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A brief review of electrical conductivity modelling of
the porous medium is presented here to establish that,
merely for the sake of applicability, the sound physico-
mathematical model of Maxwell has been replaced by
Archie’s empirical one. The extension of clean sand
models to shaly-sand models is discussed emphasizing
the inadequacy of the former to represent true physical
situations. Since the experimental data show nonlinear
dependence of rock conductivity on pore fluid conducti-
vity, three nonlinear model equations of Glover, Mixing
and Bussian are studied for a wide range of para-
meters and the results are analysed in the light of physi-
cal expectations. It is concluded that only the Bussian
model is able to simulate the behaviour of effective
conductivity of saturated shaly-sand reservoir over the
complete range of water and matrix conductivity and
porosity values.
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THE electrical conductivity of reservoir rock is used to esti-
mate porosity, clay content, permeability and water saturation
as well as oil saturation. These estimations can be efficiently
performed if a proper theoretical model is developed for
computation of electrical response of heterogeneous porous
medium comprising solid and fluid phases having differ-
ent conductivities, volume fraction and connectivities.

The theoretical approach for calculating effective electri-
cal conductivity (o) of a porous medium of porosity ¢, satu-
rated with fluid of conductivity o,, started with Maxwell’s!
classical work, where he considered the electric current
flow in a two-phase medium comprising uniform spheres
immersed in a continuum. The final relation given below
is obtained by solving the relevant Laplace’s equation
(Appendix eq. (A-14)),

0y,=0, —. (D

Wagner® extended this formulation to very dilute solu-
tions and came up with a linear form given by

o, =050, (3¢ —1). )
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Rayleigh, and later Fricke’, extended the treatment to dis-
persed particles of regular but non-spherical shapes.
Meredith and Tobias* treated the case of composite spheres
with an inner core and an outer shell of different radius
and conductivity. Using the concept of tortuosity, Slawinski’
presented a treatment of the bulk conductivity of an electro-
Iyte containing non-conducting spheres, as

o, =ac,9. 3

Here, a is tortuosity of the reservoir. However, the most
satisfactory expression for the conductivity of a water-
bearing rock is attributed to Archie’, who empirically estab-
lished, both for unconsolidated and consolidated porous
media, that the bulk conductivity also slightly depends on
permeability of the sample and accounted for it through
the well-known relation having ¢ exponent m, called the
cementation factor, as given below

o, =ac, ™. )

Archie’s equation has been extremely useful in the com-
putation of water and hydrocarbon saturations in brine-
bearing non-shaly oil reservoirs.

In the case of consolidated medium, Slawinski’s model
has no theoretical basis and Archie’s cementation factor is
no longer independent of porosity; it becomes a function
of other non-specified factors. This is the prime reason of
its restricted use in shaly-sand log evaluation. Archie’s
equation occasionally results in misleading conclusions
about aquifers in case of groundwater wells and also in case
of oil wells in freshwater environments’ '*, Hence there has
been an explicit need for the development of a more ap-
propriate model.

The complex distribution of solid and fluid phases having
different conductivities, volume fractions and connectivities
makes the modelling of heterogeneous porous medium a
non-trivial problem. In shaly-sand reservoir, due to the
clay particles possessing a net negative charge compen-
sated by an excess number of cations close to the clay
surfaces, surface conduction leads to a net increase in the
effective fluid conductivity. Patnode and Wylie'* empiri-
cally established that in case of shaly formation, the electric
currents are also carried through the rock by a medium
other than the electrolyte. They proposed that the conducting
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solids and the saturating fluid are electrically parallel so that
the effective conductivity, op can be expressed as

0 = G,¢" + C.. )

Here, o, is the solid conductivity associated with clay and
is directly proportional to the volume of clay. Winsauer and
McCardell'* attributed the clay conductivity contribution
to mobile positively charged cations, or counterions, at the
clay-brine interface called the double layer and termed it
as ‘excess conductivity’, o,. They expressed effective conduc-
tivity as

c,=9¢"(c, +0,). (6)

Since then, a large number of semi-empirical models based
on statistical treatments of experimental observations have
been proposed. These models are either shale fraction
models or cation-exchange models derived using the con-
cept of parallel conductor. In oil industry, for log analysis
the two widely used models are those of Waxman and
Smits'” (WS) and Clavier et al.'® (the dual water model).

It is important to emphasize here that the experimentally
measured bulk conductivity of saturated shaly-sand formation
shows nonlinear behaviour'’. However, there are only a
limited number of nonlinear equations capable of describing
this characteristic of experimental data. The objective of this
article is to critically evaluate the three relevant nonlinear
equations.

The nonlinear models can be grouped into two classes.
The first group of models is based on rigorous electro-
chemical principles'®?' and these models contain some
macroscopic geometric parameters (such as formation
factor, electrical tortuosities and specific surface) interre-
lated with physico-chemical terms (as counter-ion charge
density, effective ion mobility and Hittorf transport num-
bers). In the second group, the relations are formulated
using unique macroscopic parameters such as formation
factor, clay content and equivalent grain conductivity for
the solid matrix. As the required physico-chemical para-
meters are not easily obtainable, it is difficult to use the
equations of the first group in geophysical well log data
interpretation. The equations of the second group are
physically consistent with the general behaviour of experi-
mental data and these have the advantage of circumventing
the need of explicit evaluation of microscopic parameters
related to electrical conduction through charged double
layers. As the required parameters can be derived from
the available set of log measurements, these equations are
suitable for geophysical well log data interpretation. In this
context, we will consider three equations that are shown
to be robust.

The first equation is due to Glover et al.**. It is a modi-
fied Archie’s equation that can be used with two conduct-
ing phases of any conductivity and volume fraction. It
retains the ability to model variable conductivities within

CURRENT SCIENCE, VOL. 92, NO. 5, 10 MARCH 2007

the phases that result from variations in their distribution.
The modified model has two exponents (m and p) that des-
cribe the connectivity of each of the two phases. The ex-
ponents are related through an equation that also depends
on the volume fractions of the two phases. It is claimed
that the new model describes the experimental electrical
behaviour of the system extremely well, improving greatly
on the conventional Archie model for the two conducting
phases. The response is given as

_ log(1-¢™)

=, 0" 1-¢)?, p= .
GO GW¢ +Gs( ¢) 10g(1—¢)

N

The second and third equations studied in great detail by
Lima et al.'” are based on general mixture and effective
medium theories respectively. In the general mixing rule,
the electrical conductivity of a fully water-saturated rock is
represented as a binary mixture of solid grains immersed
in a continuous electrolyte and it can be expressed in terms
of electrical conductivities, relative amount and topological
distribution of the constituents. This representation is exact
and derivable from the theory of functional equations under
appropriate boundary conditions®>**. The equation can be
written as

o, =[o, "+ (1-¢)o, " T". (8)

The effective medium model is based on Bruggeman—
Hanai*>?¢ theory, which is an extension of the Maxwell-
Wagner solution for dilute suspension in a constructive
step process. Bussian®’ used the Bruggeman—Hanai equa-
tion — a simple formula for gauging the dielectric properties
of random mixtures — in its low-frequency limit to determine
the conductivity of the saturated shaly-sand reservoir. Lima
and Sharma®®* modified the Bussian equation to develop
a new scheme to describe the conductivity behaviour of
clay gels, shales and shaly-sands under saline as well as
freshwater saturations. The effective model avoids the as-
sumption of parallel conductor, however, one must choose
sand—shale geometry. The model is flexible enough to in-
corporate cation exchange data. The Bussian equation is
written as

1-0,/0,, " )
1-o0,/0,

GO = Gw¢m |:

Substituting (6,/6,) = o and (6¢/G,,)""" = x, we can write
eq. (9) as

A" —p(l-o)x" ! —a =0. (10)

Lima et al."” observed that, as the required parameters can
be derived from the available set of log data, both Mixing and
Bussian equations satisfactorily describe experimental
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core data and are suitable for well log analysis. It is instruc-
tive to consider a few interpreted parameters obtained by
Lima et al." using the data of Waxman and Smits'” (WS)
(Table 1). It is evident that the values of these parameters
for different models vary over a wide range and therefore
there exists a need for proper choice of a relevant model.

Since all the three nonlinear conductivity responses of
saturated shaly-sand reservoir, Gloverzz, Mixing23 and
Bussian®’, satisfy the experimental bulk conductivity variation
with conductivity of water, here we evaluate these equations
on the basis of exhaustive simulations over a wide range
of parameters. We have used the ‘bisection method’*° of
finding roots of a nonlinear equation. The values of para-
meters m, @, ¢, and ¢; used in simulation are: m = 1.5,
2.0,2.5,3.0,3.5and 4.0, ¢ = 0.041, 0.074, 0.111, 0.131,
0.153, 0.198, 0.231, 0.289, 0.362, and 0.439, o,, = 0.001,
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10,
20, 50, 100, 200, 500, 1000 S/m and o, = 0.025, 0.22, and
5.5 S/m.

All the computed values are compared with the corre-
sponding data computed using Archie’s equation. It is
pertinent to mention here that for all simulated results,
the error function (the absolute value of the left hand side
function in eq. (10)) for Bussian equation is significantly
lower than that for Glover and Mixing equations. One
such representative comparative plot is given in Figure 1.
On inspection of the generated synthetic data, a general
observation can be made that at low porosities all the
three nonlinear equations, Glover (G), Mixing (M) and

Table 1. Parameters determined using linear and nonlinear equations

Data source Model ¢ (%) m o5 (S/m)

WS (C-22) Linear 22.9 2.39 0.063
Bussian 6.55 1.31 0.083
Mixing 6.55 1.35 0.074

WS (C-26) Linear 22.9 2.64 0.120
Bussian 6.05 1.31 0.144
Mixing 6.06 1.37 0.136
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Figure 1. Computational errors in ¢y (E-SIGO) for Bussian (B), Mix-

ing (M) and Glover (G) models.
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Bussian (B), lead to approximately the same values and
that these values deviate from that of Archie (A), starting at
o, < 10 S/m towards higher values of ¢y. Further, these
values asymptotically approach the corresponding o, at
lower values of o,. However, as porosity increases from
low to high values, the computed values of bulk conduc-
tivity using Bussian equation deviate from the other two
towards A for ¢, below 0.1 S/m. The other two equations
almost become independent of o, and always approach
asymptotically to ¢,. In order to support our observations,
we present here only a limited number of results in Figure
2 a—d. These are for the two values 0.041 and 0.439 repre-
senting respectively, low and high porosities. The two m
values chosen are 1.5 and 2.5, while the only ¢, consi-
dered is 0.22.

In order to understand the causes behind the significant
differences in the behaviour of the three nonlinear equa-
tions for low o, we obtained the low ©,, range asymptotic
expressions of the Glover, Mixing and Bussian equations
respectively, as

0y =0,0" +o,(1-¢"), (11)
o, =0,(1-¢)", (12)
6, =0,0""", (13)

A glance at these equations reveals that for a given value
of ¢ and for low &, 0y is linearly proportional to o, in the
case of Glover and Mixing equations, while it is linearly
proportional to &, for the Bussian equation. The difference
in the intercepts of Glover and Mixing equations increases
as porosity increases.

Another test undertaken was to compare the above three
equations for m = 0, a case simulating no cementation or
equivalently 100% porosity. In this case, Glover, Mixing
and Bussian equations give ¢, equal to (o; + &,), max(c;, G,)
and ¢, respectively. Thus, Bussian equation simulates
physics of the situation more realistically. It may be added
here that for m = 1, all the three equations lead to &, equal
to (6i(1 - §) + G,9).

Next we tested the accuracy of the Bussian equation by
comparing the numerical solution and the exact solution
for m = 2, which leads to a more practical situation. In
this case, eq. (9) reduces to a quadratic equation having
two roots as

1/2

A 2
Oy —_GS+7[( L S) ! 1£[1+ W

20, [(c, —0,)¢]
(14)

Equation (14) represents a parabolic structure having vortex
at ¢,, = o,. For o, < 0,, expanding the term under square
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¢ =0.439 and o, = 0.22 (d).

root and retaining only the linear order terms, the first root
(with +ve sign) of eq. (14) is simplified to

Lo, -0l
o

(15)

0.0 = ?'G.v

w

This can be further simplified by rejecting the term with
second power of small o, as

o, =¢’lo, +2(97° — o, 1. (16)

The asymptotic solution for &,, — oo can be written as

o, =0c, +0,. (17)
It may be emphasized that eq. (16), the Revil ez al.”® equation
as the high salinity asymptote of their general equation, and
the linearized solution of equation of Bussian®’ obtained by
Lima and Sharma®*?*’ (for m = 2) are identical. Further,
eq. (17) is the same as the one given by Patnode and Wyllie]3
that was further modified by Winsaur and McCardell*.
Thus all the existing linear models can be simulated using
Bussian equations in the respective ranges of parameters.

In conclusion, we make the following observations: (i)
the empirical linear models based on parallel conductor
concept are unable to simulate effective conductivity of a
shaly-sand formation saturated with water of low conducti-
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Effective conductivity (sigo) vs water conductivity (sigw) obtained for the four models, Glover (G), Mixing (M), Bussian (B) and
Archie (A) for m= 1.5, ¢=0.041 and o,=0.22 (@), m=1.5, ¢#=0.439 and o,=0.22 (b) m = 2.5,

¢ =0.041 and 0,=0.22 (¢) and m = 2.5,

vity; (ii) the existing nonlinear equation of Glover et al”
and the Mixingg?’ equation studied by Lima et al."” are
able to simulate the effective conductivity curves for the
entire range of water conductivity only for low porosity
and these fail to simulate the real behaviour as the porosity
increases, (iii) the Bussian equation simulates the effec-
tive conductivity curves for all ranges of porosity and wa-
ter conductivity, and (iv) the Bussian equation which is
more consistent with the physics, reduces to the existing
linear models and thus is consistent with these models.
Hence, for nonlinear interpretation of well log data Bussian
equation is the most appropriate one.

Appendix 1.
fective conductivity.

Derivation of Maxwell’s equation of ef-

The law of conservation of charges (V-J = 0; J being current
density) and the Ohm’s law (J = oE, E =-VU, o is the
electrical conductivity of the medium and U the electrical
potential developed) results in Laplace’s equation (V>U)
for the potential due to electrical conduction in a conduc-
tor. For its solution, let us assume that a sphere having
radius r; and conductivity o; is immersed in an electrolyte
of conductivity &,, and is brought under the influence of a
uniform electric field E, which has lines of force parallel
to the x-axis. Assuming zero charge density, the system
satisfies Laplace’s equation, whose general solution in
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spherical polar coordinates (r, 6, @) can be obtained
through the method of separation of variables as

U=Y (K" + 2,77 OB, ),

n=0

(AD)

where K, and y, are arbitrary constants to be determined
using relevant boundary conditions, and P,(u) are Legen-
dre polynomials given by

1 d°
2" n du”

P,(u)= (u* =", u=cosé. (A2)

As r = 0, U remains finite and as r — oo, U = —Er cos0.
The potential inside and outside the sphere can be written
as

U, :ZKnr"Pn(cose);r<ri, (A3)
n=0
and
U, =Y x.7 "' P (cos); r>r. (A4)

n=0

Applying the boundary conditions of continuity of poten-
tial and radial current density at » = r; given as

U, o,
atr=r

U=U, and o; o, i
or or

(A5)

to eqs (A3) and (AS), we obtain K, = ,=0. For n =1,
we get

3Ec
Kj=———"  and y =-—
0,20, +0;)

;P E(o, —0;)

(20, +0;) (A0)

Now, eqs (A3) and (A4) can successively be written as

_ 3Ec,,rcosf ’ (A7)
0;(20,, +0;)
and
3
3E(6. -0,
__ITE©, Z0)cos6 b oce. (A8)

(26, +0,)r?

Let us assume now that there are N equal spheres of radius
r; arranged in such a fashion so as to form a larger sphere
of radius ry, and that electric interference among the
smaller spheres is negligible. Thus the potential outside the
system resulting from the presence of a bunch of spheres
is given by

616

N E(o,, —0;)cos8
w=— i E(O, l)(zzos —Ercos@.
2o, +o)r

(A9)

Similarly, if o, represents the bulk conductivity of the sphere
of radius ry, the potential outside the system can be written
as

U = wE(o, —G,)cosf

w — Ercosé.

Al10
(20, +0,)r’ (A10)

Equating eqs (A9) and (A10) we get

3 3
20, +0,)—2Nr (0, —0;
GOZGW rN(3 w z) 37;( w z). (All)
N (o, —0,)+ 1y (20, +0;)

In the light of the definition of fractional porosity

N =y (1-9). (A12)
Equation (A11) can be modified as
30, +2 —-0;
g 304200, -0) A3

" 3GW _¢(GW _Gi) ‘

In case of a sphere of insulating material (c; = 0), we can
write Maxwell’s equation as

0 w (3 ) ( )
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