On the number of extreme measures with fixed marginals

M.G.Nadkarni and K.Gowri Navada

Introduction:

In his paper [3], K. R. Parthasarathy gives a bound for the number of extreme points of the convex set of all G - invariant probability measures on $X \times Y$ with given marginals of full support. The purpose of this paper is to improve this bound.

Section 1:

Let X and Y be finite sets with $|X|=m$ and $|Y|=n$. Let G be a group acting on X and Y. Let G act on $X \times Y$ by $g(x, y)=$ $(g(x), g(y))$ for all $g \in G$ and $(x, y) \in X \times Y$. Let X / G be the set of G orbits of X. Write $|X / G|=m_{1},|Y / G|=n_{1}$ and $|(X \times Y) / G|=m_{12}$. Let π_{1} and π_{2} denote the projection maps from $X \times Y$ to X and Y respectively. The sets $G(x), G(y)$ and $G(x, y)$ respectively denote the G-orbits of $x \in X, y \in Y$ and $(x, y) \in X \times Y$.

Let μ_{1} and μ_{2} be G - invariant probability measures with full support on X and Y respectively. Then $K\left(\mu_{1}, \mu_{2}\right)$ denotes the convex set of all G-invariant probability measures μ on $X \times Y$ with marginals μ_{1} and μ_{2}. Note that for any measure $\mu \in K\left(\mu_{1}, \mu_{2}\right)$, the support $S(\mu)$ of μ is G - invariant. Let $E\left(\mu_{1}, \mu_{2}\right)$ denote the set of extreme points of $K\left(\mu_{1}, \mu_{2}\right)$. In [3], K.R.Parthasarathy gives an estimate for the number of points in $E\left(\mu_{1}, \mu_{2}\right)$:

$$
\left|\mathbf{E}\left(\mu_{1}, \mu_{2}\right)\right| \leq \sum_{\max \left(m_{1}, n_{1}\right) \leq r \leq m_{1}+n_{1}}\binom{m_{12}}{r}
$$

. In this note we prove that

$$
\begin{equation*}
\left|\mathbf{E}\left(\mu_{1}, \mu_{2}\right)\right| \leq\binom{ m_{12}}{m_{1}+n_{1}-1} \tag{1}
\end{equation*}
$$

which considerably improves the above bound. Indeed $\binom{m_{12}}{m_{1}+n_{1}-1}$ is one of the terms in the above sum. Moreover, if G acts trivially or if number of G orbits in $G(x) \times G(y)$ is independent of x and y, then

$$
\left|E\left(\mu_{1}, \mu_{2}\right)\right| /\binom{m_{12}}{m_{1}+n_{1}-1} \longrightarrow 0 \quad \text { as } m_{1}, n_{1} \longrightarrow \infty
$$

In [3], K.R. Parthasarathy has proved the following theorem:
Theorem ([3], Theorem 3.5): A probability measure $w \in K\left(\mu_{1}, \mu_{2}\right)$ is extreme if and only if there is no nonzero real valued function ζ on $S(w)$ such that
(i) $\zeta(g(x), g(y))=\zeta(x, y)$ for all $(x, y) \in S(w), g \in G$;
(ii) $\sum_{y} \zeta(x, y) w(x, y)=0$ for all x;
(iii) $\sum_{x} \zeta(x, y) w(x, y)=0$ for all y.

Definition : A G - invariant subset $S \subset X \times Y$ is said to be G good if any G - invariant real (or complex) valued function f defined on S can be written as $f(x, y)=u(x)+v(y)$ for all $(x, y) \in S$ for some G-invariant functions u and v on X and Y respectively.

Proposition 1: The support $S=S(\mu)$ of a measure $\mu \in$ $K\left(\mu_{1}, \mu_{2}\right)$ is G-good if and only if $\mu \in E\left(\mu_{1}, \mu_{2}\right)$.

Proof: Let $\mu \in E\left(\mu_{1}, \mu_{2}\right)$ and assume that S is not $G-$ good. Then there exists a G - invariant function f on S which cannot be written as $f=u+v$ where u and v are G - invariant. Let $L_{G}^{2}(S, \mu)$ denote the Hilbert space of all G-invariant functions defined on S. Let $\Lambda \subset L_{G}^{2}(S, \mu)$ denote the set of all G - invariant functions f which have representation $f=u+v$ with $u, v G$-invariant functions on X and Y respectively. Then Λ is a proper subspace of $L_{G}^{2}(S, \mu)$. Hence there exists a nonzero $\zeta \in L_{G}^{2}(S, \mu)$ which is orthogonal to Λ. Then

$$
\sum \zeta(x, y) u(x) \mu(x, y)=0 \text { and } \sum \zeta(x, y) v(y) \mu(x, y)=0
$$

for all G-invariant u and v defined on X and Y respectively. In particular

$$
\sum_{X} u(x) \sum_{Y} \zeta(x, y) \mu(x, y)=0
$$

for all G-invariant u on X. For any $x_{0} \in X$, taking $u(x)=1$ on $G\left(x_{0}\right)$ and $u(x)=0$ on all other orbits in X, we get

$$
\sum_{Y} \zeta\left(x_{0}, y\right) \mu\left(x_{0}, y\right)=0
$$

Hence

$$
\sum_{Y} \zeta(x, y) \mu(x, y)=0
$$

for all x and similarly,

$$
\sum_{X} \zeta(x, y) \mu(x, y)=0
$$

for all y which contradicts the theorem above. Conversely, suppose S is G-good. Then $\Lambda=L_{G}^{2}(S, \mu)$. Let $\zeta \in L_{G}^{2}(S, \mu)$ satisfy the conditions of the above theorem with respect to the measure μ. Let $f \in L_{G}^{2}(S, \mu)$ be any function. Then f can be written as $f=u+v$, for some G-invariant functions u and v on X and Y respectively. By condition (ii) of the above theorem,

$$
\sum_{X \times Y} u(x) \zeta(x, y) \mu(x, y)=\sum_{x} u(x) \sum_{y} \zeta(x, y) \mu(x, y)=0 .
$$

Similarly by (iii),

$$
\sum \zeta(x, y) v(y) \mu(x, y)=0
$$

Both these equations together imply

$$
\sum \zeta(x, y) f(x, y) \mu(x, y)=0
$$

Since f is arbitrary in $L_{G}^{2}(S, \mu), \zeta=0$. By the above theorem $\mu \in$ $E\left(\mu_{1}, \mu_{2}\right)$, which proves the proposition.

Remark 1: For any $x \in X$ and $y \in Y$, the G-invariant set $G(x) \times G(y)$ can be written as union of G - orbits on $X \times Y$ whose first projection is $G(x)$ and second projection is $G(y)$.
$G(x) \times G(y)=\cup\left\{G(z, w) \mid \pi_{1}(G(z, w))=G(x)\right.$ and $\left.\pi_{2}(G(z, w))=G(y)\right\}$.
This is because the orbit $G(z, w)$ of $(z, w) \in X \times Y$ has $\pi_{1}(G(z, w))=$ $G(x)$ and $\pi_{2}(G(z, w))=G(y)$ if and only if $G(z, w) \subset G(x) \times G(y)$.

Remark 2: If S is a G - good set then $(G(x) \times G(y)) \cap S$ contains atmost one G - orbit. This is because S cannot contain two distinct orbits with the same projections: for, if $G(z, w)$ and $G(a, b)$ are two such orbits with $\pi_{1}(G(z, w))=\pi_{1}(G(a, b))=G(x)$ and $\pi_{2}(G(z, w))$ $=\pi_{2}(G(a, b))=G(y)$ then for any $G-$ invariant $f=u+v$ defined
on S with $f(z, w) \neq f(a, b)$ we will have $f(z, w)=u(z)+v(w)=$ $u(x)+v(y)$ and similarly, $f(a, b)=u(x)+v(y)$, a contradiction.

Section 2:

Let X_{1} and Y_{1} be two finite sets with $\left|X_{1}\right|=m_{1}$ and $\left|Y_{1}\right|=n_{1}$. A subset $S \subset X_{1} \times Y_{1}$ is called good (ref. [1]) if every real (or complex) valued function f on S can be expressed in the form

$$
f(x)=u(x)+v(x) \text { for all }(x, y) \in S
$$

Let $X_{1}=X / G$ and $Y_{1}=Y / G$. Then $X_{1} \times Y_{1}$ can be identified with a set whose points are $G(x) \times G(y), x \in X, y \in Y$. The G-invariant functions on X and on Y are in one-to-one correspondence with the functions on X_{1} and Y_{1} respectively.

Let $\widetilde{S} \subset(X \times Y) / G$ denote the set of all G-orbits in a G-invariant subset S of $X \times Y$. Define $\phi: \widetilde{S} \longrightarrow X_{1} \times Y_{1}$ by $\phi(G(x, y))=$ $G(x) \times G(y)$.

One can show that subsets of good sets are good and every good set $S \subset X_{1} \times Y_{1}$ is contained in a maximal good subset of $X_{1} \times Y_{1}$. Further every maximal good set of $X_{1} \times Y_{1}$ contains $m_{1}+n_{1}-1$ elements. (ref [1])

Proposition 2: A-invariant subset $S \subset X \times Y$ is G-good if and only if ϕ is one-to-one on \widetilde{S} and $\phi(\widetilde{S})$ is good in $X_{1} \times Y_{1}$. Further, S is maximal G-good set if and only if ϕ is one-to-one on S and $\phi(\widetilde{S})$ is maximal good set in $X_{1} \times Y_{1}$.

Proof: Assume S is G-good. By remark 2, if S is G - good, then ϕ is one-to-one on \widetilde{S}. Let f be any real (or complex) valued function defined on $\phi(\widetilde{S})$. Define g on \widetilde{S} by $g=f \circ \phi$. This map g gives rise to a G-invariant map on S, again denoted by g. Writing $g=u+v$, where u and v are G-invariant functions on X and Y respectively, and noting that u and v are constant on each orbit, we can define \widetilde{u} and \widetilde{v} on X_{1} and Y_{1} by $\widetilde{u}(G(x))=u(x)$ and $\widetilde{v}(G(y))=v(y)$. It is easy to see that $f=\widetilde{u}+\widetilde{v}$. So $\phi(\widetilde{S})$ is good. Conversely, let $S \subset X \times Y$ be such that ϕ is one-to-one on \widetilde{S} and $\phi(\widetilde{S})$ is good. Since ϕ is one-to-one, any $G(x) \times G(y)$ intersects S in atmost one orbit. Given a function g on S we can define f on $\phi(\widetilde{S})$ as $f=g \circ \phi^{-1}$. Since f is defined on the good set $\phi(\widetilde{S})$ we can write f as $f=\widetilde{u}+\widetilde{v}$ where $\widetilde{u}, \widetilde{v}$ are defined on $\pi_{1}(\phi(\widetilde{S}))$ and $\pi_{2}(\phi(\widetilde{S}))$ respectively. Defining $u(x)=\widetilde{u}(G(x))$ and
$v(y)=\widetilde{v}(G(y))$ we get G - invariant functions u and v with $g=u+v$. Now suppose S is a maximal G-good set. We know from the first part of the theorem that ϕ is one-to-one on \widetilde{S}. If $\phi(\widetilde{S})$ is not a maximal good set, there exists a point, say $G(a) \times G(b) \notin \phi(\widetilde{S})$, such that $\phi(\widetilde{S}) \cup\{G(a) \times G(b)\}$ is good. Then, since $\{G(a) \times G(b)\} \cap S=\emptyset$, the map ϕ is one-to-one on \widetilde{T} where $T=G(a, b) \cup S$. Using the first part of the theorem, T is G-good contradicting the maximality of S. The converse can be proved in a similar manner. This completes the proof of the proposition.

By corollary 3.6 of [3], different extreme points of $K\left(\mu_{1}, \mu_{2}\right)$ have distinct supports. As pointed out by the referee, this fact is also a consequence of proposition 1: Assume that $\mu, \nu \in E\left(\mu_{1}, \mu_{2}\right)$, with $\mu \neq \nu$, having the same support S. By proposition $1 S$ is G-good. But this is a contradiction since S is also the support of $(\mu+\nu) / 2$, which is not extreme. Further, for μ and $\nu \in E\left(\mu_{1}, \mu_{2}\right)$ the measure $(\mu+\nu) / 2 \in K\left(\mu_{1}, \mu_{2}\right)$ is not extreme, and so by Proposition 1 its support $S(\mu) \cup S(\nu)$ is not a $G-\operatorname{good}$ set. Further, for μ and $\nu \in E\left(\mu_{1}, \mu_{2}\right)$ the measure $(\mu+\nu) / 2 \in K\left(\mu_{1}, \mu_{2}\right)$ is not extreme, and so by Proposition 1 its support $S(\mu) \cup S(\nu)$ is not a G - good set. This shows that supports of different measures in $E\left(\mu_{1}, \mu_{2}\right)$ are contained in different maximal G-good sets of $X \times Y$: Because, if $\mu \neq \nu \in E\left(\mu_{1}, \mu_{2}\right)$ such that $S(\mu) \subset S$ and $S(\nu) \subset S$ for some maximal G-good set S then the measure $(\mu+\nu) / 2 \in K\left(\mu_{1}, \mu_{2}\right)$ has its support $S(\mu) \cup S(\nu)$ contained in S. Since S is G-good, $S(\mu) \cup$ $S(\nu)$ is also G-good a contradiction to proposition 1 as $(\mu+\nu) / 2$ is not extreme. Therefore, $\left|E\left(\mu_{1}, \mu_{2}\right)\right|$ is bounded by the number of maximal G-good sets of $X \times Y$.

Let S be a maximal G-good set in $X \times Y$. By Proposition 2, $\phi(\widetilde{S})$ is a maximal good set in $X_{1} \times Y_{1}$. Since ϕ is one-to-one on \widetilde{S}, \widetilde{S} contains $m_{1}+n_{1}-1$ orbits of G. Since the number of orbits in $X \times Y$ is m_{12}, and any maximal G-good set in $X \times Y$ is of the form $\phi(\widetilde{S})$, the total number of maximal G-good sets in $X \times Y$ is less than or equal to $\binom{m_{12}}{m_{1}+n_{1}-1}$. This proves (1).

We give an example to show that the above bound is sharp. Let G be the group S_{n}, the permutation group on n elements. Let $X=\{1,2, \ldots, n\}$ and Y be the set S_{n}. Here $|X|=n$ and $|Y|=n!$. Then G acts on X in the obvious manner and on Y by $g(h)=g \circ h$. The only G - invariant subset of X is X itself and the only G - invariant subset of Y is Y itself. Then G also acts on $X \times Y$ diagonally. That is, $g(x, y)=$ $(g(x), g(y))$. For any $(x, y) \in X \times Y$, the set $G(x, y)=\{(g(x), g(y)) \mid g \in G\}$ is a G - invariant subset of $X \times Y$ with n ! number of elements and
$G(x) \times G(y)$ is the whole set $X \times Y$. In this case, $|X / G|=m_{1}=1$ and $|Y / G|=n_{1}=1$ and $|(X \times Y) / G|=m_{12}=n$. Therefore, $\binom{m_{12}}{m_{1}+n_{1}-1}=n$.

The only G - invariant probability measures on X and Y are uniform measures. That is, $\mu_{1}(x)=\frac{1}{n}$ for all $x \in X$ and $\mu_{2}(y)=\frac{1}{n!}$ for all $y \in Y$. So the only G - invariant functions on X and Y are constant functions. If $\mu \in E\left(\mu_{1}, \mu_{2}\right)$, then the support S of μ should be G - good. Any G - invariant function f defined on S, can be written as $f=u+v$ where u, v are G - invariant functions on X and Y respectively. This shows that f must be constant, which means S consists of a single orbit, say $S=G(x, y)$. Then $\mu\left((g(x), g(y))=\frac{1}{n!}\right.$ for all $g \in G$. Observe that the collection $\{g(y) \mid g \in G\}$ has all n ! different elements whereas in the collection $\{g(x) \mid g \in G\}$ every value of $g(x)$ is repeated $(n-1)$! times. This shows that every such uniform measure μ supported on any single orbit $G(x, y)$ has marginals μ_{1} and μ_{2}. Since there are n orbits in $X \times Y$, we get $\left|E\left(\mu_{1}, \mu_{2}\right)\right|=n$.

Now we state some results about good subsets of $X_{1} \times Y_{1}$ not necessarily G-good sets (ref. [1], [2]).

Consider any two points $(x, y),(z, w) \in S \subset X_{1} \times Y_{1}$ where S is any (not necessarily good) subset of $X_{1} \times Y_{1}$. We say that $(x, y),(z, w)$ are linked if there exists a sequence of points $\left(x_{1}, y_{1}\right)=$ $(x, y),\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)=(z, w)$ of points of S such that
(i) for any $1 \leq i \leq n-1$ exactly one of the following equalities hold:
$x_{i}=x_{i+1}$ or $y_{i}=y_{i+1} ;$
(ii) if $x_{i}=x_{i+1}$ then $y_{i+1}=y_{i+2}$, and if $y_{i}=y_{i+1}$ then $x_{i+1}=$ $x_{i+2}, 1 \leq i \leq n-2$.

We also call this a link joining (x, y) to (z, w). A nontrivial link joining (x, y) to itself is called a loop.

Theorem (ref. [1], cor. 4.11): A subset $S \subset X_{1} \times Y_{1}$ is good if and only if S contains no loops.

Remark 3: Let the orbits in \widetilde{S} be

$$
G\left(x_{1}, y_{1}\right), G\left(x_{2}, y_{2}\right), \ldots, G\left(x_{m_{1}+n_{1}-1}, y_{m_{1}+n_{1}-1}\right) .
$$

Then $S \cap\left(G\left(x_{i}\right) \times G\left(y_{i}\right)\right)=G\left(x_{i}, y_{i}\right)$ for $1 \leq i \leq m_{1}+n_{1}-1$. Let $G(z, w)$ be any other orbit in $G\left(x_{i}\right) \times G\left(\overline{y_{i}}\right)$ and let $S^{\prime}=(S \backslash$ $\left.G\left(x_{i}, y_{i}\right)\right) \cup G(z, w)$. It is clear that S^{\prime} is maximal G-good set with $\phi(\widetilde{S})=\phi\left(\widetilde{S^{\prime}}\right)$. If α_{i} denote the number of orbits in $G\left(x_{i}\right) \times G\left(y_{i}\right)$, then there are $\alpha_{1} \alpha_{2} \ldots \alpha_{m_{1}+n_{1}-1}$ many maximal G-good sets in $X \times$ Y with image $\phi(\widetilde{S})$ under ϕ.

It seems likely that $\left|E\left(\mu_{1}, \mu_{2}\right)\right| /\binom{m_{12}}{m_{1}+n_{1}-1} \longrightarrow 0 \quad$ as $m_{1}, n_{1} \longrightarrow$ ∞. We show this in the case $G=(e)$ and more generally when number of G orbits in $G(x) \times G(y)$ is independent of x and y. For that we first prove the following theorem.

Theorem: Let $X=\left\{x_{1}, x_{2}, \ldots x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$ be two finite sets. Then
(i) the number of maximal good sets contained in $X \times Y$ is $m^{n-1} n^{m-1}$.
(ii) the number of maximal good sets among them with exactly k fixed points, (say $\left(x_{i}, y_{j_{1}}\right), \ldots\left(x_{i}, y_{j_{k}}\right)$) having a fixed first coordinate say x_{i} is : $k n^{m-2}(m-1)^{n-k}, 1 \leq k \leq n$.
(iii) the number of maximal good sets with exactly k fixed points having a fixed second coordinate say y_{j} is: ${k m^{n-2}(n-1)^{m-k}, 1 \leq}$ $k \leq m$.

Proof: We use induction on $m+n$. The result is true for $m=1$ and $n=1$. Assume the result for all values of $|X| \leq m$ and $|Y| \leq n$. We prove the result for $|X|=m$ and $|Y|=n+1$. Let $\bar{X}=\left\{x_{1}, x_{2}, \ldots x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots y_{n}, y_{n+1}\right\}$. Consider a $m \times(n+1)$ grid of $m(n+1)$ cells with m rows corresponding to $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $n+1$ columns correspondiong to $\left\{y_{1}, y_{2}, \ldots, y_{n+1}\right\}$ Associate (i, j) th cell with the point $\left(x_{i}, y_{j}\right) \in X \times Y$. We say that $\left(x_{i}, y_{j}\right) \in(i, j)$ th cell.

To prove (iii) let S be a maximal good set in $X \times Y$. Then $|S|=m+n$. Suppose S contains exactly k points with fixed second coordinate, say y_{n+1}. Without loss of generality we assume them to be $\left(x_{1}, y_{n+1}\right),\left(x_{2}, y_{n+1}\right), \ldots\left(x_{k}, y_{n+1}\right)$. Denote

$$
K=\left\{\left(x_{1}, y_{n+1}\right),\left(x_{2}, y_{n+1}\right), \ldots\left(x_{k}, y_{n+1}\right)\right\} .
$$

(i) Atleast one of these first k rows contain atleast two points of S, i.e., there exist a point $\left(x_{i}, y_{j}\right)$ of S with $1 \leq i \leq k$ and $1 \leq j \leq n$.

Proof: Otherwise leaving these k rows and the last column, the remaining points of S will be a good set with $m+n-k$ points using $m+n-k$ coordinates which is not possible.
(ii) If $\left(x_{i}, y_{j}\right) \in S$ with $1 \leq i \leq k$ and $1 \leq j \leq n$. Then the j the column (which contains the point $\left(x_{i}, y_{j}\right)$) has no other point $\left(x_{l}, y_{j}\right)$ of S with $1 \leq l \neq i \leq k$ because the four points $\left\{\left(x_{i}, y_{j}\right),\left(x_{i}, y_{n+1}\right),\left(x_{l}, y_{n+1}\right),\left(x_{l}, y_{j}\right)\right\}$ form a loop.
(iii) Suppose $\left(x_{i}, y_{j}\right) \in S$ for some $1 \leq i \leq k$ and $1 \leq j \leq n$. Then the set got by dropping the point $\left(x_{i}, y_{j}\right)$ and adding $\left(x_{l}, y_{j}\right), 1 \leq$ $l \neq i \leq k$ to S clearly contain no loop and so is maximal good.

Let S^{\prime} be the maximal good set obtained in this way by replacing all the points $\left(x_{i}, y_{j}\right), 1 \leq i \leq k$ and $1 \leq j \leq n$ of S by $\left(x_{1}, y_{j}\right), 1 \leq$ $j \leq n$.

Then each of the rows corresponding to x_{2}, \ldots, x_{k} contains exactly one point of S^{\prime}. The set $S^{\prime \prime}$ got from S^{\prime} by dropping these rows and the last column will be a maximal good set in $\left\{x_{1}, x_{k+1}, \ldots, x_{m}\right\} \times$ $\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$ and contains $m+n-k$ elements.

By induction hypothesis, the number of maximal good sets in $\left\{x_{1}, x_{k+1}, \ldots, x_{m}\right\} \times\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$ having exactly r points in r fixed positions in the first row, is: $r n^{m-k-1}(m-k)^{n-r}$, for $1 \leq r \leq n$. Consider any such maximal good set, say A. Further add the dropped rows and the last column. Enlarge A by adding the first k points of the $(n+1)$ th column, call this set B. It is a maximal good set in $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \times\left\{y_{1}, y_{2}, \ldots y_{n+1}\right\}$. Any point $\left(x_{1}, y_{j}\right), 1 \leq j \leq n$ in B can be replaced by $\left(x_{l}, y_{j}\right)$, for any $1 \leq l \leq k$ and the resulting set will continue to remain maximal good in $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \times$ $\left\{y_{1}, y_{2}, \ldots y_{n+1}\right\}$. In this way each one of $r n^{m-k-1}(m-k)^{n-r}$ maximal good set A gives rise to k^{r} maximal good sets in the original $m \times(n+1)$ matrix. . Further, we can choose the r points in the first row in $\binom{n}{r}$ ways . Adding over r, the total number of maximal good sets with exactly k cells in k fixed positions of the last column is:

$$
\begin{gathered}
\sum_{r=1}^{n}\binom{n}{r} k^{r} r n^{m-k-1}(m-k)^{n-r}=k n^{m-k-1} n \sum_{r=0}^{n-1}\binom{n-1}{r} k^{r-1}(m-k)^{n-r} \\
=k n^{m-k}(m-k+k)^{n-1}=k n^{m-k} m^{n-1}
\end{gathered}
$$

which is (iii) for $m \times(n+1)$ matrix.
To prove (i), since we can choose the k points in the last column in $\binom{m}{k}$ ways, the total number of maximal good sets with exactly k points from the last column is: $\binom{m}{k} k n^{m-k} m^{n-1}$. The total number of maximal good sets in $X \times Y$ is got by adding these numbers as k varies from 1 to m :

$$
\sum_{k=1}^{m}\binom{m}{k} k n^{m-k} m^{n-1}=\sum_{k=0}^{m-1}\binom{m-1}{k} n^{m-k-1} m^{n}=m^{n}(n+1)^{m-1}
$$

(ii) can be proved in a similar way as (iii). This completes the proof of the theorem.

Next, we prove that as $m, n \rightarrow \infty$ the ratio $m^{n-1} n^{m-1} /\binom{m n}{m+n-1} \rightarrow$ 0 as $m, n \rightarrow \infty$.

$$
\begin{gathered}
\lim _{m, n \rightarrow \infty} m^{n-1} n^{m-1} /\binom{m n}{m+n-1}= \\
\lim _{m, n \rightarrow \infty} m^{n-1} n^{m-1}(m+n-1)!((m n-m-n+1)!/(m n)!
\end{gathered}
$$

By Sterling's formula, we know that $n!\sim \frac{\sqrt{2 \pi} n^{n+\frac{1}{2}}}{e^{n}}$ for large n.
Using this expression one can show that
$m^{n-1} n^{m-1} /\binom{m n}{m+n-1} \leq C \frac{\left(1-\frac{1}{m}\right)^{m n}\left(1+\frac{n}{m}\right)^{m}\left(1-\frac{1}{n}\right)^{m n}\left(1+\frac{m}{n}\right)^{n}}{\left(1-\frac{1}{m}\right)^{n}\left(1-\frac{1}{n}\right)^{m}(m+n)^{\frac{1}{2}}}$
for some constant C. If $\frac{m}{n} \geq 1$, since $\left(1-\frac{1}{m}\right)^{m}$ increases to e^{-1}, the right hand side of (2) tends to 0 as $m, n \longrightarrow \infty$.

The case where $\frac{m}{n} \leq 1$ is similar because the the expression on the right hand side of (2) is symmetric with respect to m and n.

If $G=(e)$, the maximal G-good sets in $X \times Y$ are just the maximal good sets and the number of maximal good sets, by the previous theorem is, $m^{n-1} n^{m-1}$. In this case $m_{12}=m_{1} n_{1}$. Therefore

$$
\left|E\left(\mu_{1}, \mu_{2}\right)\right| /\binom{m_{12}}{m_{1}+n_{1}-1} \leq m^{n-1} n^{m-1} /\binom{m_{1} n_{1}}{m_{1}+n_{1}-1} \longrightarrow 0
$$

as m and $n \longrightarrow \infty$.
Now suppose that the number of G-orbits in $G(x) \times G(y)$ is a constant, say a, for all x and y. Then by remark 3 , the number of maximal G-good sets in $X \times Y$ is $a^{m_{1}+n_{1}-1} m_{1}^{n_{1}-1} n_{1}^{m_{1}-1}$ and $m_{12}=$ $a m_{1} n_{1}$. Therefore,

$$
\begin{aligned}
& \left|E\left(\mu_{1}, \mu_{2}\right)\right| /\binom{m_{12}}{m_{1}+n_{1}-1} \leq\left(a^{m_{1}+n_{1}-1} m_{1}^{n_{1}-1} n_{1}^{m_{1}-1}\right) /\binom{a m_{1} n_{1}}{m_{1}+n_{1}-1} \\
& \leq\left(a^{m_{1}+n_{1}-1} m_{1}^{n_{1}-1} n_{1}^{m_{1}-1}\right) / a^{m_{1}+n_{1}-1}\binom{m_{1} n_{1}}{m_{1}+n_{1}-1}
\end{aligned}
$$

$$
=\left(m_{1}^{n_{1}-1} n_{1}^{m_{1}-1}\right) /\binom{m_{1} n_{1}}{m_{1}+n_{1}-1} \longrightarrow 0
$$

as m and $n \longrightarrow \infty$.
Note: The maximal good sets in $X \times Y$ can be associated in a one-to-one manner with the spanning trees of a complete bipartite graph. Consider the complete bipartite graph $K_{m, n}$ where $|X|=m$ and $|Y|=n$. A subset $S \subset X \times Y$ is maximal good if and only if $|S|=m+n-1$ and in the grid corresponding to $X \times Y, S$ contains no loops. Construct an $m \times n$ matrix corresponding to any spanning tree T in $\quad K_{m, n}$ as follows: Identifying the elements of X and Y with the veritces of $K_{m, n}$, let $V=(X, Y)$ denote the vertices of $K_{m, n}$. Whenever the edge $\left(x_{i}, y_{j}\right) \in T$, put (i, j) th entry in the matrix equal to one; otherwise (i, j) th entry is zero. Since T is a spanning tree, there are exactly $m+n-1$ nonzero entries in the matrix. As T contains no cycles, the nonzero entries in the matrix donot form a loop. Therefore the nonzero entries of the matrix correspond to a maximal good set in the grid corresponding to $X \times Y$. This correspondence is one-to-one. In [5], it is proved that the number of spanning trees of $K_{m, n}$ is $m^{n-1} n^{m-1}$. But the proof makes use of the determinant of the matrix and is different from the one given here.

Acknowledgement: The second author thanks CSIR for funding the project of which this paper forms a part. Sincere thanks to IMSc, Chennai and ISI, Bangalore for providing short visiting appointments.

References:

[1] Cowsik R C, Klopotowski A and Nadkarni M G, When is $f(x, y)=u(x)+v(y)$?, Proc. Indian Acad. Sci. (Math. Sci.) 109 (1999) 57-64.
[2] Nadkarni M G, Kolmogorov's superposition theorem and sums of algebras, The Journal of Analysis vol. 12 (2004) 21-67.
[3] K. R Parthasarathy, Extreme points of the convex set of joint probability distributions with fixed marginals, Proc. Indian Acad. Sci. (Math. Sci.) 117 (2007) 505-516.
[4] D. B. West, Introduction to Graph Theory, Second Edition, Pearson Education.
[5] Lovasz L., Combinatorial problems and exercises, Second Edition, Elsevier Science Ltd.

Address:

1. Prof. M.G. Nadkarni

Department of Mathematics
University of Mumbai
Kalina Campus, Santacruz East
Mumbai-400098
email: mgnadkarni@gmail.com
2. K. Gowri Navada

Department of Mathematics
Periyar University
Salem-636011
Tamil Nadu
email: gnavada@yahoo.com

