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Abstract

Let R be a polynomial-time verifiable binary relation witnessing language A in NP.
For any other polynomial-time verifiable binary relation ) witnessing some language B in
NP, the notion of solution-preserving reduction of @ to R is defined. Informally, it is a
polynomial-time reduction of B to A with the additional property that the set of witnesses
(w.r.t. Q) of any instance can be quickly recovered from the set of witnesses (w.r.t. R) of
the image of the instance under the reduction. Relation R is called a universal relation if
there exists a solution-preserving reduction to R from every polynomial-time verifiable binary
relation. Two properties on R are defined: joinability and couplability, and it is shown that
R is a universal relation if and only if R has these two properties and a particular kind of
instance. Therefore, if R has these two properties and the instance then A is NP-complete.
The above characterization is used to obtain easy NP-completeness proofs for several well
known natural problems, e.g., Hamiltonian cycle problem, Max Cut problem, Knapsack
problem etc. It is also shown that the obvious relations for k-creative sets are universal.
The notion of universal relations is generalized to near-universal relations and it is shown
that the obvious witnessing relations for several problems in P and the Graph Isomorphism
problem are not near-universal. Finally, the two properties joinability and couplability are
related to paddability and d-self-reducibility respectively.



1 Introduction

Since the seminal work of Cook [Coo71] which showed that the satisfiability problem of the
propositional logic is NP-complete, a large number of problems that arise naturally in many
diverse fields, e.g., logic, graph theory, operations research, number theory, algebra etc., have
been shown to be NP-complete (see [GJ78] for a number of such problems). Further, new
problems are being continually added to the list of already known NP-complete problems [Joh].
One uses the term natural NP-complete problems for those NP-complete problems that arise
naturally in some field or other, as opposed to those that which arise out of internal, theoretical
considerations; an example of latter type being k-creative sets [JY85].

The usual way of proving a set L; in NP to be complete is by suitably choosing an already
known NP-complete set, and then showing that this set reduces to L; via a polynomial-time
many-one reduction. It can be observed that all such reductions are fairly similar in nature,
once we abstract away the idiosyncrasies of the particular pair of sets involved in the reduction.
the purpose of this paper is to formally capture what lies behind this similarity, and then to
investigate into the structure of natural NP-complete sets in this light.

For our investigation, we use the observation that the reductions amongst natural NP-
complete sets are solution preserving (A solution of an instance for a set is a witness of the
fact that the instance belongs to the set, e.g., a satisfying assignment of a boolean formula for
Satisfiability problem, a Hamiltonian cycle of a graph for Hamiltonian cycle problem), i.e., from
any solution of an instance in the range of the reduction, one can easily extract a solution of the
inverse of the instance. As the solutions of an instance depend on the polynomial-time relation
chosen to witness the set, we work with relations instead of sets. We call a relation universal
if the set witnessed by it is complete for NP under solution-preserving reductions (in the above
sense).

It is usually the case, as we will see later in this paper, that the obvious witnessing relation of
a natural NP-complete set is universal. What causes a relation to be universal? A satisfactory
answer to this question will identify the structural ingredients in a set that account for its
completeness. Towards this, we define two properties: joinability and couplability. Intuitively,
joinability allows us to join any two instances so that the solutions of the resulting instance are
concatenations of the solutions of the two instances, and couplability allows us to couple any
two solution bits of an instance together so that they are always complement of each other. We
show that a relation is universal if and only if it has these two properties along with an instance
having a specific solution structure.

There are two important structural properties, viz., paddability, and disjunctive self-reducibility
(d-self-reducibility, for short), which are known to be shared by all natural NP-complete sets.
Many structural results about natural NP-complete sets make use of one, or both of these prop-
erties in an essential way. We show that joinability and couplability are related to these notions;
a strong form of joinability in a relation guarantees paddability for the language witnessed by
hte relation. Similarly, a strong form of couplability ensures that the witnessed language is
d-self-reducible. These results can be taken as evidence of the naturalness of joinability and
couplability.

Many of the standard witnessing relations for natural NP-complete sets can easily be seen
to be both joinable and couplable along with having an instance with the specific solution
structure, and therefore they are universal. Section 6 contains some examples. Thus, these
properties capture at least some of the common structure of natural complete problems. They
also give us a new method of proving NP-completeness which, at least in some cases, significantly
simplifies the proof (see example 4 in section 6).

In fact, the notion of universal relations seems to capture more than just natural NP-complete
sets as we show that, besides all paddable NP-complete sets, well known classes of k-creative



sets [JY85] have a universal witnessing relation.

Our definition of universal relations also allows us to show that certain relations are not
universal. We exhibit relations for NP-complete sets that are not universal. We generalize
our definition to near-universal relations and show that such non-universal relations are near-
universal. Finally, we show that the standard witnessing relation for the Graph Isomorphism
problem is not near-universal.

The paper is organized as follows. Section 2 gives notations to be used in the paper. In
section 3, we give the definitions of solution-preserving reductions and the universal relation.
In section 4, we give the definitions of the joinability and couplability properties and prove a
characterization of universal relations. Section 5 contains some results that are useful in proving
a given relation universal. Section 6 is devoted to providing natural examples of relations that
are universal while section 7 gives natural examples of relations that are not universal. In this
section we also define near-universal relations, the class of which strictly contains the class of
universal relations. In section 8, we investigate the structural properties of universal relations
and relate the properties of productability and couplability to paddability and d-self-reducibility
respectively. Finally, section 9 contains some concluding remarks.

2 Preliminaries

2.1 Strings

All the strings are assumed to be over the alphabet ¥ = {0,1} with ¥_,, denoting the set of all
strings of length n. For string z, |z| denote the bit length of the string. For convenience, we
sometimes define strings over alphabets with additional symbols, however, these can be coded
into strings over ¥ by coding the additional symbols using ¥. We shall also use the standard
binary representation of a natural number n to code it into a string, and by abuse of notation,
shall use n itself to denote the string.

We shall frequently require a function (-,...,-) that takes n strings zi, =2, ..., T,, and
returns a string y such that each z; can be easily recovered from y. This can be done by
defining: (z1,z9,...,T,) = T1#zo# - - - #x, where # is a new symbol (to code this string over
3, we take 11 to represent 1, 01 to represent 0, and 00 to represent #). One can easily verify
that [(z1,...,z0)| =2 (21| + -+ |Zp| + n = 1).

If z is a string over ¥ of length n then we use z[i] to denote the i** bit of z, i.e., z =
z[1]z[2] - - - z[n] with each z[i] € X.

We shall frequently deal with functions that output a pair of strings and shall require to
extract the two strings from the output. We write (71 o f)(z) and (72 o f)(x) to denote the first
and second string respectively in the pair f(z).

2.2 Projections

We use a, (3,7, ... etc. to denote non-empty finite sequences of distinct positive integers, and if
« is the sequence ny, ..., ng, i.e., a = {n;}¥_; then a[j] will denote n;, the j* element of the
sequence. For a sequence «, |a| denotes the number of elements in «. For any positive integer

m and a sequence «, o +m def {m + a[i]}iojl, i.e., the sequence obtained from « by adding m
to each element of a. We denote by «, 8 the sequence which is obtained by concatenating 3 to
the right of a. Such concatenation of « and 3 will be defined only if they have no elements in
common. For sequences a and g, if the largest element of 5 is less than or equal to |al, then

the sequence o o 3 is defined as follows: oo 8 % {a[ﬂ[z]]}'ﬂl, otherwise it is undefined. For
example, if « =3,1,5,2,7, and 8 =2,1,4, then ao f=1,3,2.



Let S and T be two sets containing strings of length k& + [ and [ respectively with k,I > 0
and a be a sequence of length [ such that its largest element is not greater than k4 [. Then we
say that T is the projection of S via «, notationally, proj,(S) =T, if T = {t | (3s)s € SAt =
s[ni]sng] - - - s[ny|} where a = ny,ng,...,n;. The following lemmas are obvious.

Lemma 2.1 For every « and S, if proj,(S) is defined, then proj,(S) =0 < S = 0.
Lemma 2.2 proj,.s(S) = projg(proja(S)).

We code any sequence o = {n;}¥_, into a string as (ni,...,ng).
Our projections are similar to the projections defined in database query languages.

2.3 Relations

For every set A in NP, by definition, there exists a polynomial-time verifiable binary relation
R, R C ¥* x ¥*, and a polynomial p such that

z € As (3s)[|s] < p(lz]) A zRs].

We shall refer to the strings s such that zRs and |s| < p(|z|), as solutions of z. Define the

solution set of x, solr(x) def {s | zRs} (for z & A, solg(xz) = ). The relation R is said to be
a relation witnessing A to be in NP, or simply, witnessing A. If one changes the polynomial p,
the set witnessed by the relation R may no longer be A as the solutions may change. Thus, one
needs a relation and a polynomial to specify a language in NP. To avoid specifying a polynomial
every time we talk of a language witnessed by some relation, we shall consider relations whose
witnessed set will be independent of the polynomial chosen.

Definition 2.3 A relation R is called an admissible relation if there is a polynomial-time
computable function sol-leng, sol-leng : ¥* — 17, such that for every = and s, if zRs then
|s| = |sol-leng(z)|. In other words, all the solutions for any string are of equal and polynomially-
bounded length, and this length is easily computable.

Remark. For an admissible relation R, if for some string z, solg(z) = 0, sol-leng(z) is still
defined although its value has no meaning.

It is easy to see that every set in NP is witnessed by an admissible relation. For an admissible
relation R, we define the set
Lgr ={z| (3s)zRs}.

We shall restrict ourselves to admissible relations and from now on, whenever we refer to a
relation, we assume it to be admissible. For any set in NP, there are infinitely many admissible
relations witnessing it. However, only a few of these relations are immediately obvious from the
definition of the set. We shall refer to these obvious relations as naturally defined relations for
the set (it is difficult to formalize this notion).

3 The universal relation

For a natural NP-complete problem, it is usually the case that its instances consist of small
‘atomic’ units joined together in various ways, e.g., an instance of SAT has variables as atomic
units, an instance of Hamiltonian cycle problem (HAM) has edges as atomic units. A solution
of such an instance is usually a subset of these atomic units satisfying certain properties. Re-
ductions amongst these problems (see e.g., [GJ78, GJS76]) map an atomic unit of the source



instance to one or more such units of the target instance in such a way that any atomic unit of
the source instance is present in a solution if and only if the corresponding atomic units of the
target instance are present in the corresponding solution. Thus, one can extract out the solution
of the source instance given a solution of the target instance. We capture this solution-preserving
property of the reductions in the following definition. As the notion of solution is dependent on
the relation witnessing the set, we define these reductions in terms of relations.

Definition 3.1 Function f, f : ¥* — X*, is a solution-preserving reduction of relation Q to
relation R if it is polynomial-time computable and satisfies the following conditions.

1. f(z) = (2,a) where z,z € ¥* and « is a sequence with |a| = sol-leng(z).
2. proja(solr(z)) = solg(x).
The following proposition is easy to prove.

Proposition 3.2 Lo <P Ly via (71 0 f).

Proof. For any string z, let & = (maof)(z). Then, z € Lg iff solg(x) # 0 iff proja (solr((m1 o f)(z))) #
0 (by definition) iff solg((m1 o f)(z)) # 0 (by Lemma 2.1) iff (m o f)(z) € Lg. ]

One can see that we allow a very strong type of extraction in the above definition: in
polynomial-time a sequence of bits positions are computed and then a solution of the source
instance is just the projection of the corresponding solution of the target instance on the com-
puted bit positions. A weaker extraction scheme would be to give a polynomial-time function
that maps solutions of the target instance to solutions of the source instance. We preferred
the stronger one because such an extraction is indeed possible in case of natural NP-complete
problems, thereby showing a very strong structural similarity amongst them.

Remark. Natural NP-complete sets have been related via projections in another way too.
Projection reductions were defined in [Val82, IL95]: under such reductions, every bit of the
output instance depends on at most one bit of the input instance. It has been observed (see,
e.g., [PY86]) that natural NP-complete sets are reducible to each other via projection reductions.

Definition 3.3 Relation R is a universal relation if for every relation @), there is a solution-
preserving reduction of Q) to R.

Proposition 3.4 If R is a universal relation then Lp is NP-complete under polynomial-time
honest reductions.

Proof. That Lg is NP-complete follows immediately from the definition. Take any set A € NP
and construct a relation ) for A such that for every z, sol-leng(z) > |z|. Now let f be a
solution-preserving reduction of @ to R. It follows that sol-len((m; o f)(z)) > |z| (since the
sequence (mo o f)(z) has |z| distinct numbers) and therefore |(my o f)(z)| > p~!(|z|) for some
polynomial p. [ |

Do universal relations exist? The answer is yes, we shall show later that witnessing relations
for a number of NP-complete problems are universal. Here, we give one example: the witnessing
relation for SAT.

Define Rgar as: zRsars iff [s| = n (n is the number of variables in z) and s codes a
satisfying assignment of = with s* = 1 iff variable v; is true in the assignment.

Theorem 3.5 Relation Rgar s universal.



Proof Sketch. Recall Cook’s encoding of the computation string of any NDTM on an instance
into a SAT formula [Coo71]. The formula had a variable corresponding to each bit position in
the computation string plus some extra variables. Further, ignoring the assignment to extra
variables, the set of satisfying assignments of the formula was ezactly the set of accepting
computation strings of the NDTM. Now consider any relation ). One can construct an NDTM
M that on any input z, guesses a string of size sol-leng(z) and then verifies if it is a solution
of x w.r.t. Q. One can also identify the bit positions in the computation string of M on which
the guess bits are written. Then, the solution-preserving reduction of Q) to Rgar would reduce
an instance z to the formula encoding the computation string of M on z. The corresponding
sequence would have the variable numbers corresponding to the bit positions in the computation
string of M that are the guess bits. The set solg(z) is just the projection of the solution set of
the formula via the above sequence. [ |

A variation of the Satisfiability problem is 3SAT, in which each clause is restricted to contain
exactly three literals. This problem is also known to be NP-complete and one can easily show
that the witnessing relation for 3SAT, R3s 47, defined analogously, is also universal. This fact
will be useful when we give an alternative definition of universal relations. To prove R3gsar
universal, we use the following lemma showing the closure of universal relations under solution-
preserving reductions.

Lemma 3.6 If R is a universal relation and there is a solution-preserving reduction of R to
relation S then S is also universal.

Proof. Let Q be any relation and f and g be the solution-preserving reductions of ) to R
and R to S respectively. Define function h as: h(z) = ((m1 o g)((m1 o f)(z)),5 o &) where
a = (mpo f)(z) and B = (w20 g)((m1 0 f)(x)). Now, projg(sols((m o h)(x))) = solr((m1 0 f)(z)),
and projo (solr((m1 o f)(x))) = solg(x). Therefore, by Lemma 2.2, projgoq (sols((m1 o h)(z))) =
solg(x). So, h is a solution-preserving reduction of @ to S. [ |

Corollary 3.7 Relation R3sar is universal.

Proof Sketch. The reduction of SAT to 3SAT maps a formula to another that contains some
additional variables apart from all the variables of the source formula [GJ78]. Further, an
assignment of variables satisfies the source formula if and only if it can be extended (by assigning
values to the additional variables) to a satisfying assignment of the target formula. Therefore,
one can construct a solution-preserving reduction of Rgar to R3sar and then, from the above
lemma, it follows that R3gar is universal. [ ]

Remark. Our notion of solution-preserving reductions is similar in spirit to that of parsimo-
nious reductions [Sim77]. However, there are certain crucial differences. Our notion is a lot
more restrictive in that it forces the solution sets of any instance and its image to be identical
via a projection. At the same time, the actual number of solutions of the instance and its image
need not be same as the ‘masking’ of certain bits by the projection may collapse two or more
solutions in one. Thus, one can only say that the number of solutions of the image is at least as
large as the number of solutions of the instance.



4 A characterization of universal relations

From the results in the previous section, we know that a relation is universal if and only if there
exists a solution-preserving reduction of R3gar to it. Our aim in this section is to identify some
simple properties that allow the construction of such a reduction. Towards this, we first identify
the properties of R3g 47 that allow the building of an arbitrary instance from a single clause:

Suppose that one wants to add a clause ¢ to some formula . This clause may have
some common variables with z. Of course, one can simply ‘and’ ¢ to z to get the
desired formula but we want it to be done in a way that changes the solution set of
z nicely. Consider the following procedure: first ‘and’ a clause ¢’ to z that does not
have any common variables with it, then for each variable that is common between
z and ¢, make it equivalent to one of the unique variables of the added clause by
‘and’ing two 2-literal clauses of the form v V 99, U1 Vv or v1 Vv, U1 V ¥, depending
on whether the common variable occurs positively or negatively in c.

The two operations defined above modify the solution sets in a fairly natural way. The first
operation simply ‘concatenates’ the solution sets of z and ¢’. And in the second one, starting
from the instance z Ac’, we ‘couple’ (make equivalent or complement of each other) a variable in
z with a variable in ¢/, thereby pruning the solution space of z Ac’ to make it identical to that of
z Ac. Clearly, if the two operations can be carried out on some relation in polynomial-time then
a solution-preserving reduction of R3sar can be easily constructed. Now we give the formal
definitions of properties that allow these operations.

We first define the ‘starting point’ ,i.e., an instance that acts as a single clause.

Definition 4.1 Relation R has a building block if there is an element in Lpg, blockr, and three
positive integers bitq, bito, and bits such that

DTOJ bit, bits,bits (S0IR (blockr)) = X—_3 — {000}.

In other words, the solution set of blockr has at least one solution for each assignment of the
three bit positions bit1, bito and bits except for the assignment 000.

Now, the properties capturing the above operations.

Definition 4.2 Relation R is joinable if there exists a polynomial-time computable function
joing, joing : ¥ — X*, satisfying the following conditions.

1. joing({z1,...,2n)) = (z,a) where z1,...,Tpn,z € £* and |a| = Y p_; sol-leng(zk).
2. proju(solr(z)) = {s182++ sn | (Vk < n)si € solg(zk)}-

Definition 4.3 Relation R is couplable if there exists a polynomial-time computable function
cplp, cplp : ¥* — 3%, satisfying the following conditions.

1. eplp(z, (i1, . yin), (J1,--+,0n)) = (2,@) where z € T*, 1 < iy, ..., in, Jiy c-ey Jn <
sol-leng(x), iy # jm for each 1 <m < n and |a| = sol-leng(z).

2. proju(solr(z)) = {s | s € solg(z) A (Vm < n)s[im] # s[im]}-

Functions joinp and cplp can carry out the operations mentioned in the beginning of this
section, albeit the joining and coupling is obtained only via a projection. This is a very useful
(and necessary) generalization as we shall see later. As one may need several applications of the
operations to construct an arbitrary instance from a single clause, we have defined the functions
joing and cplp to take any number of inputs. The following theorem characterizes universal
relations in terms of these properties.



Theorem 4.4 Relation R is universal iff R is joinable, couplable and has a building block.

Proof. (<) We shall exhibit a solution-preserving reduction of R3sar to R. By Lemma 3.6,
this would imply that R is universal. Let z be an instance of 3SAT with n variables and m
clauses. Let

join g((blockg, ..., blockr)) = (y, a).

~ /

2n + m times

By definition, we have,
proja(solr(y)) = {s1- - Sontm | (Vi < 2n+m)s; € solg(blockgr)}.

We first define a sequence (3 that ‘picks up’ the bit bit; (as in Definition 4.1) of each of the first
2n copies of solg(blockr) in solg(y), and all the three bits bity, bity, and bits of each of the last
m copies of solg(blockr) in solr(y).

Let £ = sol-leng(blockg). Let pli] = a[f - (i — 1) + bity], for 1 < i < 2n, and S[2n + 3 -
(t—2n—-1)+j] =a[l- (i —2n—1) + bit;] for 2n <i < 2n+m, 1 < j < 3. In other words,
B = albiti],a[l+bit1],...,all-(2n—1)+bit1], a[l-2n+bit1], a[l-2n+bits], a[l-2n+bits],. .., [l
(2n+m —1) 4+ bit1],a[f - (2n +m — 1) + bite],a[f - (2n + m — 1) + bitg]. Then we have,

projg(solg(y)) = {ss'tita - -tm | 5,8 € Top A (Vi <m)t; € T3 — {000}}.

We identify the m t’s in the above set with the solution sets of m three literal clauses that
have no variable in common. And the strings s and s’ shall be identified with the assignment to n
variables and their completements. To be a valid assignment, s’ must be the bitwise complement
of s. This we achieve by using the couplability of R.

Let

cplp(y, (B, B[2],. .., BIn]), (Bln + 1], Bln + 2],..., B[2n])) = (z,7)-
By the definition of couplability, we have

Projyog(solr(z)) = {sstita-- -ty | s € %, (Vi <m)t; € ¥_3 — {000} }.

Finally, for every clause of x, we couple the bits of the corresponding ¢ in the above solution
set with the bits of s or s corresponding to the literals occurring in the clause. More precisely,
if the j** clause of z is zy, V Zg, V Tk,, then we shall couple the first bit of ¢; with the k1™ bit of
5, the second bit of ¢; with the ko™ bit of s, and the third bit of ¢; with the k3™ bit of 5. This
would prune the solution set of z such that every remaining solution would yield an assignment
(via projection, of course) that satisfies the j** clause of z.

Formally, let 4/ = v 0 3, and

eplp(z, (V' [2n +1],9[2n + 2], ..., ¥'[2n + 3m]), (i1, 42, - - -, iz3m)) = (w, ),

where for 1 <k <3 and 1 < j < m, igj_1)1x = 7'[n +1] if in the k" position of the j* clause
of z the I*" variable occurs positively, v'[I] if it occurs negatively.

As is clear from the above discussion, the first n bits of the solution set of w after projection
via d o v/ would always be a satisfying assignment of z and vice versa. Therefore, letting

&' = o[y}, [v'[21], - -, 0[y'[n]], we get
proj y (solg(w)) = solr(z).

It is easy to see that that w and ¢’ can be computed in time bounded by a polynomial in
|z|. Therefore f 4 \z. (w, d") is a solution-preserving reduction of R3sar to R.

10



(=) Since R is universal, there is a solution-preserving reduction f of R3sar to R. Let g be
the solution-preserving reduction of R to R3sar. We shall construct the functions joinp and
cplp for the relation R using f, g, joing,, ,, and cplp, ..

To compute joing({(z1,...,2zy)) do the following. Let g(z;) = (y;,q;) for 1 < i < n. We
have, proj o, (50lR,s .7 (4i)) = solg(w;) for 1 <4 < n. Now, applying joing, . . on these y;’s and
then function f on the output would give the required instance. To elaborate, let Sum(i) =
Z;Zl sol-lenp,s ., (y;) and define sequence 3 = aq, (Sum(1)+az),...,(Sum(n—1)+as). Then,
letting joing, . ((y1,---,yn)) = (y,7), we get projyos(s0lr,g,r(y)) = {51---5n | (Vi <n)s; €
solg(x;)}. Therefore,

joing((z1,- -, 2n)) = ((m1 0 f)(y), (w20 f)(y) o (v 0 B))-

One can similarly construct the function cplp and the building block for the relation is given
by blockr % (1 0 £)(blockg, .p)- n

One may interpret these properties, in the case of the natural complete sets, in the following
way: the building block guarantees the existence of an instance having a ‘rich’ solution structure.
The joinability property allows one to join instances together and the couplability property allows
one to link any two different components of the instance. It is worth noting at this point that
the existence of the building block is necessary for proving the above theorem as there are sets in
P that are both joinable and couplable. An example is 2SAT, the set of all satisfiable formulas
with exactly two variables in each clause. This language is in P and the witnessing relation for
this set is both joinable and couplable.

5 Some results useful in application

We now would like to see if the naturally defined witnessing relations for natural NP-complete
sets are universal. But before proceeding to do that, we prove some results that would simplify
our task to a great extent. This section is devoted to such results.

Functions joing and cplp are defined to take any number of inputs and thus showing the
existence of such functions may be a bit cumbersome. One can simplify this when the length of

the output does not increase too rapidly.
Define

bprodg(z,y) = joing((z,y))
bCle(.’E,i,j) = Cle(:E, <7’>a<.7>)

Lemma 5.1 (i) Suppose function bprody exists for relation R satisfying

(V) (Vy)[| (w1 © bprodg) (2, y)| < c.(|z] + |y|)]

for some constant c, then R is joinable.

(#) Suppose function beply exists for relation R satisfying

(V) (V) (V1)[| (1 o beplg) (2,3, 5)] < p(p~"(|2]) + ¢)]
for some polynomial p and constant c, then R is couplable.

Proof. We give a recursive definition of the join and cplp functions.

11



(i) Let n be an exact power of 2 and m = n/2 (the case when n is not an exact power of 2 can
be taken care of by adding some trivial instances in the language). Let

(y1,0) = joing({z1,...,2m)),
<y25ﬂ> = jOinR(<$m+la"'a$n>)a
L = Zsol—lenR(a:k),and
k=1
v = a,f+ 0.
Define,
(@1, {i}iz1) ifn=1,
joinp((z1,...,2n)) =< bprodg(zi,z2) if n =2,

(w1 © bprodg)(y1,y2), (w2 © bprodg)(y1,y2) 0 7) if n > 2.

The above function will be computable in polynomial-time since it is easy to show, by
induction, that |join g((z1,.--,2n))| < 8™ - (|z1| + - - - + |z0)).

(7) Denoting

(y,a) = cplp(z, (i1, in—1), (J1,---»dn-1)),
i = afiy),
J = Oé[jn],

define,

. . . | beplp(z, i, 7) ifn=1,
PLR(®, (i (s 3u)) = { (m1 0 bepl) (9, ), (m2 © bepl) (4,5,) 0 ) ifm > 1.

It is easily verifiable, by induction, that |cplg(z, (i1,---,%n), (J1,-- -, Jn))| < p(|2] + (n —
1) % ¢) and therefore, cplg is computable in polynomial time. [

Further, it is often easier to define these functions over an infinite subset S of ¥*. We can
extend them to be over ¥* using the following theorem.

Definition 5.2 Let § C ¥*. Relation R is S-universal if its building block belongs to § and
the two functions joingp and cplp are defined over S with their range also contained in S.

Theorem 5.3 Relation R is universal iff it is S-universal for some S.

Proof. The forward implication is obvious. We prove the reverse implication. Let R be S-

universal. As the building block is in S and the functions join and cplp take instances in S to

instances in S itself, the function f, as defined in the proof of Theorem 4.4, can be constructed

for the relation R. Since f is a solution-preserving reduction from R3sa7, R would be universal.
|

Corollary 5.4 If for some set S, relation R has a building block in S, has functions bprodp and
beply defined over S with their range contained in S, and the two functions satisfy Lemma 5.1,
then R is universal.

Proof. The general input versions of these functions will also be defined over S with their range
in S as they are computed by a repeated application of the two input versions. The corollary
follows from the above theorem. [
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6 Natural examples of universal relations

It will be shown in section 8 that every paddable NP-complete set has a universal relation. And
since natural NP-complete sets are paddable (see [BH77]) it follows that all of them have a
universal relation. The aim of this section is to show that even the naturally defined relations
of many natural complete sets are universal.

In the examples below, we only give the instance output of the bprodp and beply functions,
the corresponding sequences will be obvious. Functions joing and cplp can be seen to exist by
verifying that Lemma 5.1 holds trivially for the functions that we define.

For graph problems below, we use the following encoding of graphs into strings: Let graph
G = (V,E) with |V| = n. Assume that the vertices in V' are numbered from 0 to n — 1. We
represent graph G as a string of length n? such that bit (i, j), for 0 < i,j < n, is ‘on’ iff edge
(1,7) € E. From now on, when we refer to a string as graph, we shall mean the graph represented
by the string. Similarly, reference to a bit as edge will mean the edge encoded by the bit.

Example 1: Directed Hamiltonian Cycle Problem. A Hamiltonian cycle of a graph is a cycle
that passes through all the vertices. Let

HAM & {z | = is a directed graph containing a Hamiltonian cycle}.

The relation witnessing HAM, Ry ans is: xRy anms iff s is a subgraph of z and is a Hamiltonian
cycle. Rpganr is admissible with sol-leng,, ,,, (z) = |z|.

Theorem 6.1 Ryap is universal.

Proof. We show that Rgaps is S-universal, where S is the set of graphs that have the edge
(0,1) present in every solution of the graph.

Define (7 o bprodg, ,..)(%,y) = z where z is obtained as follows: delete edge (0, 1) from
both z and y, introduce edges from the vertex number 0 of z to the vertex number 1 of y and
from the vertex number 0 of y to the vertex number 1 of z and finally renumber the vertices of
z and y in the following way: let V' be the number of vertices in z, then the vertex number 1
of x is assigned the number V + 1, the rest of the vertices of z retaining their number. For y,
the vertex number 1 retains its number while the rest of them will be renumbered by adding V
to their numbers. The two new edges will be present in every solution of z, thus, in particular,
the edge (0,1) will be present in all the solutions of z.

ko

11 J1

Figure 1: The modified part of the graph (71 o cplyg,. .. )(z, (i1, j1), (i2, j2))
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Define (71 o beply,, .. )(2,e1,e2) = z where z is obtained as follows: Let e; = (i1, j1) and
es = (i9,j2). z has six more vertices ki, ko, k3, k4, ks and kg with the extra edges (i1, k1),
(K1, k2), (Ko, k3), (k3,ka), (ka,ks), (ks,ke), (ke,71), (i2,k3), (k3,k2), (k2,k1), (k1,ke), (ke,Fks),
(ks,k4) and (k4, jo). Edges e; and e are deleted from z (see Figure 1).

Edge (i1, k1) corresponds to e; and (ig, k3) to eg. It is easy to see that the new vertices
can be covered only by either choosing edges (i1, k1), (k1, k2), (ko k3), (ks, k4), (ka,k5), (K5, ks),
<k}6,j1> or <i2,k‘3), <k3,k‘2>, <k2,k1>, <k‘1,k‘6>, <k6,k5>, <k‘5,k4>, <k4,j2>. The rest of the solution
remains the same. A suitable renumbering of the vertices can be easily worked out to ensure
that the edge (0,1) is present in every solution of z.

Define blockg,, ,,, as in the Figure 2. It can be easily seen to have the required solution set.

bit, = (2,3)
bits = (6,7)
bits = (9,10)

00O 0

Figure 2: The instance blockgr,, ,,,

Example 2: Independent Set Problem. An r-independent set of a graph is a set of r vertices
that do not have any edge between them. Let

IND & {(z,r) | undirected graph z has an r-independent set}.

The relation Ryyp is: (z,7)Rrnps iff |s| = n, where n is the number of vertices in = and s has
exactly r bits ‘on’ corresponding to the vertices in r-independent set. R;yp is admissible with
sol-leng, v, ({z,7)) = n.

Theorem 6.2 R;np is universal.

Proof. We prove this by showing that R;xp is S-universal where S is the set of instances (z, )
that have at most an r-independent set.

Define (m; o bprodpg, . )({z,71),(y,m2)) = (2,71 + r2), graph z is obtained by putting = and
y together and renumbering all the vertices of y to make them different from those of z. Since
z and y can have at most ri-independent set and ro-independent set respectively, z will have
at most r; + ro9-independent set, and thus z also belongs to S. Also, any solution of z is a
concatenation of solutions of z and y.

14



Define (71 o beply, ., )({z,7),4,7) = (2,7 + 1). Graph z is obtained as follows: Add two new
vertices k1, ko and the following edges to x: between k; and ko, between k; and i, between
ko and j, between k; and every vertex adjacent to 7, between ko and every vertex adjacent to
1. Since x has at most an r-independent set, any solution of z must have exactly one of the
vertices k1 or kg in the independent set. Vertex ki will be present in the independent set for
exactly those solutions of z in which j is present and 7 is not while vertex ko will be present in
the independent set for exactly those solutions of x in which 7 is present and j is not.

Define instance blockg,,, = (G,3) where G is the graph given in Figure 3. It can easily be
seen to satisfy the required properties.

5
4
6 7
bit; = 3
1 2 bita =6
bits =7

0

Figure 3: Graph for the instance blockg,

Example 3: Knapsack Problem. This problem has r + 1 numbers as input and the solution is a

subset of the first 7 numbers such that the sum of numbers in the subset is equal to the (r + 1)
number. Let

def

KNP = {(ni,n9,...,n,,m) | there is a subset of the set {n,...,n,} having sum m}
Define relation Rxnp as: (ni,...,n.,m)Rgnps iff |s| = r and the set of numbers {n; | s* = 1}
has sum m.

Theorem 6.3 Rignp s universal.

Proof. Define (71 o bprodg, . .)(z,y) = z, where x = (ny,...,n,,m1), y = (l1,...,ls,mz2) and
z=(n1,...,np, 01 xnsum,...,ls * nsum, my + mg * nsum) where nsum =1+ >;_; n;.
Define (1 o beplg, ) (%,,7) = 2z, where £ = (ny,...,n,,m) and z = (ly,...,l,,m'). For

each k, k # i or j, Iy = ng, l; = n; + nsum, l; = n; + nsum and m’ = m + nsum, nsum is
defined as before.
Define blockgr, , = (1,1,1,1,1,3) with bit; = 1, bity = 2, and bit3 = 3. [ ]

Example 4: Simple Max Cut Problem. An r-cut of an undirected graph is a partition of its
vertex set in two subsets such that there are r edges between them. Let
sMc ¥ (z,r) | z = (V, E) is an undirected graph having at least an r-cut}
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Define relation Rgpsc as: (z,7)Rspes iff s is a subset of the vertices of z giving at least an
r-cut and s contains vertex number 0. If this condition is not present then the relation is not
universal (see Example 5, section 7).

Theorem 6.4 Rgy/c is universal.

Proof. We show that Rgys¢ is S-universal with S being the set of instances (z,7) that have at
most an r-cut.

Define (7 o bprodg,,,.)({(z,71),(y,72)) = (2,71 + r2), where z is the graph obtained by
collapsing the vertices numbered 0 in z and y into a single vertex also numbered 0 in z. The
rest of the vertices remain as they are, except for a renumbering.

Define (71 o beply,,,.)({z,7),4,7) = (2,7 + 3), where graph z is obtained by adding two new
vertices k; and k9 to x and joining ¢ to ki, k1 to kg, and ko to 7. This ensures that exactly one
of 4 and j must be chosen. The building block for Rgys¢ is (G, 6) where G is the graph given in
Figure 4.

4
3 0 5
bity = 3
1 2 bito = 4
bit3 = 5
0

Figure 4: Graph for the instance blockrg,,

It has been our experience, and is evident from the above examples as well, that by choosing
the set S judiciously, the required properties are easily obtainable for a relation R witnessing
a natural NP-complete problem. Therefore, it appears that proving NP-completeness for many
problems is easier this way than the standard one of choosing a known NP-complete problem
and constructing a reduction from it. An example is the Simple Max Cut problem, which was
proved to be NP-complete through a complicated reduction from MAX SAT2 (see [GJS76]).
Here the same problem has an exceedingly simple proof of completeness.

Remark. At a first glance, obtaining a building block may appear to be a difficult exercise.
However, our experience is that the solution set structure required in a building block serves as a
very useful guide towards its discovery. In any case, if R is universal, it is possible to mechanically
obtain a building block by enumerating members of Lr and examining their solution sets (one
need not consider large instance sizes for this as usually a building block is of small size).
Therefore, obtaining a building block should not be considered a difficult step in our proposed
method of proving NP-completeness.

7 Examples of non-universal relations

We can exploit the strong extraction scheme that we have for solution-preserving reductions to
show certain relations non-universal. As all universal relations witness NP-complete sets, one
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can hope to show that the witnessing relations of languages believed to be non-complete are not
universal. The following lemma will be very useful in this context.

Lemma 7.1 Let R be a universal relation and W be a set of equal length strings. Then there
is an instance x and a sequence a such that proj,(solr(z)) = W.

Proof Sketch. One can easily construct a SAT instance y such that solgg,,(y) = W. Now,
by the definition of universal relations, it follows that there is an instance z and a sequence «
satisfying the required property. [

Do there exist non-universal relations? The answer is yes. In fact, one can very simply
construct non-universal relations for every set in NP. Take any relation R witnessing some set
A. Define a new relation R’ as follows: zR'w iff either z Rw or z Rw where string  is the bitwise
complement of w. There is no instance such that {1} is the projection of the solution set of
the instance under R’ via some sequence and therefore, by Lemma 7.1, R’ is not universal. So,
one cannot claim that non-universality of a relation implies that the witnessed problem is not
complete. In the case of natural problems, one may still claim, somewhat informally, that the
non-universality of their naturally defined witnessing relation(s) implies the non-completeness
of the problem. But this claim also fails. To see this consider the following relation for Simple
Max Cut problem (defined in section 6): (z,7)RY,,cs iff s is a subset of vertices of z giving
at least an r-cut. Note that if s is an r-cut of (z,7), so will be 5 and therefore, R, is not
universal.

The reason for non-universality of all the above relations is that they have redundant so-
lutions: if s is a solution then 5 is the same solution in a different encoding. We would like
to remove this redundancy and then see if the modified relation is universal or not. Hopefully,
such an approach would allow us to differentiate between natural complete and non-complete
problems. So, we first define the refinement of a relation in which the duplicate solutions are
‘compressed’ into a single one.

Definition 7.2 Relation R is a refinement of the relation R if there is a polynomial-time com-
putable many-one function h, h : ¥* — ¥*, such that for every x and s, function h satisfies the
following conditions.

1. For every s, h™!(s) is either () or contains s.

2. zRh(s) <= zRs.

Function h acts as a compressor of the solutions. The conditions on h ensure that it com-
presses solutions into solutions. An example of the refinement of a relation is given by Rsayc
defined in section 6. This relation is a refinement of the relation RY,,- defined above with
h(0s) = h(1s) = 1s. Now we define a more general notion of universal relations.

Definition 7.3 Relation R is near-universal if there is a refinement R of R such that R is
universal.

Every universal relation is trivially near-universal, as any relation is a refinement of itself.
The following proposition immediately follows.

Proposition 7.4 Set A has a near-universal relation iff it has a universal relation.
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Relation RY,,;- is an example of a non-trivial near-universal relation. For most of the
natural problems, it turns out that their naturally defined relations do not have any non-trivial
refinement as for every solution string of an instance they have another instance having only
that string as the solution. This forces the function A to be one-one. For natural languages in P,
it is very easy to show that their witnessing relations are not near-universal. For example, one
can show that 2SAT does not have a building block, Horn Clause Satisfiability problem does
not have a solution set that is projected to {10,01} via some sequence etc. We now consider
the Graph Isomorphism problem which is neither known to be complete nor known to be in P.
Further, it is believed to be non-complete [Sch88]. We give further evidence of this by showing
that its naturally defined witnessing relation is not near-universal.

Example 5: Graph Isomorphism. The problem is to find out if the given two graphs are isomor-

phic. Let

GISO & (G,H) | graphs G and H are isomorphic}.

The relation Rgrso is: (G, H)Rgrsos iff s encodes an isomorphism of G and H in the following
way—s[(j — 1) -n+ k] = 1 iff vertex j of G is mapped to vertex k of H, where n is the number
of vertices in G. Clearly sol-lengrso({(G,H)) = n-m, where m is the number of vertices in H
(if an isomorphism exists between G and H, then n = m).

Theorem 7.5 Rgrso is not near-universal.

Proof. We first note that Rgrso does not have any non-trivial refinement, as for every
isomorphism f, two graphs can be constructed with the only isomorphism between them being
f. Now, let W = {11,10,01} and assume that there is an instance zg = (Go, Hy) and a sequence
a such that proja(solr,, o (20)) = W. Let a = (i1 — 1) - n + j1, (i2 — 1) - n + jo, where n is the
number of vertices in Gj.

For any instance z = (G, H), let F(z,1,7) be the set of all isomorphic mappings between
graphs G and H that map vertex i of G to vertex j of H. Define, V(z,4,5,k) = {l | f €
F(z,4,§) N f(k) =1}. V(z,1,7,k) is the set of vertices of H to which the vertex k of G is mapped
to under the different isomorphisms in F(z,1, ).

Claim: For any z, i, j1, jo and k: if the sets F(z,4,j1) and F(z,i,j2) are non-empty then
|V(Z,’i,j1,k’)| = ‘V(Z,Z,]Q,k”

Proof. Fix mappings f1 and fy from F(z,1,j1) and F(z,1,j2) respectively (since the sets are
non-empty, such mappings exist). Define g = fo o fi ! ¢ is an automorphism of graph H with
g(j1) = jo. Similarly, g~* (= fiof; ') is also an automorphism of the graph H with g~ (j2) = ji.

It follows that for any h € F(z,4,41), go h € F(z,4,j2) and for any h € F(z,i,j2), g Loh€
F(z,i,41). Now, since g and ¢! are automorphisms, we have, F(z,4,j2) = g(F(z,4,41)) and
Fl(z,4,51) = g_l(F(z’ian))' Therefore, g(V (2,4, j1,k)) = {(gof)(k) | f € F(z,4,51)} = {f,(k) |
f' € F(z,1,52)} = V(2,14,j2,k). Since g is one-one, |V (z,1,71,k)| = |V (2,1, j2, k)|- O

We have proja (solgg;so (20)) = {11,01,10} with a = (i1 —1)-n+j1, (i —1) -n+ja2. So, there
is an isomorphic mapping between Gy and Hj in which vertex i; of G is not mapped to vertex
j1 of Hy. Suppose it is mapped to vertex js of Hy. So, in any mapping of F(z,%1,j3), vertex
io of Go must be mapped to vertex jo of Hy. Thus, V(z,i1,73,i2) = {jo}. Consider the case
when vertex i; is mapped to vertex j;. There will exist two different mappings in F(z,i1,j1)
such that in one of them vertex iy is mapped to vertex js and in the other vertex is is not
mapped to vertex jo. Thus |V (z,41,71,%2)| > 2. This contradicts the above claim. Therefore,
by Lemma, 7.1, Rgrso is not universal. [ |
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8 Structural properties of universal relations

In this section, we look at the universal relations, and related properties, ‘structurally’. In partic-
ular, we show that the properties of joinability and couplability are closely related to paddability
([BHT7T7]) and d-self-reducibility ([Sel88]) respectively. We also show that all the known NP-
complete sets appear to have a universal relation, thus indicating that all NP-complete sets may
have a universal relation. Finally we define a new subclass of NP-complete sets using universal
relations.

8.1 Joinability

For a joinable relation R, we have, joing(z,y) € Lg iff £ € Lr Ay € Lr. Thus, one can ‘pad’
any instance using this function. Paddability was defined in [BH77]:

Definition 8.1 Set A is paddable if there exist two polynomial-time functions p : ¥* X ¥* — %,
and p' : ¥* — X* such that for all z,y € *: p(z,y) € Aiff x € A and p'(p(z,y)) = y.

Say that function join g is p-invertible if there exists a polynomial-time function f such that
for every y, y = (1, %2, ..., 2Zn), f((m10joing)(y)) = y. The following theorem relates joinability
to paddability.

Theorem 8.2 Let R be a joinable relation with function joing being p-invertible. Then Lg s
paddable.

Proof. Let xp and z1 be two different instances of A with g, z; € Ly (the case when Ly =0

can be taken care of easily). Define function p(z,y) = (m1 o joing)({z, Ty}, Tyja)s - - - > Ty[ly))))-
Function p’ can also be computed in polynomial-time using the inverse of joingp. Moreover,
z € Lp iff pad(z,y) € Lg for any y. Therefore, Lg is paddable. [ ]

8.2 Couplability

The couplability property allows one to restrict the solution space of an instance. Therefore, we
can use it to restrict the solution space in such a way that the resulting instance can only have
a few solutions, if at all. This property is similar to d-self-reducibility [Ko83]:

Definition 8.3 [Ko83] An irreflexive partial order C4 on ¥* is polynomially related if there is
a polynomial p such that

1. z Cq y implies |z| < p(|y|),
2. x 4y is decidable in time polynomial in |z| + |y|, and
3. 1 Cqgxe Cq -+ gz implies k < p(|zk|)-

A set L is disjunctively self-reducible if there is a polynomial-time oracle DTM M such that
L = L(M, L), and on input z, M generates queries y1,y2,- -, Ym (m > 0) and accepts z iff for
some i, 1 <1¢ < m, y; € L, where y; C4  for each 1.

The following theorem shows how couplability can be used to obtain d-self-reducibility for
the set. Define p-invertibility for the function cplp in the same way as for joinp.

Theorem 8.4 Let R be a couplable relation with function cply being p-invertible. Then Lg is
d-self-reducible.
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Proof. We begin by defining a polynomially related irreflexive partial order on the strings that
the self-reducing TM for A will make use of.
For any v, say that vy is properly invertible if

1. cply'(y) is defined, and
2. let y = (w1 0 eplg)(z, (i1, .- 1%m), (J1,-- -, Jm)), then the following conditions hold—

(i) m < sol-leng(z) — 1,
(’LZ) il =1 75]'1, and {il,ig,... ,im} g {l,jl},
(’LZZ) {jl,jg,...,jm}:{2,3,...,m—|—1}, andjg <jg < < I

Define the relation < as: y < z iff y is properly invertible and one of the following two cases
hold:

Case 1 : z is properly invertible with
1. z= (7T1 o Cle)(.Z', <7;15 s aiM>a <jla cee ajm))a
2. m < sol-leng(z) — 1, and
3. y=(mocplg)(w, (i1, imt1)s (1o -5 Jm+1))-

Case 2 : z is not properly invertible, and y = (7 o cplg)(z, (i1), (j1))-

Define the partial ordering <* as the transitive closure of <. To see that <* is polynomially
related, we note that firstly, the length of any <*-decreasing chain starting from any string
z is less than sol-lenr(z) if z is not properly invertible, and is less than sol-leng(z) where
z = m(cplpt(2)) otherwise. In either case, this length is bounded by a polynomial in |z|.
Secondly, the size of every element in this chain is also bounded by a polynomial in |z|. And
finally, it is polynomial time decidable whether y <* z for any y and z.

The relf-reducing DTM that we define for A uses this ordering on strings. We first give an
informal description of the TM. On any input z, the TM checks if z is properly invertible. If it
is not, then—except for 1" and 0™ (n = sol-leng(z)) which can be checked separately—in any
solution of z the first bit of the solution must be the complement of some other bit. So, the
TM couples each of the last n — 1 bits with the first bit one by one, and accepts iff any of the
n — 1 instances thus generated belongs to A. Note that all these instances will be below z in the
partial order <*.

On the other hand, if z is properly invertible, then it is the image of some instance x after
a number of z’s solution bits have been coupled together. If there are still some solution bits of
z left that are not coupled, the TM picks one such bit and couples it with the first bit and its
complement (to which the first bit has been coupled earlier) one by one. It accepts iff any of
the two instances thus generated belongs to A. Finally, if all the bits of  have been coupled,
then there are only two possible solutions for x left corresponding to the two assignments to the
first bit (the rest of the bits get fixed by this). The TM can thus test this in polynomial-time
and accept z if any of the two assignments is a solution of z.

Now, we give the formal description of the d-self-reducing TM. The TM, on input z, works
as follows:

1. if z is not properly invertible then, letting n = sol-lenr(z), accept if 0™ or 1" is a solution
of z. Otherwise, compute the set

Q = {(m1 0 cplg)(2,(1),(2)), (m1 0 eplg)(2, (1), (3)),- -, (m 0 cplg) (2, (1), (n))},
and accept iff QN A # (.
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2. if z is properly invertible with

(a) z=(moceplg)(m, (i1, im)s (Jis---sJm)), and
(b) m < sol-leng(z) — 1,

then choose the smallest number j not in the set {1, ji,...,jm} and compute the set

Q = {(7‘-1 © Cle)(iE’ <Ii1a' e 7Iim’1>’ <j1a' e 7jmaj>)7
(7!'1 0 Cle)(LL', <7;13 s aimaj1>’ <j17 s aj”w]))}

Accept iff Q N A # 0.
3. if z is properly invertible with

(a) z= (m10cplg)(z, (i1, sim), (J1,---,Jm)), and
(b) m = sol-leng(z) — 1,

then construct the string s, |s| = sol-leng(z), such that s[j] = 1if j =1 or (Fk)ix = 51
and ji = j; s[j] =0 if (Fk)ix, = 1 and j = j. Accept iff s or 5 is a solution of z.

As explained above, this TM accepts Lg. [ |

8.3 Universal relations for non-natural sets

We have seen that if a set has a universal relation then it is NP-complete. Can we say that
every NP-complete set has a universal relation? An affirmative answer will obviously imply P#
NP as finite sets can not have a universal relation (this follows from Proposition 3.4) and so it
is not an easy question to answer. However, all sets in the p-isomorphism degree of SAT can be
easily shown to have a universal relation.

Proposition 8.5 Let A be p-isomorphic to SAT. Then there is a universal relation R witnessing
A.

Proof. Let f be the polynomial-time isomorphism such that z € A iff f(z) € SAT. Define
relation R as: zRw iff f(z)Rgarw. It follows that f~! (coupled with the identity projection) is
a solution-preserving reduction of Rgar to R. Therefore, R is universal (by Lemma 3.6). m

What can we say about NP-complete sets that are not p-isomorphic to SAT? The existence of
such sets was conjectured in [JY85] and is widely believed. In [JY85], a subclass of NP-complete
sets, called the k-creative sets, is defined using one-one, honest, polynomial-time computable
functions. We show that even these sets have universal relations. Let (as in [JY85])

K}“ def {f(i) | M; accepts f(i) within |i|.|f(i)|* + |i| steps}
where f is polynomial-time computable, one-one, honest and k& > 0.

It is believed that for many one-way functions f (a one-way function is a one-one, honest,
polynomial-time function that is not p-invertible; such functions exist if P # UP [Ko85, GS84]),
these sets are not p-isomorphic to SAT. For these sets, the most obvious admissible relations
witnessing them is the following: xRy si#w iff f(i) = =z, |i#w| = p(]z|) and w is an accepting
computation of M; on x for some fixed polynomial p.

Theorem 8.6 Relation Ry f is universal.
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Proof. Let y = (x1,...,zy). Define, joing, (y) = (f(9(y)), @), where TM M, on input z,
rejects if |z| < |y|, otherwise guesses the string s = i1 #w1 #ioFweF - - - #in#wy and accepts iff
for every r less than or equal to n, z, Ry si,#w,. By suitably padding g, we can ensure that
My, halts within |g(y)| steps and |f(g(y))| > |y|, and therefore, f(g(y)) € K,{ iff My, accepts
f(g(y)). One can also ensure that the above guess string is written in some fixed bit positions
in the accepting computation of My(,. This enables one to compute « properly.

Define,

Clek,f(wa <i1’ T ;in>7 <j1a s ,]n)) = <f(h($’ <7;17 T 7in>7 <j1, s 7]”)))7ﬂ>a

where TM My (5,33, ...in),(j1,-jn)) OD input z, rejects if [2| < |z|, otherwise guesses the string
s = 1#w and accepts iff Ry, si#fw and for every r less than or equal to n, it" and j!* bits of
the string i#w are different. Other properties can be ensured by making h satisfy the same
conditions as g above.

The instance blockg,, , is trivial: blockg, , = f (ip), where M;,, on input z, guesses a string
of length three and accepts iff the guessed string is not 000. [

Thus, universal relations capture more than just the structure of natural NP-complete sets.
In fact, one can construct an entirely new subclass of NP-complete sets, using one-one and
size-increasing functions, such that every set in the subclass has universal relation.

Let f be any one-one and size-increasing polynomial-time computable function. Define
relation R; as follows.

zRpw iff |w| = |z|*> and one of the following three conditions hold—

1. z =00 and w € {0001, 0010,0011,0100,0101,0110,0111}.

2. w = 118w $z28weS - - - $2,, 8w, #" (# and $ are symbols not in {0,1}),
f((1,z1,22,...,2,)) = z for some r > 0,n > 1 and (Vi < n)z; Rjw;.

3. w=2x%i1$---9i,8518- - 85,80 #" for some r > 0,n > 0,
fU0, 3,41, .. in,j1s---,5n)) = 2, TRpw' and for every k, 1 < k < n, the it" and the ji*
bits of w’ are different.

Theorem 8.7 Relation Ry is universal.

Proof Sketch. Since f is one-one, at most one of the above three conditions will hold for any z
and f is size-increasing, Ry can be computed in polynomial-time. Define

jOian(<.T1,-..,.’L'n>) = <f(<15331,---537n>)704),
Clef(Q?,<’i1,...,’in>,<j1,...,jn)) = <f(<05xaila---ainaj1a---7jn>)a/8>'
The sequences a and § are obvious. [ |

Now define the set Uy as—

Up € {z | (Bw)zRyw}

Corollary 8.8 For every one-one and size-increasing polynomial-time function f, the set Uy is
NP-complete.

Proof. Follows from the above theorem and Proposition 3.4. [
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9 Concluding Remarks

In this paper, we have defined the notion of universal relations, and have given a new method
for proving a set to be NP-complete based on this notion. Our principal aim was to capture the
common structure of natural NP-complete problems. If, for every natural NP-complete problem
there is a naturally defined universal relation witnessing it, then our aim would be fulfilled.
There is some evidence that it is indeed true. Firstly, the intuitive evidence: the two properties
joinability and couplability are very natural ones. Secondly, the empirical evidence: though we
do not claim to have verified the existence of universal relations for a large fraction of known NP-
complete problems, we have shown that very different kind of complete problems have universal
witnessing relations. In this paper, we have given five examples of these: one problem from logic
(Satisfiability), one from number theory (Knapsack), three from graph theory with first an edge-
deletion problem (Hamiltonian cycle), second an edge-addition problem (Independent set) and
third a node-deletion problem (Max cut). So, this property is, at the very least, not restricted
to certain kind of NP-complete sets. However, we would like the following stronger question to
be answered, as a positive answer to it allows us to separate natural complete problems from
non-complete ones.

Question 1 Are naturally defined relations for every natural complete problem near-universal?

Note that this question is imprecise as the notion of naturally defined relations for languages
is not formalized. So, a positive answer to the question is difficult to obtain (it is difficult for
other reasons too: it would imply P # NP!). However, a negative answer can be given by
exhibiting a natural complete language with a reasonable relation which is not near-universal.

Remark. Note that it is possible to construct witnessing relations for natural NP-complete
problems that are not even near-universal. However, these relations are not naturally defined.

The notion of universal relations goes beyond the natural sets. As is shown in section 8,
even non-natural NP-complete sets have naturally defined universal relations. We believe that
this notion may provide an interesting weakening of the notion of p-isomorphism. If two sets
are both shown to have universal relations then this immediately implies that the two sets have
many common structural properties. Also, for certain sets it is easier to show that they have
universal relations than showing them to be p-isomorphic to SAT. As an example, we recall
the case of k-creative sets. It is even conceivable that all NP-complete sets may have universal
relations without their being in the same isomorphic degree. So, our next question is:

Question 2 Do all NP-complete sets have universal relations?

Again, a positive answer to this question implies P # NP. However, answering this question
either way is hard even under the assumption P £ NP. The reason is that there is an oracle A,
for which P4 # NP4 and there are dishonest NP“-complete sets [HH91] and therefore in this
world there will be complete sets without universal relations by Proposition 3.4 (the notion of
universal relations easily relativizes). Also, there is an oracle A for which all NP4-complete sets
are p“-isomorphic [FFK92] and therefore all complete sets will have universal relations in this
world by Proposition 8.5.
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