ON THE PROBLEM OF EVANESCENT PROCESSES

Z. DITZIAN AND M. NADKARNI

1. Let R denote the set of real numbers. Let G be a countable dense subgroup of R. We construct a nontrivial σ -finite measure m on R such that

(i) *m* is nonatomic, i.e. $\mu(\{x\}) = 0$ for every real number *x*,

(ii) m is singular with respect to the Lebesgue measure L on R,

(iii) *m* is invariant under translation by members of *G*, i.e., m(A+g) = m(A) for all $g \in G$ and for all Borel subsets $A \in \mathfrak{B}$. (Here and in sequel \mathfrak{B} denotes the class of Borel subsets of *R*.)

Such measures are intimately connected with the problem of evanescent processes and analytic functions on compact tori raised by Henry Helson and David Lowdenslager in their paper [3]. We establish this connection in §3. In §2 we shall study the group of unitary operators T^{ϱ} , $g \in G$, defined on $L_2(R, m)$ by $(T^{\varrho}f)(\lambda) = f(\lambda+g)$, $f \in G$. In the references we list papers connected with the present work. We proceed with the construction of the measure in steps.

Step 1 (Cantor's decimal set D). Expand every number x in the unit interval $I = \{x=0 \le x < 1\}$ in the decimal system, i.e. write $x = \sum_{n=1}^{\infty} (\alpha_n/10^n), \alpha_n = 0, 1, 2, \dots 9; n = 1, 2, \dots$ and let D be the set of all those numbers x in whose expansion α_n takes values 0 or 9. More accurately D is the set of all numbers x in the unit interval I such that x can be expanded by using 0 and 9 alone. Geometrically D is the Cantor set obtained by deleting the middle 8/10ths.

Step 2. Here we state a known result and indicate its proof. Let A_5 denote the set of all those numbers in the unit interval I whose decimal expansion does not involve the number 5.

LEMMA 1. A 5 has Lebesgue measure zero.

PROOF. Let Q_n be the set of numbers $x \in I$ such that 5 is in the *n*th decimal place of the expansion of x but not in the first (n-1) places. Then each Q_n is measurable and its Lebesgue measure can be shown to be $9^{n-1}/10^n$. Q_n 's form a disjoint sequence of sets and the Lebesgue measure of $\bigcup_{n=1}^{\infty} Q_n$ is $\sum_{n=1}^{\infty} (9^{n-1}/10^n) = 1$. But $A_5 = I - \bigcup_{n=1}^{\infty} Q_n$. So the Lebesgue measure of A_5 is zero, q.e.d

Step 3. Let $Q = \{x - y: x, y \in D\}$.

LEMMA 2. Q has Lebesgue measure zero.

PROOF. $Q = Q_+ \cup Q_-$ where

Received by the editors July 18, 1966.

$$Q_{+} = \{x - y : x, y \in D, x \ge y\},\$$
$$Q_{-} = \{x - y : x, y \in D, x \le y\} = -Q_{+}.$$

So it is enough to show that Q_+ has Lebesgue measure zero. We shall show that $Q_+ \subset A_5$ of Lemma 1. Let $x, y \in D$, with x > y, have decimal expansions $\cdot \alpha_1 \alpha_2 \cdots$ and $\cdot \beta_1 \beta_2 \cdots$ respectively. Let x_n and y_n be the numbers obtained from x, y by terminating their decimal expansions at the *n*th stage. Then

$$x_n - y_n = \cdot \alpha_1 \alpha_2 \cdot \cdot \cdot \alpha_n - \cdot \beta_1 \beta_2 \cdot \cdot \cdot \beta_n.$$

Since α 's and β 's take values 0 or 9 only (since $x, y \in D$) it follows that $x_n - y_n$ does not involve the number 5 in its decimal expansion. Hence $x - y = \lim_{n \to \infty} (x_n - y_n)$ does not involve the number 5 in its decimal expansion. So the Lebesgue measure of $Q_+ = 0$. Hence $L(Q) = L(Q_+) + L(Q_-) = 0$. q.e.d.

REMARK. It is interesting to note that if D were the well-known Cantor ternary set, then the set $Q = \{x - y \cdot x, y \in D\}$ would be the entire interval from -1 up to 1.

Step 4. Let Q be the set of Lebesgue measure zero of Step 3. Write $F = \{(x+m)/n : x \in Q, m, n \text{ arbitrary integers, } n \neq 0\}.$

Since Q has Lebesgue measure zero, F has Lebesgue measure zero. Hence there exists an irrational number $\lambda \oplus F$.

Step 5. Choose an irrational number $\lambda \notin F$, where F is as in Step 4. Let G be the group $m + \lambda n$, where m, n are integers. The group G is dense in R. (A nondense subgroup of R is necessarily isomorphic to the group of integers.) Let D be the Cantor decimal set of Step 1.

LEMMA 3. Translates of D by members of G are disjoint.

PROOF. Let $D+m+\lambda n$, $D+p+\lambda q$ be two translates of D. Suppose that $(D+m+\lambda n)\cap (D+p+\lambda q)\neq \emptyset$. Then there exists $x, y\in D$ such that $x+m+\lambda n=y+p+\lambda q$, i.e. $x-y=p-m+\lambda(q-n)$. If q=n, then p=m (since $0\leq x, y<1$) so that we do not have distinct translates. If $q\neq n$, then $(x-y+m-p)/(q-n)=\lambda$; but $(x-y+m-p)/(q-n)\in F$ and $\lambda\notin F$, so we again get a contradiction. Hence translates of D by members of G are disjoint.

Step 6 (The Cantor function f). Let $x \in I$ have the decimal expansion $x = \alpha_1 \alpha_2 \alpha_3, \dots, \alpha_i = 0, 1, 2, \dots, 9$. Let n = n(x) be the first index for which $\alpha_n \in \{1, 2, \dots, 8\}$ and $\alpha_n \in \{0, 9\}$. If there is no such n, i.e., if $x \in D$, write $n(x) = \infty$. Define the function f by

$$f(x) = \frac{1}{9} \left(\sum_{i=1}^{n-1} \frac{\alpha_i}{2^i} \right) + \frac{1}{2^n}, \qquad n = n(x).$$

The function f is continuous and monotonically nondecreasing with points of increase only in the set D of Lebesgue measure zero.

Step 7 (Construction of m). Let μ be the finite measure induced by the monotone function f of Step 6. μ is obviously nonatomic and singular with respect to the Lebesgue measure on I. Extend μ by setting $\mu(A) = 0$ for sets A outside I. Let G be the countable dense subgroup of Step 5 and define m by

$$m(A) = \sum_{m,n=-\infty}^{\infty} \mu(A + m + \lambda_n) = \sum_{g \in G} \mu(A + g), \qquad A \in \mathfrak{G}.$$

Clearly *m* is invariant under translation by members of *G*. Further *m* is nonatomic. Finally we observe that *m* is supported on $\bigcup_{g \in G} (D+g)$, the union of countable number of disjoint sets D+g, $g \in G$, and that m(D+g) = m(D) = 1. Hence *m* is σ -finite. This completes the construction of *m*.

REMARK. We have constructed the measure m invariant under translation by a dense subgroup with two generators. But this is not a restriction. With little manipulation one can construct a σ -finite nonatomic singular measure invariant under translation by any countable subgroup of the real line.

2. From now on we shall denote by G a fixed countable dense subgroup of R. A measure m on \mathfrak{B} is called nonatomic singular G-invariant if

(i) *m* is nonatomic,

(ii) m is singular with respect to the Lebesgue measure on R,

(iii) m(A+g) = m(A) for all $A \in \mathfrak{B}$ and $g \in G$,

(iv) There exists a Borel set D of finite m measure such that the translates D+g, $g \in G$, of D by members of G are pair wise disjoint and $\bigcup_{g \in G} (D+g)$ supports m.

A method of constructing such measures was given in §1.

Now fix a continuous singular G-invariant measure m on R. Let $L_2(R, m)$ be the linear space of functions square integrable with respect to m. Let D be the set (the existence of which is guaranteed by (iv)) such that the sets $D+g=D_g$ are pair wise disjoint and $\bigcup_{g\in G} D_g$ supports m. Then clearly $L_2(R, m) = \sum_{g\in G} \oplus L_2(D_g, m)$ where $L_2(D_g, m)$ is the set of functions in $L_2(R, m)$ that vanish outside D_g . The orthogonal projection of $f \in L_2(R, m)$ on $L_2(D_g, m)$ is given by fI_g , where I_g is the characteristic function of D_g .

Now *m* is *G*-invariant so we get a group T^{g} , $g \in G$, of unitary operators defined on $L_2(R, m)$ by $(T^{g}f)(\lambda) = f(\lambda+g), f \in L_2(R, m), g \in G$.

Let us define a spectral measure E on \mathfrak{B} by writing $E(\sigma)f = I_{\mathfrak{a}}f$, $f \in L_2(R, m)$ where I_{σ} is the characteristic function of σ . It is easily License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use varified that E and T^{σ} are connected by the relation $T^{\sigma}E(\sigma)T^{-\sigma} = E(\sigma-g)$ for all $g \in G$. But T^{σ} is not the only commutative group of unitary operators which satisfies this equation with E. The general commutative group U^{σ} , which with E, satisfies $U^{\sigma}E(\sigma)U^{-\sigma} = E(\sigma-g)$, $g \in G$, has the following form. U^{σ} is defined by

$$(U^{g}f)(\lambda) = A(g,\lambda)f(\lambda + g), \quad g \in G, f \in L_{2}(R, m),$$

where $A(g, \lambda)$ is an *m*-measurable function of λ for every fixed *g* such that

(i) $|A(g, \lambda)| = 1$,

(ii) $A(g+h, \lambda) = A(g, \lambda)A(h, \lambda+g)$ for almost all λ with respect to the *m*-measure.

The set of *m*-measure zero where (ii) does not hold may vary with the pair (g, h).

Functions satisfying the functional equation (ii) occur very crucially in the study of spectral measures E on \mathfrak{B} for which there exists a commutative group $U^{\mathfrak{g}}, g \in G$, satisfying the equation $U^{\mathfrak{g}}E(\sigma)U^{-\mathfrak{g}} = E(\sigma+\mathfrak{g}), g \in G, \sigma \in \mathfrak{B}$ (cf. §4).

The group U^{a} has a spectral measure associated with it as follows. (See [6, p. 392].)

Let $B = \hat{G}_d$ be the compact dual of G_d , the group G with the discrete topology. Since U^g is a commutative group of unitary operators, by Godement's extension of Stone's theorem on the representation of unitary operators [1] there exists a Hermitian projection valued spectral measure F on the Borel subsets \mathfrak{F} of B such that $U^g = \int_{B\chi_g} (\lambda) dF_{\lambda}$ in the sense that

(*)
$$(U^{o}f, h) = \int_{B} \chi_{o}(\lambda) (dF_{\lambda}f, h), \quad f, h \in L_{2}(R, m).$$

Here χ_{σ} denotes the character on *B* corresponding to $g \in G_d$. For $f, h \in L_2(R, m)$, $(F(\cdot)f, h)$ defines a complex valued finite measure on \mathfrak{F} so that for $\sigma \in \mathfrak{F}$ the value of this measure is $(F(\sigma)f, h)$.

We show that for every f and h, $(F(\cdot)f, h)$ is absolutely continuous with respect to the Haar measure on B.

THEOREM 1. If $f \in L_2(D_{g_0}, m)$ for some $g_0 \in G$, then the measure $(F(\cdot)f, f)$ is a constant multiple of the Haar measure on B. For any $f, h \in L_2(R, m)$, the measure $(F(\cdot)f, h)$ is absolutely continuous with respect to the Haar measure on B.

PROOF. Let $f \in L_2(D_{g_0}, m)$, then $U^g f \in L_2(D_{g_0} - g, m)$. Hence, the elements $\{U^g f: g \in G\}$ are mutually orthogonal. Now by (*) $(U^g f, f) = \int_B \chi_g(\lambda) (dF_\lambda f, f) = 0$ if $g \neq 0$. Hence $(F(\cdot)f, f)$ is a constant multiple License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

of the Haar measure on *B*. The constant multiple is, of course, nonzero if and only if $f \neq 0$ in $L_2(D_{g_0}, m)$. Now let $f \in L_2(D_{g_0}, m)$, $h \in L_2(D_{g_1}, m)$, then by the polarization formula it is easy to see that $(F(\cdot)f, h)$ is absolutely continuous with respect to the Haar measure on *B*. Finally choose any $f,h \in L_2(R, m)$. Let $f = \sum_{g \in G} f_g$, $h = \sum_{g \in G} h_g$, f_g , $h_g \in L_2(D_g, m)$. Then clearly

$$(F(\cdot)f, h) = \sum_{g,g' \in G} (F(\cdot)f_g, h_{g'}).$$

Since each $(F(\cdot)f_g, h_{g'})$ is absolutely continuous with respect to the Haar measure on *B*, it follows that $(F(\cdot)f, h)$ has the same property, q.e.d.

The next theorem shows that Wiener closure theorem has no analogue for a nonatomic singular G-invariant measure.

THEOREM 2. There is no $f \in L_2(R, m)$ such that $\{U^{g}f \cdot g \in G\}$ spans $L_2(R, m)$.

To prove this theorem we need a known result which we state here without proof for the sake of completeness.

LEMMMA 4. Let μ be a finite positive regular measure on the Borel subsets \mathfrak{F} of B. Let h, $f \in L_2(B, \mu)$. Then $\int_B \chi_0(\lambda)h(\lambda)\overline{f}(\lambda)d\mu = 0$ for all $g \in G_d$ if and only if h vanishes almost everywhere with respect to μ on the set where |f| > 0.

This lemma is an easy consequence of the fact that a finite regular Borel measure on a locally compact abelian group is uniquely determined by its Fourier-Stieltjes transform [7, p. 17].

Consider the measures on \mathfrak{F} defined by $\int_{\sigma} |h(\lambda)|^2 d\mu$, $\int_{\sigma} |f(\lambda)|^2 d\mu$. Then the lemma is equivalent to the following fact:

$$\int_{B} \chi_{g}(\lambda) h(\lambda) \overline{f(\lambda)} d\mu = 0$$

for all $g \in G_d$ if and only if the measures $\int_{(.)} |h(\lambda)|^2 d\mu$ and $\int_{(.)} |f(\lambda)|^2 d\mu$ are mutually singular.

PROOF OF THEOREM 2. Suppose that there exists $f \in L_2(R, m)$ such that $\{U^o f \cdot g \in G\}$ spans $L_2(R, m)$. By (*), $(U^o f, f) = \int \chi_g(\lambda) (dF_\lambda f, f) = \int \chi_g(\lambda) d\mu$, where μ is the measure defined by $\mu(\sigma) = (F(\sigma)f, f)$, $\sigma \in \mathfrak{F}$. By Theorem 1, μ is absolutely continuous with respect to the Haar measure on *B*. The mapping $S: SU^o f = \chi_g$ extends by linearity to an invertible isometry from the space spanned by $\{U^o f \colon g \in G\}$ to $L_2(B, \mu)$. Now let D_1, D_2 be two disjoint measureable subsets of *D*

such that $D = D_1 \cup D_2$ and $m(D_1)$, $m(D_2) > 0$. Let h_1 and h_2 denote the characteristic functions of D_1 and D_2 . Write $f_1 = Sh_1$, $f_2 = Sh_2$. It is clear that

- (i) $U^{g}h_{1}$ are all mutually orthogonal in $L_{2}(R, m)$,
- (ii) $U^{\mathfrak{g}}h_2$ are all mutually orthogonal in $L_2(R, m)$,
- (iii) $U^{g}h_{1} \perp U^{g'}h_{2}$ for all $g, g' \in G$.

This is because the translates of D by members of G are disjoint.

Now for all $g \in G$, $(U^{g}h_{1}, h_{1}) = \int \chi_{g}(\lambda) |f_{1}(\lambda)|^{2} d\mu = \int_{B} \chi_{g}(\lambda) (dF_{\lambda}h_{1}, h_{1}) = 0$ if $g \neq 0$. Similarly $(U^{g}h_{2}, h_{2}) = \int \chi_{g}(\lambda) |f_{2}(\lambda)|^{2} d\mu = \int_{B} \chi_{g}(\lambda) (dF_{\lambda}h_{2}, h_{2}) = 0$.

Hence the measures $(F(\cdot)h_1, h_1)$ and $(F(\cdot)h_2, h_2)$ are nonzero constant multiples of the Haar measure on B. Hence the measures $\int_{(\cdot)} |f_1(\lambda)|^2 d\mu$ and $\int_{(\cdot)} |f_2(\lambda)|^2 d\mu$ are nonzero constant multiples of the Haar measure on B. But $U^{\sigma}h_1 \perp U^{\sigma'}h_2$ for all g, g' by (iii). Hence $(U^{\sigma}h_1, h_2) = \int_{B\chi_a} f_1 \overline{f_2} d\mu = 0$ for all g. Hence by Lemma 4 the measures $\int_{(\cdot)} |f_1(\lambda)|^2 d\mu$ and $\int_{(\cdot)} |f_2(\lambda)|^2 d\mu$ are mutually singular. This is a contradiction, q.e.d.

3. In this section we show how the measures of the type discussed in §2 are excluded in the problem of evanescent processes. First we must explain this problem.

Let G and B be as in §2. Let f be a nonzero positive function on B summable with respect to the Haar measure on B. Let $L_2(B, f)$ $= \{\psi: |\psi|^2 f \text{ is summable with respect to the Haar measure on B}\}$. Let H_t be the subspace of $L_2(B, f)$ spanned by $\{\chi_g: g < t\}$, where χ_g denotes the character on B corresponding to the real number $g \in G$. It is clear that $H_t \subseteq H_{t'}$ whenever t < t'. It can be shown that either $H_t = H_{t'}$ for all t, t' or $\bigcap_t H_t = \{0\}$ and $H_t \subsetneq H_{t'}$ whenever t < t'. This has been shown by Helson and Lowdenslager in their paper [3]. The problem of evanescent processes can be stated as follows: Assume that $H_t \ne H_{t'}$ for t < t', then is it always true that $(\bigcap_{t>0} H_t) \ominus H_0 \ne \{0\}$?

A well-known result of Helson and Lowdenslager [2] answers the question in the affirmative under the assumption that $\log f$ is summable with respect to the Haar measure on B. In what follows we give further evidence in favor of the affirmative answer to the question.

The increasing subspaces H_t give rise to a spectral measure E on the Borel subsets of R. For intervals (a, b], E is given by E(a, b] =orthogonal projection on $H_b \ominus H_a$. In $L_2(B, f)$ there is a commutative group U^g of unitary operators defined by $U^g \psi = \chi_g \psi$, $\psi \in L_2(B, f)$, $g \in G$. Further the following two identities are easily verified

(A) $U^{g}(H_{b} \ominus H_{a}) = H_{b+g} \ominus H_{a+g}$ where $a, b \ (a < b)$ are any two real numbers.

(B) For any $\psi \in L_2(B, f)$, $||E(a, b]\psi - \psi||^2 = ||U^{\sigma}E(a, b]\psi - U^{\sigma}\psi||^2$.

(A) and (B) together imply that U^{g} and E are connected by the relation $U^{g}E(\sigma)U^{-g} = E(\sigma+g)$ for all $\sigma \in \mathbb{B}$ and $g \in G$. Helson and Lowdenslager have shown that if $E\{x\} \neq 0$ for some x, then the spectral measure E is purely discrete and E has no continuous component. Now it can be shown that E cannot have a component absolutely continuous with respect to the Lebesgue measure on R, i.e., there does not exist a nonzero $\psi \in L_2(B, f)$ such that $(E(\cdot)\psi, \psi)$ is absolutely continuous with respect to the Lebesgue measure on R. In what follows we show that E has no component absolutely continuous with respect to a nonatomic singular G-invariant measure on R.

THEOREM 3. Assume that $E\{x\} = 0$ for all x. There does not exist a Borel set D such that:

(i) the sets D+g, $g \in G$ are mutually disjoint,

(ii) $E(D) \neq 0$.

PROOF. Suppose not. Then there exists a set D such that the sets D+g, $g \in G$, are mutually disjoint and $E(D) \neq 0$. Since E has no discrete spectrum, we can find two nonzero vectors Φ, ψ in E(D) such that Φ and ψ are mutually orthogonal. Now $U^{g}\Phi = U^{g}E(D)\Phi$ $=E(D+g)U^{a}\Phi \in E(D+g)$ and similarly $U^{a}\psi \in E(D+g)$. Since the sets D+g, $g \in G$, are mutually disjoint, we see that $U^{\varrho}\Phi \perp \Phi$, $U^{\varrho}\psi \perp \psi$ for all $g \neq 0$ and $U^{0}\Phi \perp U^{0}\psi$ for all g, g'. So

(i) $(U^{g}\Phi, \Phi) = \int_{B} \chi_{g}(\lambda) |\Phi(\lambda)|^{2} f(\lambda) d\sigma = 0 \text{ for } g \neq 0.$ (ii) $(U^{g}\psi, \psi) = \int_{B} \chi_{g}(\lambda) |\psi(\lambda)|^{2} f(\lambda) d\sigma = 0 \text{ for } g \neq 0.$

(iii) $(U^{g}\Phi, \psi) = \int_{B} \chi_{g}(\lambda) \Phi(\lambda) \psi(\lambda) f(\lambda) d\sigma = 0$ for all g.

(Here $d\sigma$ is the normalized Haar measure on *B*.)

The first two equations above say that $|\Phi|^{2fd\sigma}$ and $|\psi|^{2fd\sigma}$ are nonzero constant multiples of the Haar measure on B and the third equation says that $\Phi \psi f$ is equal to zero almost everywhere with respect to the Haar measure on *B*. This is impossible, q.e.d.

4. Let E be a spectral measure on the Borel subsets of R and let G be a countable dense subgroup of R. We call a spectral measure E G-stationary if there exists a commutative group U^{g} of unitary operators such that $U^{g}E(\sigma)U^{-g} = E(\sigma+g)$ for all $\sigma \in \mathfrak{B}$ and $g \in G$. If one tries to obtain the canonical representation of G-stationary spectral measures like the one there is for a pair of commutative groups of unitary operators satisfying Weyl's commutativity relation one at once faces the following question.

Let μ be a finite positive measure on \mathfrak{B} . Call μ G-quasi invariant if μ and μ_a are mutually absolutely continuous for all $g \in G$. Here μ_a is defined by $\mu_g(A) = \mu(A+g), A \in \mathbb{B}, g \in G$.

QUESTION 1. μ is *G*-quasi invariant. Does there exist a σ -definite measure *m* on \mathfrak{B} such that (i) $m(\sigma+g)=m(\sigma)$ for all $\sigma \in \mathfrak{B}$, $g \in G$, (ii) *m* and μ are mutually absolutely continuous?

Now suppose that $\mu = \mu^d + \mu^a + \mu^a$ where μ^d is the atomic part of μ , $\mu^a = \text{part}$ of μ absolutely continuous with respect to the *L*, the Lebesgue measure, and $\mu^a = \text{nonatomic singular part of } \mu$. It is easy to see that each component μ^d , μ^a and μ^a is separately *G*-quasi invariant.

Further μ^a and the Lebesgue measure are mutually absolutely continuous. Thus for μ^a the question raised above has a solution. One can also show easily that the question raised above has a solution for μ^d . Hence in the question raised above one can assume that μ is nonatomic singular measure.

We give a reformulation of our question in terms of the functions $A(g, \lambda) = (d\mu_g/d\mu)(\lambda)$. One verifies very easily that $A(g, \lambda)$ satisfy the relation $A(g+h, \lambda) = A(g, \lambda)A(h, \lambda+g)$ a.e. $[\mu]$.

THEOREM 4. Question 1 has a solution if and only if there exists a measurable function B such that $A(g, \lambda) = B(\lambda+g)/B(\lambda)$.

PROOF. Suppose there exists an *m* as in Question 1. Write $B(\lambda) = (d\mu/dm)(\lambda)$. Then clearly $A(g, \lambda) = (d\mu_g/d\mu)(\lambda) = (d\mu_g/dm)(\lambda) \cdot (dm/d\mu)(\lambda) = (d\mu_g/dm)(\lambda) \cdot 1/B(\lambda)$. Now by the invariance of *m* under translation by *g* it is easy to see that $(d\mu_g/dm)(\lambda) = B(\lambda+g)$; thus $A(g,\lambda) = B(\lambda+g)/B(\lambda)$. Conversely suppose that $A(g,\lambda) = B(\lambda+g)/B(\lambda)$ where *B* is measurable. Define *m* by $m(\sigma) = \int_{\sigma} [B(\lambda)]^{-1}d\mu$. It is clear that *m* and μ are mutually absolutely continuous. Next to see the *G*-invariance of *m* we note that

$$\begin{split} m(\sigma + g) &= \int_{\sigma+g} [B(\lambda)]^{-1} d\mu = \int_{\sigma} [B(\lambda + g)]^{-1} d\mu_g(\lambda) \\ &= \int_{\sigma} [B(\lambda + g)]^{-1} \frac{d\mu_g}{d\mu}(\lambda) d\mu = \int_{\sigma} \frac{[B(\lambda + g)]^{-1} B(\lambda + g)}{B(\lambda)} d\mu \\ &= \int [B(\lambda)]^{-1} d\mu = m(\sigma), \end{split}$$

We conclude by making the following remarks.

Assume that μ of Question 1 is singular. In order that Question 1 have an affirmative solution it is enough that there is a μ -measurable set D such that D+g, $g \in G$ are disjoint and $\bigcup_{g \in G} (D+g)$ supports μ . However, there exist singular G-quasi invariant measures for which no such D exists. We illustrate this by the following example. Let C

be the Cantor ternary set and ψ the Cantor function from C onto [0, 1]. ψ is strictly increasing and continuous on C with range [0, 1]. Let P be the singular measure on the real line induced by ψ . Let G be the group of real members having finitely many terms in their ternary expansions. Let g_1, g_2, g_3, \cdots be a denumeration of G. Write $\mu(A) = \sum_{n=1}^{\infty} (1/2^n) P(A+g_n), A \in \mathfrak{G}$. Clearly μ is G-quasi invariant. Call two members of C equivalent if their difference belongs to G. This equivalence relation partitions C. Choose a member from each equivalence class and call the new set D. Translates D+g, $g \in G$ are disjoint and $\bigcup_{g \in G} (D+g)$ supports μ . But D can never be chosen to be μ -measurable, for the difference of two members of $\psi(D)$ has always finite binary expansions, so that $\psi(D)$ is nonmeasurable. Hence $D=\psi^{-1}(\psi(D))$ is non- μ -measurable.

References

1. R. Godement, Sur une généralisation d'un théorème de Stone, C.R. Acad. Sci. Paris 218 (1944), 901-903.

2. H. Helson and D. Lowdenslager, Prediction theory and Fourier series in several variables. I, Acta Math. 99 (1958), 165-202.

3. ——, Prediction theory and Fourier series in several variables. II, Acta Math. 106 (1961), 175-213.

4. ——, Invariant subspaces, Proc. Internat. Sympos. on Linear Spaces, Jerusalem, 1960, pp. 251–262, Macmillan (Pergamon), New York, 1961.

5. George Mackey, A theorem of Stone and von Neumann, Duke Math. J. 16 (1949), 313-326.

6. F. Riesz and B. Sz. Nagy, Functional analysis, Ungar, New York, 1955.

7. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

Michigan State University and University of Minnesota

676