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The problem of resistivity stratification for a layered Earth model with
transitional boundary is discussed theoretically in the present work. It makes
use of Kernel function in the integral expression (Stefanesco and Schlumberger
1930) for potential for a stratified earth. The Kernel functions are evaluated
for two types of conductivity inhomogeneity in the transition layer, using a
new matrix method (Upadhyay and Sri Niwas 1971). The analysis of Kernel
function is performed by Pekeris (1940) method.

The relevant results are :

() The kernel functions for a sharp and a transition boundary
possess similar pattern of variation;

(ii) The analysis of the kernel curve for a sharp boundary gives a

closely true picture of resistivity stratification. In the case of
transitional boundary, the analysis does not reveal the actual
presence of continuous conductivity variation. On the other
hand, one is led to interpret the transition boundary as made
up of two homogeneous layers.
The analysis presented herein is restricted to the theoretical
study of kernel function for transitional boundary and the
determination of resistivity stratification, starting from the
integral expression for the potential.

INTRODUCTION

In the resistivity interpretation of electrical measurements, the assumption
of stratified homogeneous earth is more common. At all times the assumption of
homogeneity does not closely represent the actual earth conditions. Mallick and
Roy (1968) have carried out the geo-electrical measurement in dug wells section with
different orientation of electrodes in peninsular India region. They include a typical
section in such region consisting of transported soil cover of a few meters thickness,
underlain by a transitional layer of weathered granite or basalt of gradually increasing
freshness and followed finally .by the unaltered highly resistive bed rock. The top
soil cover is more or less uniform with resistivity of a few ohm-meters within the
weathered layer. This resistivity increases with depth until the unweathered rock
with a resistivity of 500 to 1000 ohm-meters is reached at a depth of about 15 to 20

meters.
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Mallick and Roy (1968) solved the problem of resistivity sounding on a two-
layer earth with transitional boundary. They gave the master curves to interpret
the resistivity measurements indirectly by curve-matching. Bat it must be admitted
that the resolving power of the curve-matching procedure is not very high. It is
virtually impossible to estimate in advance the expected accuracy of these curve-fitting
process. A direct procedure of interpretation was investigated by Langer (1933)
who showed that ‘if the conductivity of the ground is a function of depth only,
then the potential about point current electrode uniquely determines this function.’
Thus the inverse potential problem for horizontally stratified models, appears to have
a unique solution. Pekeris (1940) developed a direct method of interpretation
to obtain a resistivity stratification from the kernel curve, using Langer (1933)
approach.

Koefoed (1965, 1966) discussed the problem of obtaining kernel curve from
the apparent resistivity observations made in the field. He also outlined Pekeris
(1940) method for determining resistivity stratification from the Kernel curve. Also,
it was shown that for one set of apparent resistivity observation, only one Kernel
curve is possible. However, the second part of analysis i.e., the determination of
resistivity stratification from the kernel curve was found to involve ambiguity in
interpretation. The present analysis is pertinent to this aspect of Koefoed’s work.
The results are based on a theoretical analysis for a geologically relevant situation,
The discussion of the result follow at the end.
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Fi1G. 1. Geometry of the assumed model

THEORY

Layered configuration is taken as shown in Fig. 1. ‘O’ is the position of the
point source and is also the origin of the cylindrical co-ordinate system. Positive
z-axis of the co-ordinate system is taken vertically downward. Upper and bottom
layers are considered to be isotropic homogeneous. The intermediate layer possesses
conductivity inhomogeneity in the z-direction, which varies as follows :

Case I  o(2)=ao[l+k(z—hy)]" (hy<z<hs) m
Case Il o(z)=ay[eM=m)) (m<z<hs) )
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The basic equation which will be used in the present work is potential at the
surface due to point source.

It (Stefanesco and
V_q[ F 2,[ k@) Jo @) d"] Schlumberger 1930) 3)
0

Ai(})
q
is the resistivity of the top layer.
The potential distribution in the top, transition and bottom layers are
governed respectively by :

, the Kernel function, / is the current strength and o
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neither zero nor an integer; and the combination 1 ("__1) and K (n—l) applies
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to the case when (n%l) assumes either zero or an integer value. A41Qd), Az(Qd),
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B3X and A44(}) are the constants.
And p) and p: are given by

—k+ k2423
h=————
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(10)

(11

The boundary conditions are the continuity of potential and normal compo-

nent of current density at each interface, i.e.,

oV 14
Vi = ¥V and o1 oz =a (Z)FZ—‘ at z=Mh
_ oV oV2 _
V = V; and a(z)-a—z~ =0y —7 at z=h

Using these boundary conditions to the equations 7, 8a.and 9 we have
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Where : x=[1+k(hy—h)] and o = g, [1+k(he—H2)]
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(13)

(14)

(13)

(16)

We solve the above set of equation by matrix method to obtain the value of kernel

function



DIRECT ANALYSIS OF RESISTIVITY KERNEL FUNCTION

From equation (13) and (14) we have
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Combining equations (17a) and (17b) we have.
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This gives the kernel function for the case I as
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Similarly, we can obtain the kernel function for the case II repeating the same pro-
cedure as for case I, i.e.,
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Where
a," = o, explk(h,— h1)]

ANALYSIS OF THE KERNEL FUNCTION

Here we would analyse the kernel function for a particular case of linear
variation of conductivity i.e., when n=1 in equation (I). The kernel function in

this case is obtained by putting 6, = 61, 6! = 62 and k '——m equation (18),
ie.
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Where
o = G2—0C 1
ho—h1
We obtain variation of kernel function against A assuming %3 =11, he—h,=0and 4
1

and =1 and their graphical representation is produced in Figure 2. The value
of the kernel function can be calculated from the formula (20) orit may directly
be obtained by integrating the potential measurement conducted in the field.

In order to apply the Pekeris (1940) method of interpretation to the curve
obtained in Fig. 2 we have to obtain a function fi(A) defined below.
Taking Hankel transform of equation (3) we get.

@

142K() = A] V() o(r)dr

0
or (21)
1
KQ) = 7[ A _£V(r)Jo(Ar)d§—1 ] -
The modified kernel function G(}) is given by
K@)

G(A) = 1+K® . 23)
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T

1.For simpie twa layer earth
2.For transitional boundary

~2n10”

-3l

———— K(L)

ang'b

~sxip 'L

FiG. 2. Graphical representation of K (})

4

/|

100 ’\\
)
N A
50 /

N

FUNCTION™'

RERNEL

— MODIFIED
S
gy
\4
<;>\L

. @1 for tws layer carth
[r (0] for preposed case

NN

E ] R ] . .0 L2 [ X )
— A

FiG. 3. Analysis of K (A)



DIRECT ANALYSIS OF RESISTIVITY KERNEL FUNCTION 111

1 _ 1K)
Gy = Ky W 4

or
) = {Pa(Q)}t €244 (Obtained from equation 20)

According to Pekeris (1940) procedure if we plot | Ai(A)| on a log scale
against A on a linear scale we should get a straight line, if the measurements are being
made on a two-layer earth model. The intercept of the straight line on the ordinate

would give —%—;: %t—i-—%z] and its slope would give the thickness of the upper
layer. The graphical plotting of | £i(a) | is shown in Fig 3. It should be noted
that graphical representation of the kernel function is similar to that of kernel for
a simple two layer case. From Fig. 3 it is observed that we do not get a straight
line, for the kernel calculated from equation (20). Now we proceed further as sug-
gested by Pekeris (1940) to calculate | (M) —1 | and | fa(})—1 | when we get a
straight line closely. Following again the procedure outlined by Pekeris we find
that the kernel curve corresponds to a four layer model earth. The calculated values

of resistivity stratifications are presented in Table I :

TasLe 1

Layers Thickness Conductivity

ratio
Top layer 1.15 2.50=69/061
Second layer 1.50 3.60=g3/c2
Third layer 2.80 1.35=0,/a3
Bottom layer Extending to infinity.

. 1
Comparing the actual model assumed [ h1=1,61=1—1 Gy h2=35 ] from the result

obtained in Table I, the following points are observed.

The Pekeris method of interpretation replaces the inhomogencous inter-
mediate layer by two homogeneous layers having different conductivities. The
total thickness of this layer (1.504-2.80=4.3, as calculated) is quite in agreement
with the assumed value (4.00). The conductivity ratio of top and bottom layer is
12.1 (as calculated) against assumed value 11.

The calculated value of thicknesses and conductivity ratio of the top and
bottom layer are different from the actual values by a small amount. These infor-
mation, again, are reproduced in the Fig. 4.

DiscUsSION AND CONCLUDING REMARKS

This paper deals with the practical occurrence of conductivity inhomogeneity
in geologic section and its interpretation by direct method. As discussed by Koefoed
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FiG. 4. Plot of calculated and assumed values for layer thickness
and conductivity ratios

(1965, 1966), the direct method involves two steps, i.e., the determination of the
kernel function from apparent resistivity observations and analysis of the kernel
function to reveal the resistivity stratification. The content of the present paper
concerns only to the second part, assuming that the kernel curve for transitional
boundary is available.

The analysis proceeds by taking a model inhomogeneity representation
(equations 1 and 2) compatible with the geologically relevant situation, considered
by Mallick and Roy (1968). The potential in the different layers are written down.
By making use of the boundary conditions, the value of the kernel functions (equations
18 and 19) are derived. Analysis of the kernel function is performed as discussed by
Pekeris (1940). The main results are :

The kernel curve for a two-layer earth with sharp boundary, and that for
transition boundary (see Fig.2) in between, possess similar characteristics. How-
ever, on analyzing the kernel curve for a transition boundary, using Pekeris method,
the transition layer is shown to be replaced by two homogeneous layers with different
conductivity values. As such, the method does not reveal the presence of actual -
inhomogeneity, but brings out an equivalent model.

This theoretical analysis is significant in showing that, by looking at the
kernel curves (Fig. 2) one cannot in general distinguish between two distinct cases of
sharp and transition boundaries. The interpretation of kernel curve for sharp
boundary proves useful. However, the method fails in case of inhomogeneity. If
one assumes an earth model as depicted in Fig. 4 by the dotted line, and determines
the corresponding kernel curve, it would closely fit with curve 2 of Fig. 2 (for a
transition boundary). This is pertinent to the phenomenon of ‘Principle of
Equivalence’. Although the problem of calculation of kernel curve from apparent
resistivity observation has been overcome to a great extent (Koefoed 1965, 1966),
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the determination of resistivity stratification from kernel curve remains in the
same stage, as was developed by Pekeris (1940).
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