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On the number of extreme
measures with fixed marginals

M.G.Nadkarni and K.Gowri Navada

Introduction:

In his paper [3], K. R. Parthasarathy gives a bound for the num-
ber of extreme points of the convex set of all G− invariant proba-
bility measures on X ×Y with given marginals of full support. The
purpose of this paper is to improve this bound.

Section 1:

Let X and Y be finite sets with |X| = m and |Y | = n. Let G
be a group acting on X and Y. Let G act on X × Y by g(x, y) =
(g(x), g(y)) for all g ∈ G and (x, y) ∈ X×Y. Let X/G be the set of G
orbits of X . Write |X/G| = m1, |Y/G| = n1 and |(X×Y )/G| = m12

. Let π1 and π2 denote the projection maps from X × Y to X and
Y respectively. The sets G(x), G(y) and G(x, y) respectively denote
the G−orbits of x ∈ X, y ∈ Y and (x, y) ∈ X × Y.

Let µ1and µ2 be G− invariant probability measures with full
support on X and Y respectively. Then K (µ1, µ2) denotes the
convex set of all G -invariant probability measures µ on X×Y with
marginals µ1and µ2. Note that for any measure µ ∈ K (µ1, µ2), the
support S(µ) of µ is G− invariant. Let E(µ1, µ2) denote the set of
extreme points of K (µ1, µ2). In [3], K.R.Parthasarathy gives an
estimate for the number of points in E(µ1, µ2) :

|E(µ1, µ2)| ≤
∑

max(m1,n1)≤r≤m1+n1

(
m12

r

)

. In this note we prove that

|E(µ1, µ2)| ≤

(
m12

m1 + n1 − 1

)
(1)

which considerably improves the above bound. Indeed
(

m12

m1+n1−1

)

is one of the terms in the above sum. Moreover, if G acts trivially
or if number of G orbits in G(x)×G(y) is independent of x and y,
then
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|E(µ1, µ2)|/

(
m12

m1 + n1 − 1

)
−→ 0 as m1, n1 −→ ∞.

In [3], K.R. Parthasarathy has proved the following theorem:

Theorem ([3], Theorem 3.5): A probability measure w ∈ K (µ1, µ2)
is extreme if and only if there is no nonzero real valued function ζ
on S(w) such that

(i) ζ(g(x), g(y)) = ζ(x, y) for all (x, y) ∈ S(w), g ∈ G;
(ii)

∑
y ζ(x, y) w(x, y) = 0 for all x;

(iii)
∑

x ζ(x, y) w(x, y) = 0 for all y.

Definition : A G− invariant subset S ⊂ X×Y is said to be G−
good if any G− invariant real (or complex) valued function f defined
on S can be written as f(x, y) = u(x) + v(y) for all (x, y) ∈ S for
some G−invariant functions u and v on X and Y respectively.

Proposition 1: The support S = S(µ) of a measure µ ∈
K(µ1, µ2) is G−good if and only if µ ∈ E (µ1, µ2).

Proof: Let µ ∈ E (µ1, µ2) and assume that S is not G− good.
Then there exists a G− invariant function f on S which cannot be
written as f = u+ v where u and v are G− invariant. Let L2

G(S, µ)
denote the Hilbert space of all G−invariant functions defined on
S. Let Λ ⊂ L2

G(S, µ) denote the set of all G− invariant functions f
which have representation f = u+v with u, v G−invariant functions
on X and Y respectively. Then Λ is a proper subspace of L2

G(S, µ).
Hence there exists a nonzero ζ ∈ L2

G(S, µ) which is orthogonal to Λ.
Then

∑
ζ(x, y)u(x)µ(x, y) = 0 and

∑
ζ(x, y)v(y)µ(x, y) = 0

for all G−invariant u and v defined on X and Y respectively. In
particular ∑

X

u(x)
∑

Y

ζ(x, y)µ(x, y) = 0

for all G−invariant u on X. For any x0 ∈ X, taking u(x) = 1 on
G(x0) and u(x) = 0 on all other orbits in X, we get

∑

Y

ζ(x0, y)µ(x0, y) = 0.
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Hence ∑

Y

ζ(x, y)µ(x, y) = 0

for all x and similarly,
∑

X

ζ(x, y)µ(x, y) = 0

for all y which contradicts the theorem above. Conversely, suppose
S is G−good. Then Λ = L2

G(S, µ). Let ζ ∈ L2
G(S, µ) satisfy the

conditions of the above theorem with respect to the measure µ. Let
f ∈ L2

G(S, µ) be any function. Then f can be written as f = u+ v,
for some G−invariant functions u and v on X and Y respectively.
By condition (ii) of the above theorem,

∑

X×Y

u(x)ζ(x, y)µ(x, y) =
∑

x

u(x)
∑

y

ζ(x, y)µ(x, y) = 0.

Similarly by (iii),
∑

ζ(x, y)v(y)µ(x, y) = 0.

Both these equations together imply
∑

ζ(x, y)f(x, y)µ(x, y) = 0.

Since f is arbitrary in L2
G(S, µ), ζ = 0. By the above theorem µ ∈

E(µ1, µ2), which proves the proposition.

Remark 1: For any x ∈ X and y ∈ Y , the G−invariant set
G(x) × G(y) can be written as union of G− orbits on X × Y whose
first projection is G(x) and second projection is G(y).

G(x)×G(y) = ∪{G(z, w)| π1(G(z, w)) = G(x) and π2(G(z, w)) = G(y)}.

This is because the orbitG(z, w) of (z, w) ∈ X×Y has π1(G(z, w)) =
G(x) and π2(G(z, w)) = G(y) if and only if G(z, w) ⊂ G(x)×G(y).

Remark 2: If S is a G− good set then (G(x)×G(y))∩S contains
atmost one G− orbit. This is because S cannot contain two distinct
orbits with the same projections: for, if G(z, w) and G(a, b) are two
such orbits with π1(G(z, w)) = π1(G(a, b)) = G(x) and π2(G(z, w))
= π2(G(a, b)) = G(y) then for any G− invariant f = u + v defined
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on S with f(z, w) 6= f(a, b) we will have f(z, w) = u(z) + v(w) =
u(x) + v(y) and similarly, f(a, b) = u(x) + v(y), a contradiction.

Section 2:

Let X1 and Y1 be two finite sets with |X1| = m1 and |Y1| = n1. A
subset S ⊂ X1×Y1 is called good (ref. [1]) if every real (or complex)
valued function f on S can be expressed in the form

f(x) = u(x) + v(x) for all (x, y) ∈ S

Let X1 = X/G and Y1 = Y/G. Then X1 × Y1 can be identi-
fied with a set whose points are G(x) × G(y), x ∈ X, y ∈ Y. The
G−invariant functions on X and on Y are in one-to-one correspon-
dence with the functions on X1 and Y1 respectively.

Let S̃ ⊂ (X×Y )/G denote the set of allG−orbits in aG−invariant

subset S of X × Y. Define φ : S̃ −→ X1 × Y1 by φ(G(x, y)) =
G(x)×G(y).

One can show that subsets of good sets are good and every good
set S ⊂ X1 × Y1 is contained in a maximal good subset of X1 × Y1.
Further every maximal good set of X1 × Y1 contains m1 + n1 − 1
elements. (ref [1])

Proposition 2: A G−invariant subset S ⊂ X × Y is G−good

if and only if φ is one-to-one on S̃ and φ(S̃ ) is good in X1 × Y1.
Further, S is maximal G−good set if and only if φ is one-to-one on

S and φ(S̃ ) is maximal good set in X1 × Y1.

Proof: Assume S is G−good. By remark 2, if S is G− good,

then φ is one-to-one on S̃. Let f be any real (or complex) valued

function defined on φ(S̃ ). Define g on S̃ by g = f ◦ φ. This map g
gives rise to a G−invariant map on S, again denoted by g. Writing
g = u + v, where u and v are G−invariant functions on X and Y
respectively, and noting that u and v are constant on each orbit,
we can define ũ and ṽ on X1 and Y1 by ũ(G(x)) = u(x) and

ṽ(G(y)) = v(y). It is easy to see that f = ũ+ ṽ. So φ(S̃) is
good. Conversely, let S ⊂ X × Y be such that φ is one-to-one

on S̃ and φ(S̃ ) is good. Since φ is one-to-one, any G(x) × G(y)
intersects S in atmost one orbit. Given a function g on S we can

define f on φ(S̃) as f = g ◦ φ−1. Since f is defined on the good

set φ(S̃) we can write f as f = ũ+ ṽ where ũ, ṽ are defined on

π1(φ(S̃)) and π2(φ(S̃)) respectively. Defining u(x) = ũ(G(x)) and
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v(y) = ṽ(G(y)) we getG− invariant functions u and v with g = u+v.
Now suppose S is a maximal G−good set. We know from the first
part of the theorem that φ is one-to-one on S̃. If φ(S̃ ) is not a

maximal good set, there exists a point, say G(a)×G(b) /∈ φ(S̃ ), such

that φ(S̃)∪{G(a)×G(b)} is good. Then, since {G(a)×G(b)}∩S = ∅,

the map φ is one-to-one on T̃ where T = G(a, b)∪S. Using the first
part of the theorem, T is G−good contradicting the maximality of
S. The converse can be proved in a similar manner. This completes
the proof of the proposition.

By corollary 3.6 of [3], different extreme points of K(µ1, µ2) have
distinct supports. As pointed out by the referee, this fact is also a
consequence of proposition 1: Assume that µ, ν ∈ E (µ1, µ2), with
µ 6= ν, having the same support S. By proposition 1 S is G−good.
But this is a contradiction since S is also the support of (µ + ν)/2,
which is not extreme. Further, for µ and ν ∈ E (µ1, µ2) the measure
(µ + ν)/2 ∈ K (µ1, µ2) is not extreme, and so by Proposition 1 its
support S(µ) ∪ S(ν) is not a G− good set. Further, for µ and
ν ∈ E (µ1, µ2) the measure (µ + ν)/2 ∈ K (µ1, µ2) is not extreme,
and so by Proposition 1 its support S(µ) ∪ S(ν) is not a G− good
set. This shows that supports of different measures in E(µ1, µ2) are
contained in different maximal G−good sets of X × Y : Because,
if µ 6= ν ∈ E (µ1, µ2) such that S(µ)⊂ S and S(ν)⊂ S for some
maximal G−good set S then the measure (µ+ ν)/2 ∈ K (µ1, µ2) has
its support S(µ) ∪ S(ν) contained in S. Since S is G−good, S(µ) ∪
S(ν) is also G−good a contradiction to proposition 1 as (µ + ν)/2
is not extreme. Therefore, |E(µ1, µ2)| is bounded by the number of
maximal G−good sets of X × Y.

Let S be a maximal G−good set in X × Y . By Proposition 2,
φ(S̃) is a maximal good set in X1 × Y1. Since φ is one-to-one on S̃,

S̃ contains m1 + n1 − 1 orbits of G. Since the number of orbits in
X×Y is m12, and any maximal G−good set in X×Y is of the form

φ(S̃ ), the total number of maximal G−good sets in X × Y is less
than or equal to

(
m12

m1+n1−1

)
. This proves (1).

We give an example to show that the above bound is sharp.
Let G be the group Sn, the permutation group on n elements. Let
X = {1, 2, ..., n} and Y be the set Sn . Here |X| = n and |Y | = n!. Then
G acts on X in the obvious manner and on Y by g(h) = g ◦h. The only
G− invariant subset of X is X itself and the only G− invariant subset
of Y is Y itself. Then G also acts on X×Y diagonally. That is, g(x, y) =
(g(x), g(y)). For any (x, y) ∈ X × Y, the set G(x, y) = {(g(x), g(y))|g ∈ G}
is a G− invariant subset of X × Y with n! number of elements and
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G(x) × G(y) is the whole set X × Y. In this case, |X/G| = m1 = 1 and
|Y/G| = n1 = 1 and |(X × Y )/G| = m12 = n. Therefore,

(
m12

m1+n1−1

)
= n.

The only G− invariant probability measures on X and Y are uni-
form measures. That is, µ1(x) =

1

n
for all x ∈ X and µ2(y) =

1

n!
for all

y ∈ Y. So the only G− invariant functions on X and Y are constant
functions. If µ ∈ E(µ1, µ2), then the support S of µ should be G− good.
Any G− invariant function f defined on S, can be written as f = u+v
where u, v are G− invariant functions on X and Y respectively. This
shows that f must be constant, which means S consists of a single
orbit, say S = G(x, y). Then µ((g(x), g(y)) = 1

n!
for all g ∈ G. Observe

that the collection {g(y)|g ∈ G} has all n! different elements whereas
in the collection {g(x)|g ∈ G} every value of g(x) is repeated (n − 1)!
times. This shows that every such uniform measure µ supported on
any single orbit G(x, y) has marginals µ1 and µ2. Since there are n
orbits in X × Y, we get |E(µ1, µ2)| = n.

Now we state some results about good subsets of X1 × Y1 not
necessarily G-good sets ( ref. [1], [2] ).

Consider any two points (x, y), (z, w) ∈ S ⊂ X1 × Y1 where
S is any (not necessarily good) subset of X1 × Y1. We say that
(x, y), (z, w) are linked if there exists a sequence of points (x1, y1) =
(x, y), (x2, y2)...(xn, yn) = (z, w) of points of S such that

(i) for any 1 ≤ i ≤ n − 1 exactly one of the following equalities
hold:

xi = xi+1 or yi = yi+1;
(ii) if xi = xi+1 then yi+1 = yi+2, and if yi = yi+1 then xi+1 =

xi+2, 1 ≤ i ≤ n− 2.
We also call this a link joining (x, y) to (z, w). A nontrivial link

joining (x, y) to itself is called a loop.

Theorem (ref. [1], cor. 4.11): A subset S ⊂ X1 × Y1 is good if
and only if S contains no loops.

Remark 3: Let the orbits in S̃ be

G(x1, y1), G(x2, y2), ..., G(xm1+n1−1, ym1+n1−1).

Then S ∩ (G(xi) × G(yi)) = G(xi, yi) for 1 ≤ i ≤ m1 + n1 − 1.
Let G(z, w) be any other orbit in G(xi) × G(yi) and let S ′ = (S \
G(xi, yi))∪ G(z, w). It is clear that S ′ is maximal G−good set with

φ(S̃) = φ(S̃ ′). If αi denote the number of orbits in G(xi) × G(yi),
then there are α1α2... αm1+n1−1 many maximal G−good sets in X×

Y with image φ(S̃) under φ.
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It seems likely that |E(µ1, µ2)|/
(

m12

m1+n1−1

)
−→ 0 as m1, n1 −→

∞. We show this in the case G = (e) and more generally when
number of G orbits in G(x)×G(y) is independent of x and y. For
that we first prove the following theorem.

Theorem: Let X = {x1, x2, ...xm} and Y = {y1, y2, ...yn} be two
finite sets. Then

(i) the number of maximal good sets contained in X × Y is
mn−1nm−1.

(ii) the number of maximal good sets among them with exactly k
fixed points, (say (xi, yj1), ...(xi, yjk) ) having a fixed first coordinate
say xi is : knm−2(m− 1)n−k, 1 ≤ k ≤ n.

(iii) the number of maximal good sets with exactly k fixed points
having a fixed second coordinate say yj is: kmn−2(n − 1)m−k, 1 ≤
k ≤ m.

Proof: We use induction on m+n. The result is true for m = 1
and n = 1. Assume the result for all values of |X| ≤ m and
|Y | ≤ n. We prove the result for |X| = m and |Y | = n + 1.
Let X = {x1, x2, ...xm} and Y = {y1, y2, ...yn, yn+1}. Consider a
m × (n + 1) grid of m(n + 1) cells with m rows corresponding to
{x1, x2, ..., xm} and n+1 columns correspondiong to {y1, y2, ..., yn+1}
Associate (i, j)th cell with the point (xi, yj) ∈ X × Y. We say that
(xi, yj) ∈ (i, j)th cell.

To prove (iii) let S be a maximal good set in X × Y. Then
|S| = m+n. Suppose S contains exactly k points with fixed second
coordinate, say yn+1. Without loss of generality we assume them to
be (x1, yn+1), (x2, yn+1), ... (xk, yn+1). Denote

K = {(x1, yn+1), (x2, yn+1), ...(xk, yn+1)}.

(i) Atleast one of these first k rows contain atleast two points of
S, i.e., there exist a point (xi, yj) of S with 1 ≤ i ≤ k and 1 ≤ j ≤ n.

Proof: Otherwise leaving these k rows and the last column, the
remaining points of S will be a good set with m+n−k points using
m+ n− k coordinates which is not possible.

(ii) If (xi, yj) ∈ S with 1 ≤ i ≤ k and 1 ≤ j ≤ n. Then
the jthe column (which contains the point (xi, yj)) has no other
point (xl, yj) of S with 1 ≤ l 6= i ≤ k because the four points
{(xi, yj), (xi, yn+1), (xl, yn+1), (xl, yj)} form a loop.

(iii) Suppose (xi, yj) ∈ S for some 1 ≤ i ≤ k and 1 ≤ j ≤ n. Then
the set got by dropping the point (xi, yj) and adding (xl, yj), 1 ≤
l 6= i ≤ k to S clearly contain no loop and so is maximal good.
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Let S ′ be the maximal good set obtained in this way by replacing
all the points (xi, yj), 1 ≤ i ≤ k and 1 ≤ j ≤ n of S by (x1, yj), 1 ≤
j ≤ n .

Then each of the rows corresponding to x2, ..., xk contains exactly
one point of S ′. The set S ′′ got from S ′ by dropping these rows and
the last column will be a maximal good set in {x1, xk+1, ..., xm} ×
{y1, y2, ...yn} and contains m+ n− k elements.

By induction hypothesis, the number of maximal good sets in
{x1, xk+1, ..., xm} × {y1, y2, ...yn} having exactly r points in r fixed
positions in the first row, is: rnm−k−1(m−k)n−r, for 1 ≤ r ≤ n. Con-
sider any such maximal good set, say A. Further add the dropped
rows and the last column. Enlarge A by adding the first k points
of the (n + 1)th column, call this set B. It is a maximal good set
in {x1, x2, ..., xm} × {y1, y2, ...yn+1}. Any point (x1, yj), 1 ≤ j ≤ n
in B can be replaced by (xl, yj), for any 1 ≤ l ≤ k and the result-
ing set will continue to remain maximal good in {x1, x2, ..., xm} ×
{y1, y2, ...yn+1}. In this way each one of rnm−k−1(m − k)n−r max-
imal good set A gives rise to kr maximal good sets in the original
m × (n + 1) matrix. . Further, we can choose the r points in the
first row in

(
n

r

)
ways . Adding over r, the total number of maximal

good sets with exactly k cells in k fixed positions of the last column
is:

n∑

r=1

(
n

r

)
krrnm−k−1(m−k)n−r = knm−k−1n

n−1∑

r=0

(
n− 1

r

)
kr−1(m−k)n−r

= knm−k(m− k + k)n−1 = knm−kmn−1

which is (iii) for m× (n+ 1) matrix.
To prove (i), since we can choose the k points in the last column

in
(
m

k

)
ways, the total number of maximal good sets with exactly k

points from the last column is:
(
m

k

)
knm−kmn−1. The total number

of maximal good sets in X × Y is got by adding these numbers as
k varies from 1 to m :

m∑

k=1

(
m

k

)
knm−kmn−1 =

m−1∑

k=0

(
m− 1

k

)
nm−k−1mn = mn(n+1)m−1.

(ii) can be proved in a similar way as (iii). This completes the
proof of the theorem.
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Next, we prove that asm,n → ∞ the ratiomn−1nm−1/
(

mn

m+n−1

)
→

0 as m,n → ∞.

lim
m,n→∞

mn−1nm−1/

(
mn

m+ n− 1

)
=

lim
m,n→∞

mn−1nm−1(m+ n− 1)!((mn−m− n+ 1)!/(mn)!

By Sterling’s formula, we know that n! ∼
√
2πnn+1

2

en
for large n.

Using this expression one can show that

mn−1nm−1/

(
mn

m+ n− 1

)
≤ C

(1− 1
m
)mn(1 + n

m
)m(1− 1

n
)mn(1 + m

n
)n

(1− 1
m
)n(1− 1

n
)m(m+ n)

1

2

(2)

for some constant C. If m
n
≥ 1, since (1 − 1

m
)m increases to e−1,

the right hand side of (2) tends to 0 as m,n −→ ∞.
The case where m

n
≤ 1 is similar because the the expression on

the right hand side of (2) is symmetric with respect to m and n.
If G = (e), the maximal G-good sets in X × Y are just the

maximal good sets and the number of maximal good sets, by the
previous theorem is, mn−1nm−1. In this case m12 = m1n1. Therefore

|E(µ1, µ2)|/

(
m12

m1 + n1 − 1

)
≤ mn−1nm−1/

(
m1n1

m1 + n1 − 1

)
−→ 0

as m and n −→ ∞.
Now suppose that the number of G-orbits in G(x) × G(y) is a

constant, say a, for all x and y. Then by remark 3, the number of
maximal G-good sets in X × Y is am1+n1−1mn1−1

1 nm1−1
1 and m12 =

am1n1. Therefore,

|E(µ1, µ2)|/

(
m12

m1 + n1 − 1

)
≤

(
am1+n1−1mn1−1

1 nm1−1
1

)
/

(
am1n1

m1 + n1 − 1

)

≤
(
am1+n1−1mn1−1

1 nm1−1
1

)
/am1+n1−1

(
m1n1

m1 + n1 − 1

)
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=
(
mn1−1

1 nm1−1
1

)
/

(
m1n1

m1 + n1 − 1

)
−→ 0

as m and n −→ ∞.

Note: The maximal good sets in X × Y can be associated in a
one-to-one manner with the spanning trees of a complete bipartite
graph. Consider the complete bipartite graph Km,n where |X| = m
and |Y | = n. A subset S ⊂ X × Y is maximal good if and only
if |S| = m + n − 1 and in the grid corresponding to X × Y , S
contains no loops. Construct an m × n matrix corresponding to
any spanning tree T in Km,n as follows: Identifying the elements
of X and Y with the veritces of Km,n, let V = (X, Y ) denote the
vertices of Km,n. Whenever the edge (xi, yj) ∈ T, put (i, j)th entry
in the matrix equal to one; otherwise (i, j)th entry is zero. Since
T is a spanning tree, there are exactly m + n − 1 nonzero entries
in the matrix. As T contains no cycles, the nonzero entries in the
matrix donot form a loop. Therefore the nonzero entries of the
matrix correspond to a maximal good set in the grid corresponding
to X×Y. This correspondence is one-to-one. In [5], it is proved that
the number of spanning trees of Km,n is mn−1nm−1. But the proof
makes use of the determinant of the matrix and is different from the
one given here.
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