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In this paper, the analytical expressions for cagniard impedance are presented
for a half space in which, as a whole or part thereof, the conductivity is assum-
ed to vary continuously with the vertical depth from the free surface (air-
earth boundary). Mathematically, the assumed variations are taken as

() o(z) = oqe*’z

n
6o [:1 + %]

where g, is the conductivity just at the surface and o’ and « are constants.
The impedance, thus obtained, can be utilized for preparing apparent

() o(2)

resistivity master curves for the proposed models.

INTRODUCTION

As in other electrical methods, the assumption of isotropic and homogeneous
layered earth is most common, so is in the magnetotelluric methods as well. This
assumption, however, does not always represent the actual earth conditions in the
field. So the existence of the situation whose closest approximation may be consi-
dered as the continuous (gradual) variation of conductivity in the whole or part of a
medium should not be deemed unrealistic. In some recent investigations, transition
in the electrical properties has been studied with D.C. (Mallick & Roy 1968; Paul &
Banerjee 1970; Jain 1972; and Sri Niwas & Upadhyay 1972, 1974) and with tellu-
ric fields (Mallick 1970; and Paul & Banerjee 1970) have considered a more general
type of models of continuously varying conductivity and developed the expressions
for potentials due to a point current source placed at the surface of the model.
However, Mallick (1971) has shown that there is no ready way of detecting transition
zone from the resistivity field sounding curve and for this a pre-knowledge of the
geological history of the area of investigations is a necessity. He also gave a pro-
cedure by which the presence of transition can be detected directly from the field
curves obtained from magnetotelluric observations. Keeping this detectibility of
presence of transition, the models of Paul and Banerjee (1970) are being studied
using telluric fields in the present study. The expressions obtained for cagniard impé-
dance can be utilized for preparing master curves for respective models.

Note: The paper was accepted on 3-1-1976.
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F1G6. 1. Geometry of the problem.

STATEMENT OF THE PROBLEM

The proposed models and the nature of conductivity variations are presented in
the Fig. 1 (a, ). The four models are:

(i) a half space in which the conductivity varies exponentially along the direc-
tion of inward normal to its free surface;

() a half space in which the conductivity is proportional to (1 + E)ﬂ, z being

measured along the direction of the inward normal to its free-surface;

(iif) a uniformly thick layer over a homogeneous half space in which the con-
ductivity varies exponentially along the direction of inward normal to its
free surface; and

(iv) a uniformly thick layer over a homogeneous half space in which the con-
ductivity is proportional to (1 + E—)“, z being measured veritically down-
ward.

In terms of radiation constants in electromagnetic c.g.s. units the relation for
exponential and generalized power law variation can be represented as

a'z
) = k2 SN O))
and k(z) = ko [1 +%]"'2 )
where  k(z) = 4 4niwa(z),
ko = 4 dniwe,
and i=d=1.

Proceeding parallel to Mallick (1971) we express the field equations.
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2
aE”—}-k’Ez——O (j=1,2 NG

and

, oE,
le' = az sen (4)

in all the four models considered:

Case (i):

Substituting the value of k(z) from Eq. (1) to Eq. (3) the electric field equation in
transition half space is

a Ez

T8z

choosing a new variable y such as

Tk e Ea=0 NG

n = % 'z
the Eq. (5) is reduced to
d?E, dE; k0
2 4 L= gl
K dn? T dy +

The solution of equation can be written as (Wylie 1960):

—xnEe = 0 (6)

— 2
E,:Azo(ii?,/,] ) +BK0( "Wn ) (D
Hence the corresponding magnetic field equation is,
ky ,— 2k
= 247 [AII(?Q— 4,,) —BKI( 0 J,))] " @®

The boundary condition in this medium is that the field should vanish at
z — oo, Applying this, the Eqs. (7) and (8) can be written as

2%, .
E==BK0(;}L4[,‘) -9
and
Hy = — k¥ px (%"—0 -,)—) .. (10)
Iw @

Hence the cagniard impedance at the surface of the model is

_E 1 KO( Ei ) -3y
= (z—o)—_- 27( e 4 . D
Hy JZGOT Kl( ,0)

o

where

3 .
w = 2% and 3“3/2=e— 5!
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Case (i) :

Substituting the value of k(z) from (2) in Eq. (3), the electric field equation
in this case would be
dzE:u 2 z " .
ok 1+ L] B=0 1)

letting t = [1 + :‘—] the Eq. (12) can be written as

12 7E,T+k§ d.z t"+2 Ex= 0 (13)

Again the solution of Eq. (13) can be derived from Wylie (1960) as
nt2 nt2
E,=JT[AJ1(A12)+BJ— 1(,\:2)] . (14
n+2 ni2
and the corresponding magnetic field is
n+2 n+2
kq .\ 2 "2
Hy = T s AJ—,—!__*__l At — BJIE-_] At .o (15
n+42 n+2
2k
where A= - _;_’2
Since the field vanishes at z — oo the field equations can be rewritten as
n+2
E: =47 BJ— I(At 2 ) .. (16)
2
and
n+2
. " n+2
Hy = ’%_ (47)" BJ,,+1(AI 2 ) . (17
n+2
Hence the cagniard impedance at the surface, (z = 0),
J “n+42 ey 3n .
1 1 - !
Z = e 18

n+2

The general Eq. (18) can be simplified for particular cases of linear variations (n = 1)
and quadratic variations (n = 2).

(a) linear variation (n=1).

o)
L ()
&
= e
VT (e
i\ 73

19
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(b) quadratic variation (n = 2)
koo
1 (‘2“) —F

T ¥ 2aT ko \ €
T (F)

(20)

Case (iii) :
In this case the value of a° would be given by % e"( - ) (o, being conducti-
1
vity of lower half space and # is the thickness of the upper layer) and hence the elect-

ric field and magnetic field equations in the upper layer can be written from (7)
and (8) as

Ene = Al (3"«? T) + BKD(Z—’?’\/';) 2D
o
and
— 2k,
Hy= 1 v [an (Poy+) - b v | I
The corresponding field equations for the lower half space are
itk 2
E:cl = .Ble 1 ves (23)
and
kl iklt
Hy, = =X B,e (24)
w

The boundary conditions of continuity of electric and magnetic field at the interface
(z = h) are given by

Est = E:ul

atz=nh o (25
Hyt = Hyl

The application of (25) to (21), (22), (23) and (24) yields

ik h
Be ' = 4, ( zak )+ BKO( 2;‘ ) . (26)
_ B = i[/ul(z—’f*) BKI( 2y )] Y
o G
Solving equations (26) and (27) we get
B v
7 _ M .. (28
A Vg ( )

where

ik (2 ) (2)
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w2 41 2)

Hence Egs. (21) and (22) can be written for (Z = 0) as

and

: 2%
-’Zf =10(%)+:_;K0(“,0) . (29)
and
Hy Kk 2%k, " 2%,
e a() - es (5 - G0

Hence cagniard impedance is

voly (25&) +v, K, ( 2'f°) %
1 o o —_—=
Z = S e 4 .. (D
‘\/-20'0T voly ( u,of) —_ le,( a,o )
Case (iv):
In this casea=h/ (% — )
0

o, being the conductivity of the lower half space and A is the thickness of the
upper layer. The field equations. for upper transition layer can be written from
(14) and (15) as

n+2 nt2
Eu = ,(T[AJ . ( Ar 2 )—}—BJ—— . ( e )] ()
n+2 n+2
and
. . n+2 n2
Hy = i—:,(VT) [AJ—,,_H( ar 2 )_ BJ,,H( nt 2 )] (33
n+2 a+2
and for lower half space,
itk z
E‘l = 'Bl e 1 see (34)
and
kl iklz
H, = -+ B e (35

Applying the boundary condition (25) to (32), (33), (34) and (35) and solving them
B
for 5 We get

B Sy

= (36)
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where

, 2k, 2k.a
S = ”1&(711‘*2‘) —L_l,( T )
n+2 n+2

and

2k, 2k,a
Sy =1/ n—f—l(”‘_]_) +J ( P )
— iz n+2 ] n+
Hence the expression for cagniard impedance at the surface z = 0 is
2k g 2k o
S J_l(n+2 ) +S’J__L(n+2 — T
1 nr2 n+2 4

A=
d 2k, 2k g0
VQ%T&J ﬁiiﬁ%}*&%“(ﬁﬁ)
n+2 n¥2

(37

Particular Cases

(a) for linear variation (n = 1)

sy (55%) -0y (5%)

S, =il , ( _-—2121“ ) +J, ( 2’;‘“ )
3

3

Thus

(3%)

and

Koo kg
S, (L) SiJ (L) n
7 1 ¥\ 2 + Yoy 2 ) —F

- ‘\/20% ko (knd
S, ("2’>‘S‘J% )

(39)

Eqs. (11), (18), (31) and (37) represent the analytical expressions for cagniard expres-
sions in the four models considered for this study.
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CONCLUDING REMARKS

The values for cagniard impedance for the proposed four models of conti-
nuously varying conductivity have been calculated [expressions (18) and (37) for
generalized power law variation and (11) and (31) for exponential variation]. The
expressions (19), (38) and (20), (39) are the values of impedance for particular
cases of linear (n = 1) and quadratic (» = 2) variations of generalized power law
variation.

Using these expressions for cagniard impedance, the apparent resistivity values
can be calculated by using the expression:

p..=——w—’;11212 . (40

The numerical values can be calculated on an electronic computer for different
models using various combinations of different parameters and sets of master-curves
can be prepared. These numerical calculations are, however, proposed to be presented
in another paper.
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