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This paper deals with the theory of magnetotelluric effect of a multilayered
anisotropic earth. A generalized matrix relation is obtained for finding out
the layer constant Ao, Bo; hence the Cagniard impedance. This relation
can also be utilized for layered isotropic earth, embedded in inhomogeneous
layer, embedded layer having inclined anisotropy and layered earth with
each laver possessing different degree of inclined anisotropy.

INTRODUCTION

Following the classical work of Cagniard (1953) several investigators have con-
sidered the stratified homogeneous isotropic earth for further study in magnetotel-
luric analysis. But at all times these considerations do not closely represent the actual
earth conditions. In the recent past, some realistic representative earth models have
been studied assuming the anisotropy as well as the inhomogeneity in the layers (cf.
Chetaev 1969; O’Brien & Morrison 1967; Praus & Petr 1969; Reddy & Rankin 1971;
Sinha 1969; and Mullick 1970). O’Brien and Morrison (1967) and Praus and Petr
(1969) studied the effect of anisotropy in horizontal planes, for a multilayered medium.
Chetaev (1960) considered a half-space having dipping anisotropy. Sinha (1969)
extended Chataev’s work to a two-layered model, the bottom layer having dipping
anisotropy. Reddy and Rankin (1971) took up a more general case of a multilayered
carth where all the layers having different degrees of dipping anisotropies. Mullick
(1970) studied the effect of a transition zone embedded between the two homogeneous
layers.

In the present study we have developed a generalized 2 x 2 matrix relation to
calculate the cagniard impedance in the case of multilayered anisotropic earth,
each layer having dipping anisotropy. The developed relation herein can also be
utilized for theoretical calculation of impedances in every possible configurations of
layered earth model.

STATEMENT OF THE PROBLEM

Consider an oscillating plane electromagnetic wave of angular frequency w
Is incident normally over a layered anisotropic earth model as given in Fig. 1. The
origin of the co-ordinate system (X', Y’, Z") coincides with the surface of the earth
and the Z’-axis extends vertically downward. The longitudinal and transverse con-

ductivities of layers is taken to be o, and o, respectively (j=0, 1,2,...,n+1)
i 3
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Fi6. 1. Layered anisotropic earth model.
and the layer thicknesses are taken as d; (k = 1 to n). = a, is the conducti-

cIo = G'to

vity of the air. « is angle which axis of anisotropy makes with the horizontal axis
in each layer. The co-ordinate system (X, Y, Z) in Fig. 1 is oriented along the axis

of anisotropy.

Since the air is isotropic, the fields in medium 0 will therefore be E,and H,

only. However we will have components Ey, E; and H, for mediums 1to n + 1

since the anisotropic effect will come into play.

Maxwell’s equation (say for jth medium).

02H 0°H

—m Bt~ B,

H ay2 [}

0

Medium 1 to # + 1 will satisfy the

M
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where
k] = o o, and y2 = iw,u.,c“; us is the permeability of the medium and
i= 41
The solution of Eq. (1) can be written as
H ' o
o = Hz’ = Ay exp[ —g5 (2' =2, ):I + B; exp[ q(z _21_1)] .. (2)

where 2z’ = z cos w + y sin u, A; and B; are layer constants and are complex in
nature, and ¢ is an attenuating factor;

Re g > 0.
Putting the Eq. (2) into (1) we get
iwp.,cl, .
4= 1 sint (k%—1) - ()

The Magnetic field, Hz, is related with the electric fields E, and E, in the
i i

following way:

02H
azz’ =k, - @
0%H,
5 I = —o, E,’ ..(®
From Eqgs. (4), (5) and (2) we have
Ey, = 4% Z?S “[ A; exp{—~ q;(Z'-—Z';—;)}—B, exp{ q;(Z'—Z’m)}] - (6)
]

i
E = —Iq; z 221 Ay exp {—Q:(Z'—Z'l-x)} —B, exp{ 45(2'—2"—1)] - (7)
i
]

To apply the boundary conditions successfully it is required to get the horizontal
component of the electric field E,‘ in (x', y’, z') system. Thus we have

1
E 4=F jcosa— E isina
Yi %

Yy

or
£, =—2[14sinta@=1) | [ 4 ep] =200 }-Biewatz—zi0} |

i

!

.. (8)
Since medium 0 (j =0) is air, it will satisfy the Helmholtz equation
Von = V: Eo cee (9)

where

v = jwpyay
0
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We are considering only E,’ component for the medium 0, so Eq. (9) reduces to

02 E
G TS
82’2 vo yo e (10)
whose solution is
E, « = Ay exp (—vz')+ By exp (wz') ey

0
The corresponding magnetic field for air may be obtained from Maxwell’s

equation as

oE,
iwpg H' = —*-
%  9z' ..(12)
Thus
H & = %[-—Ao exp (—voz') + By exp (voz’)] ~..(13)
0 0

where n, = +/ lwpy/ s, ; characteristic impedance.
Thus the tangential electric and magnetic field components in all the mediums
are expressed in suitable forms in Eqgs. (2), (8), (11) and (13).

THEORY

The boundary conditions are: the continuity of the tangential electric and
magnetic field components at each interface. Thus

E, =E
v v

H’ :H’“ atz=0and z = di (k=1 to 4) e (14
Xg i P9

Also as the radiation condition specifies that at
Z'soo, H_  —0 gives
n+1
By =0 ... (15)
Applying the conditions (14) and (15) to Egs. (2), (8), (11) and (13) we have,

Jj=0;2z=0
Ag+By = — -Zl_[usin?u(ki —1:] ‘:Al——B,]
:
1

HAFBO} ~[A1+Bl] (16
it]
Jj=1; z==4d,

ili[l-}-sinzac(kf——l)] [A1 ¢2_qu1 —B, eqldl:]z q_z[l +Sin2a(k2 __1)]
Gfl 012
[Aa e—qzdl B, edel]

% ...(16 )

4, e—qldl—I—Bl 641d1= A, e*‘]2d1+ B, 12

j=2; z=d,
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;"i[wsm; ok —1)] [A2 I _p, eq2d2]= :_3[1+sinz¢(k; _ 1)]
13 /.
s 3

[As e_Qadz —B, e%d2]

A, e_q2d2+B A _ g, 0%y p . (160)
j=n+l; z=dn :
[1+sm oc(kz—l)] [A q"d" —B,e q”d"]—-——- 8@11 [1+sin3a(k:+1—1)]
l"+l
Aoy o In+10n
Ag e_q"d” +Bn eqndn =_ An+1 e_q”+1dn (16 n)

Each set of Eqgs. (16a, 16b....16n) can be expressed into 2 x 2 matrix form as
follows:

! 1 Ao — G‘L‘—[l +sina(k? —1)]0% [ I+sinZa(k® —1)
zl ‘1
n;l __,no-l -BO —1 —1
A4,
X
B, |- U7a)
inZa(k® -—1)] [1 +sin®a(k] — 1] Iodh An
e”“qndn eqndn B,
GQnH [1+Sln2a(k:+1——-l)] 0 An+1
fag
e__qnﬂd" 0 By | (1)

If we adopt to write Eq. (17a) as

i

Pll P12

B, B, ... (18)
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(and similarly the other matrix relations can also be written).
Eq. (18) can be written as

-1
A 4
= P 11 P 12
B, B, ... (19)
. A, . : A ..
In equation (19) the value of B, |can be substituted in terms of B b giving
1 2
r . r -1 . — —\—1 — ~ ~
A, Ay
= P 11 P 12 P 21 Py
B, B, ... (20)
L J L - L . L J L - L
Finally
r - - T r . ’- o -] B -1
Ay
= Py Pyy Py Pop o] Payn
B, L
L - L el e — L - -l =

Ansa
X| Pry1g Bnyy .. 2D
Denoting the product of matrices

[ra ] [pe] [2a] 7 [Pon ] s [M] wese
[5]=0o o) (5] 2

where M, and M,, are the elements of matrix [M]. Thus

Ao = My Aniy - (23)
By, = My, Ay, .. (24)
From Egs. (23) and (24) we get
AO Mll
= = (25
B, =~ I, )
The cagniard impedance on the surface of the earth is
E, Ay + B,
Z =—2 = vo[By—A4,]
Iw;onxo =0 .. (26)
Putting the value of A, in terms of B, from Eq. (25) in (26) we have
1 M,+M
Z= — 1 2 ..(27
Vo My — My S

Eq. (27) is general equation of Cagniard impedance. By calculating the elements
M,; and M,; one can get the analytical expression for Z for desired layered con-
figuration.
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CONCLUSION

The significant feature of this study is that it brings out analytical result for a
very general type of geological situation where each layer is anisotropic with inclined
anisotropy. From the general solution (Eq. 27) one can readily obtain the simpler
results for isotropic layered system, embedded anisotropic and/or inhomogeneous
layers and layered anisotropic earth where each layer having different inclined aniso-
tropy compared to other layers. Utilizing the value of Z so obtained in any desired
layer configuration using

i
p” .. (A)

Utilizing the expression (A), master curves can conveniently be prepared for
desired layer configuration. The general Eq. (27) can be utilized for inverse method
of magnetotelluric analysis (Nabetani & Rankin 1969) also.

Z2

pa = —
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