased all the particles
with 7, < 38K respond to this temperature change
and relax to the new equilibrium state. Since thermal
agitation increases with the increase of temperature,
magnetization decreases further for the time t2. As the
temperature returns back to T' = 30K, the particles with
Ty, > 30K are unable to respond to this temperature
change. Thus the particles with T, < 30K actually
follow the path during time ¢5 rather than ¢;. Because
all the particles which had flipped during the time ¢1 42
cannot return back to their previous state as that before
heating, no memory effect is observed.

In the ZFC method the sample is cooled to Ty in
the absence of an external field and then a 50 Oe field
is turned on and relaxation is measured for a time
t1, yielding a finite magnetization, for particles with
T, < 30K. Then a slow logarithmic relaxation begins
which is due to the energy distribution of the particles.
As the sample is further heated to 7' = 38K, all the
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FIG. 15: (color online) Numerically simulated FC and ZFC
relaxation curves with temporary heating.

particles with T, = 38K respond to this temperature
change. Thus the logarithmic relaxation is continued but
there is a jump in magnetization, because the particles
with T, < 38K and those flipped during ¢; reach a new
equilibrium state. As the temperature of the sample is
returned back to T'= 30K thermal agitation is reduced,
so there is a jump in magnetization. But now only the
particles with 7, > 30K are allowed to relax and their
relaxation is very slow at T = 30K, so we obtain an
almost flat curve.

We conclude this section by underscoring that our
simulations based on the simple two-state noninteracting
model reproduce all the features of the memory effects
observed by Sun et al in the Permalloy (NigiFeio).
Secondly, positive heating does not yield memory
effect whereas temporary cooling does. So there is an
asymmetric response with respect to negative/positive
temperature cycling. This asymmetry is due to the
fact that after temporary cooling only smaller nanopar-
ticles are able to respond to the temperature or field
change and relax to the new equilibrium state. The
larger nanoparticles are frozen. Upon returning to the
initial temperature or field value, the smaller particles
rapidly respond to the change such that this new state
is essentially the same as that before the temporary
cooling, and the larger nanoparticles are now able to
resume relaxing to the equilibrium state. This results
in a continuation of the magnetic relaxation after the
temporary temperature or field change. In contrast,
for positive heating, all the particles smaller as well
as bigger are able to respond to the temperature or
field change. Therefore, after returning to the initial
temperature, the bigger particles do not respond at all
whereas the smaller particles take time to respond, thus



leading to no memory effect in the positive heating cycle.

IV. SPINGLASS LIKE SLOW DYNAMICS

Time-dependent magnetization measurements suggest
that dense nanoparticle samples may exhibit glassy

namlcs due to dipolar inter-particle interaction
ﬁ% 21, bd E disorder and frustration are induced by
the randomness in the particle positions and anisotropy
axis distributions.
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FIG. 16: (color online) FC susceptibilities of the Fe-N system
with the same protocol as described in the text for the double
memory experiment (DME). Inset shows the FC and ZFC
susceptibilities vs. temperature of the Fe-N system. (Sasaki
et al Phys. Rev. B 71, 104405 (2005)).
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FIG. 17: (color online) (a) Numerically simulated results for
the double memory experiment (DME); (b) the FCM and
ZFCM vs. temperature of the interacting system are shown.

Figure 16 shows the ZFC and FC behavior (for the
linear susceptibility, which is simply proportional to
the magnetization) in the dense magnetic nanoparticle
system of Fe-N, measured by Sasaki et al [10]. For

comparison, our numerical results are shown in Fig. 17.
We observe a peak in the ZFCM which corresponds
to an average blocking temperature < T >. In the
superparamagnetic case the ZFC-FC curves bifurcate at
a temperature away from the peak position of the ZFCM
(see Fig. 1). On the other hand, for the dense system
the ZFCM-FCM curves bifurcate at a temperature very
close to the peak position of the ZFCM. The FCM of
the dense system does not increase but stays almost
constant below < T > which is the primary indicator
for the glassy state ﬂm] It is interesting that we have
been able to numerically reproduce the same kind of
FC-ZFC curves based on our simple-minded interacting
nanoparticle model, summarized at the end of Sec. II.
In order to have a better understanding of glassy
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FIG. 18: (color online) Difference of the ZFC susceptibilities
of the Fe-N system vs. temperature. (Sasaki et al Phys. Rev.
B 71, 104405 (2005)).

relaxation, time-dependent magnetization studies under
various heating and cooling protocols were performed by
Sasaki et al [10] on dense Fe-N nanoparticle systems, by
Raj Sankar et al ﬂﬂ] on LaMnQOs3 13, by Kundu et al on
Lag7Cag3C003 and by Telem-Shafir and Markovich on
MICS76 sample ﬂE] Figure 16 also shows the results of
double memory experiment (DME) under FC protocol
by Sasaki et al. In this, the system is cooled under a field
of 50 Oe. The field is cut-off during the intermittent
stops of the cooling at T = 30K and at T = 40K
for 3000 sec at each stop. After reaching the lowest
temperature the susceptibility measurement is repeated
in the heating mode without any intermittent stop. In
Fig. 17 we have shown our numerically simulated results
of DME based on our interacting nanoparticle model,
which have a striking resemblance to the experimental
results.

Another protocol has been suggested by Sasaki et al
to confirm whether the observed memory effect is due
to glassy behavior or not. In this experiment the sample
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FIG. 19: (color online) Numerically simulated results for the
memory experiment (DME) for the ZFC method in interact-
ing system.

is first rapidly cooled in zero field from a reference
temperature (Z,ey) to the stop temperature (7), where
it is kept for 9000 sec. The cooling is then resumed
down to the lowest temperature where a magnetic field
is applied and the susceptibility is recorded on reheating
the sample. The conventional ZFC susceptibility is
also recorded. The difference between the aged and the

10

normal ZFC susceptibility as a function of temperature
is shown in Fig. 18. Figure 19 is our numerically
simulated results, which are again very similar to that
of experimental results. In all the above mentioned
simulations we have used a log-normal distribution of
particle sizes wherein the parameter « is set to 0.5. In
the fitting procedure the average anisotropic energy
KV is chosen as the unit of energy as well as that of
temperature by setting kg = 1 and V = exp(y2/2).
Because Ty for nanoparticles is around 10~ sec and a
typical experimental time window is about 10 sec, we
have investigated the predictions of our model in the
time window 10'°75. To introduce the dipolar inter-
action we have numerically solved the self-consistent
Eq. (14) for H and inserted this value in Eq. (15) to
calculate rate constants and hence the magnetization.
The external field is set to 0.1, whereas A has been taken
as a random variable between 0 and 1. In conclusion,
we find that a large class of data on memory effects in
nanomagnetic systems can be explained by a simple rate
theory, without and with interactions, in a meanfield
approximation.
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