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Abstract. We introduce the class of lazy rectangular hybrid automata.
The key feature of this class is that both the observation of the continuous
state and the rate changes associated with mode switchings take place
with bounded delays. We show that the discrete time dynamics of this
class of automata can be effectively analyzed without requiring resetting
of the continuous variables during mode changes.

1 Introduction

We introduce here a class of linear rectangular hybrid automata called lazy
hybrid automata and study its discrete time behavior. An important feature of
this class is that the sensors report the current values of the variables and the
actuators effect changes in the rates of evolution of the variables with bounded
delays. More specifically, the state observed at Ty is a state that held at some
time in a bounded interval contained in (T%_1,T%). Further, if an instantaneous
mode change has taken place at Ty, then any necessary change in the rate of
a variable will not kick in immediately. Rather, it will do so at some time in a
bounded interval contained in (T, Tk+1)- A final -but realistic- restriction is that
each variable’s allowed range of values is bounded. For convenience, we study the
case where there is a single rate vector associated with each control state instead
of a bounded rectangular region of vectors as is customary for rectangular hybrid
automata [2].

Since both sensors and actuators have delays associated with them, a single
symbolic trajectory of the automaton can give rise to uncountably many con-
crete trajectories; even in discrete time setting with the initial region being a
singleton. Hence computing the discrete time behavior of a lazy hybrid automa-
ton is non-trivial. Qur main result is that this can be carried out effectively. As
a corollary, we also show that the discrete time behavior of a network of lazy
hybrid automata that communicate by synchronizing on common actions can be
effectively computed.

As is well known, the continuous variables available to an hybrid automaton
and the fact that their rates of evolution can change instantaneously during a
mode switch endows them with a great deal of expressive power. As a result, in a



variety of settings, the control state reachability problem becomes undecidable,
as reported for instance, in [3]. A sharp characterization of the boundary between
decidable and undecidable features of hybrid automata is provided in [7] as well
as [2]. These results, as also the positive results reported elsewhere - for example,
[4, 10, 9, 8] - make it clear that except under very restrictive settings, one can
not expect to get decidability if the continuous variables don’t get reset during
mode changes; particularly in case their rates change as a result of the mode
change. Viewed as a model of digital control systems that interact with physical
plants through sensors and actuators, the resetting requirement severely restricts
the modeling power of the automaton. Our results show that by introducing
bounded delays into the functioning of the sensors and actuators, we can allow
the variables to retain their values during mode changes. Admittedly, our positive
results are obtained in the restricted setting of rectangular hybrid automata but
the wealth of research concerning this setting (for instance, [5, 7, 4, 6]) suggests
that this is a natural and well motivated starting point.

We study the discrete time semantics of lazy hybrid automata. From a tech-
nical standpoint, our work is a generalization of [6] where the discrete time
behavior of rectangular hybrid automata is studied with the requirement that
all instantaneous transitions should take place only at integer-valued instances
of time. In our terms, [6] further assumes that the sensors and actuators function
with zero delays which simplifies their analysis problem. In our setting, things
are more complicated due to the non-zero delays associated with the sensing of
values and actuating rate changes. Further, we feel that the approach proposed
here is of some independent interest from a modeling point of view. It also has the
potential to lead to the tractable analysis of larger classes of hybrid automata.
Finally, our focus on discrete time semantics is relevant -as also argued in [6]-
in that, as a model of digital controllers for continuous plants, the discrete time
semantics of hybrid automata is more natural and useful than the continuous
time semantics.

In the next section, we formulate the model of lazy hybrid automata. In sec-
tion 3 we prove our main result, namely, the language of state sequences and
action sequences generated by a lazy hybrid automaton are regular. Moreover,
finite state automata representing these languages can be effectively computed.
In section 4 we discuss the restrictions placed on lazy automata and point out
that many of them can be easily relaxed. We also show that our main result can
be easily extended to networks of automata which communicate by perform-
ing common actions together. In the concluding section we briefly discuss the
prospects for extending the results reported here.

2 Lazy Hybrid Automata

Fix a positive integer n and one function symbol z; for each 7 in {1,2,...,n}.
We will view each z; as a function z; : IR>o — IR with IR being the set of reals
and IR, the set of non-negative reals. We let Q denote the set of rationals and



T denote the set of closed intervals of the form [l,r] with I,r € Q and | < r. We
view [I,7] as the subset of IR given by {z |l < z < r}.

A lazy hybrid automaton is a structure
A= (Q, Act, gin, Vin, D,{pq}qeq, B, —) where:

— @ is a finite set of control states.

— Act is a finite set of actions.

— ¢in € @ is the initial control state.

— Vin € Q" is the initial valuation.

— D ={g,04,h,0n} C Q is the set of delay parameters such that
0<g<g+ds<h<h+d, <L

— pg € Q" is a rate vector which specifies the rate p,(i) at which each x;
evolves when the system is in the control state g.

— B = [Bmin, Bmaz] € T is the allowed range.

—C @ x Act x I™ X @ is a transition relation such that q # ¢’ for every

(¢,a,1,q") in —. Furthermore, if (q,a,1,q'),(q,a,I',q') €—> then I = I'.

We shall study the discrete time behavior of our automata. At each time
instant Ty, the automaton receives a measurement regarding the current values
of the z;’s. However, the value of z; that is observed at T} is the value that held
at some t € [Tx_1+ h,Tk_1 +h + 8p]. If at T}, the automaton is in control state
q and observed n-tuple of values (v1,vs,...,v,) is in I with (g, a,,q’) being a
transition, then the automaton may perform this transition instantaneously by
executing the action a and move to the control state ¢’. Thus as usual, the z;’s
will cease to evolve at the rates p, and instead start evolving at the rates py.
However, this change in the rate of evolution will not kick in at 7} but at some
time ¢ € [Tk + g, Tk + g+ d,4)- In this sense, both the sensing of the values of the
z;’s and the rate changes associated with mode switching take place in a lazy
fashion but with bounded delays.. We expect g to be close to 0 and & to be close
to 1 so that in the idealized setting, the change in rates due to mode switching
would kick in immediately (g = 0) and the value observed at T}, is the value that
holds at exactly Ty (h = 1). Indeed, this is the setting considered in [6].

B specifies the range of values within which the automaton’s dynamics are
valid. The automaton gets stuck if any of the x;’s ever assume a value outside the
allowed range [Bmin, Bmaz]- A number of the restrictions that we have imposed
are mainly for ease of presentation. Later, we will discuss how these restrictions
can be relaxed. Our main result is that the control state and action sequence
languages generated by a lazy hybrid automaton are both regular. Furthermore,
these language can be computed effectively.

2.1 The Transition System Semantics

Through the rest of this section we fix a lazy hybrid automaton A as defined
above and assume its associated notations and terminology. The behavior of A
will be defined in terms of an associated transition system.

A wvaluation is just a member of IR". We let ¢ range over {1,2,...,n}. The
valuation V' will be viewed as prescribing the value V(i) to each variable z;.



A configuration is a triple (q,V,q') where g,q’ are control states and V is a
valuation. g is the control state holding at the current time instant and ¢’ is the
control state that held at the previous time instant. V' captures the actual values
of the variables at the current instance. The configuration (q,V, q’) is feasible iff
V(i) € [Bmin,Bmaz] for every i. The initial configuration is, by convention,
the triple (gin, Vin, @in). We assume without loss of generality that the initial
configuration is feasible. We let C 4 denote the set of configurations. Since .4
will be clear from the context, we will often write C instead of C 4.

As in the case of timed automata [1], a convenient way to understand the
dynamics is to break up each move of the automaton into a time-passage move
followed by an instantaneous transition. At Tp, the automaton will be in its initial
configuration. Suppose the automaton is in the configuration (g, Vi, gx+1) at Tk.
Then one unit of time will pass® and at time instant T}, the automaton will
make an instantaneous move by performing an action a or the silent action 7
and move to a configuration (gxy1, Vi+1,4,,1)- The silent action will be used
to record that no mode change has taken place during this move. Again, as
often done in the case of timed automata, we will collapse the two sub-steps
of a move (unit-time-passage followed by an instantaneous transition) into one
“time-abstract” transition labeled by a member of Act or by 7.

With this intuition in mind, we now define the transition relation
=C C x ActU {7} x C as follows.

— Let (q,V,q') and (q1,V1,q1l’) be configurations and a € Act. Then
(¢,V,q') == (q1,V1,ql’) iff g1’ = q and there exists in A a transition
of the form ¢ LEN gl and there exist {1 € [g,g + dg]" and 2 € [h, h+ 6,]"
such that the following con/qitions are satisﬁeci for each .

(1) VI() = V() + i (i) - 816) + pyl) - (1 — 11 (0).
(2) V(i) + pg (3) - t1(2) + pq (i) - (¢2(2) — t1(2)) € I(i) for each 1.

— Let (¢, V,¢') and (¢1, V1, q1’) be configurations. Then (g, V, ') = (q1,V1,q1")
iff g1 = ¢q1’ = ¢ and there exists t1 € [g, g + d4]™ such that
V1(i) = V(i) + pgr(6) - £1(3) + pq(3) - (1 — 1(4)) for each .

Basically there are four possible transition types as illustrated in Figure 2.1
depending on whether ¢ = ¢’ and a € Act. Suppose (q,V,q') == (¢q1,V1,41")

with a € Act. Assume that g ol qlin Aand {1 € [g, g+94]™ and 2 € [h, h+6,]"
are as specified above. We first note that ¢1 # g by the definition of the transition
relation of A. The requirement g1’ = ¢ captures follows from our convention that
gl’ is the control state that held in the previous instant and we know this was
q.

First consider the case ¢ # ¢ and let us suppose that the configuration
(¢,V,q') holds at Ty. We take ¢ # ¢’ to mean that a change of mode from
¢’ to g has just taken place (instantaneously) at Ty based on the observations
that were made available at T;. However, at T}, the automaton will continue

3 We assume that the unit of time has been fixed at some suitable level of granularity
and that the rate vectors {pq} have been scaled accordingly.



Fig. 2.1. The four transition types

to evolve at the rate dictated by pg. Indeed, each z; will, starting from T},
evolve at rate p/ (i) until some Ty +t; with ¢; € [g, g + J,]. It will then start
to evolve at rate p,(¢) until Tk ;. Consequently, at Tj1, the value of z; will be
V1(i) = V(4) + pg(i) - t1 + pg(%) - (1 — ¢1). On the other hand, g1 # g implies
that another instantaneous mode change has taken place at Tx11 based on the
measurements made in the interval [T +h, Ti+h+0dx]. Suppose z; was measured

at Ty +to with to € [Tk +h, T +h+03]. Then in order for the transition ¢ LA ql
of A to be enabled at Tki1, it must be the case that the observed value of z;
at Ty, + ty falls in I(i). But then this value is V(i) + pf (i) - t1 + pg (i) - (ta — t1)-
This explains the demands placed on the transition (¢,V,q') = (q1,V1,ql’).
It is worth noting that in case ¢ = ¢’ (i.e. no mode change has taken place at
Ty) then V1(i) = V(2) + pg(3) - t1 + pg(2) - (1 — t1) = V(i) + pg4 as it should be.
Furthermore, V(i) 4 pq(i) - t1 + pq(3) - (t2 — t1) = V(i) + pq(3) - t2 and this must
fall in I(¢) as to be expected.

Similar (and simpler) considerations motivate the demands placed on transi-
tions of the form (q,V,¢') == (q1,V'1,q1’). Here again, it is worth noting that,
in case ¢ = ¢’, V'1(7) is determined uniquely, namely, V'1(i) = V() + pq(3).

We now define the transition system
TS = (RCa, (gin; Viny @in), Act U{T}, = 4) via:

— RCy4, the set of reachable configurations of A is the least subset of C that
contains the initial configuration (gin, Vin, ¢in) and satisfies:
Suppose (¢,V,¢') is in RC 4 and is a feasible configuration. Suppose further,
(q,V,q') == (¢q1,V1,q) for some a € Act U{r}. Then (¢q1,V1,q) € RCy4.

— =>4 is = restricted to RC4 x Act U {7} X RC 4.

We will often write RC' instead of RC 4 and write —> instead of = 4. We
note that a reachable configuration can be the source of a transition in 7'S 4
only if it is feasible. Thus infeasible reachable configurations will be deadlocked
in TS 4.



A run of TS 4 is a finite sequence of the form
0= (q07 Vo, q()) Qo (ql’ Vi, qll) a1 (QQ, Vv?vqé) v (qk, Vi, q;c) where (q07 Vo, q()) is the
initial configuration and (gm, Vin, @) == (@m+1; Vit 1, @my1) for 0 < m < k.
The st-sequence (state sequence) induced by the run o above is denoted as st(o)
and it is the the sequence ggq - - . ¢,. On the other hand, the act-sequence induced
by o is denoted as act(o) and it is the sequence apay ... a,. We now define the
languages L4:(A) and Lyt (A) as :

— L(A) = {st(o) | o is a run of A}.
— Lact(A) = {act(o) | o is a run of A}.

Our main result is that L (A) is a regular subset of @Q* while L,.:(A) is a reg-
ular subset of (Act U {7})*. Moreover, we can effectively construct finite state
automata representing these languages. As a consequence, a variety of verifica-
tion problems for lazy hybrid automata can be effectively solved.

3 Proof of the Main Result

We shall first establish the main result for the one dimensional case. As is often
the case with rectangular hybrid automata [4], it will then be easy to lift the
proof to the n-dimensional case with the help of a (Cartesian) product operation.

3.1 The One Dimensional Case

Let A = (Q, Act, gin, Vin, D, {pq}qeq, B, —) be a lazy automaton. We assume
for A, the terminology and notations defined in the previous section. Until fur-
ther notice , we set n = 1 and we will write = instead of z; and p, instead of
pq(2) for g € Q.

The key idea is quantize the unit time interval and correspondingly the
phase interval [Buin, Bmaz|- We first define A to be the largest positive ra-
tional number that integrally divides every number in the finite set of rational
numbers {g,d4,h,0n,1}. We next define I" to be the largest positive rational
number that integrally divides each number in the finite set of rational numbers
{pg-A|q€ Q}U{Bmin, Bmaz} U{l,r|(g,0a,[l,7],¢') is a transition in A}.

Let Z denote the set of integers. We now define the map
Il : IR — Z x ({0,1} U{L}) as follows.

— If v € (—00, Bin), then ||v|| = (kmin — 1, L) where kpmin -+ I’ = Bpin. If
v € (Bmaz,00) then ||v|| = (kmaz, L) where kpoy - I' = Brgs-

— Suppose v € [Bmin; Bmaz] and k € ZZ and v € [0, I') such that v = k- I'+7.
Then ||v|| = (k,0) if v =0 and ||v|| = (k,1) if ¥ # 0.

The map ||| can be extended in a natural way to configurations. Denoting this
extension also as |||, we define ||(¢g,v,¢')|| to be (g,|v|,q). Let
Da = {|lc|l| | ¢ € Ca}. Clearly D4 is a finite set and we will often write D
instead of D 4. Our goal is to show that the equivalence relation over the reach-
able configurations RC of A induced by the map ||| in turn induces a right



congruence of finite index over @Q*. The proof will make use of the following
simple observation. In stating the observation and elsewhere, we will use the
following notations. For ¢,q' € @ we let Ny and Ny be the positive integers
such that |pg - Al = N, - I and |(pq — p})) - A| = Ngg - . Clearly, N, and Ny
exist because of the choice of A and I'.

Lemma 1. Let q,q' € Q. Define the functions fy and fqq as:

(1) fq:[0, A/Ng] — [0, I'] and is given by f4(6) = |pq - 6|.
(2) faq' : [0, A/Ngg'] = [0, I'] and is given by feq (0) = |(pq — pg') - 6]-

Then both fq and fqq are well-defined, continuous and onto.

Proof. Follows easily from the definitions and the basic property of monotonic
real valued functions over bounded domains. a

We are now ready to tackle the main part of the proof.

Theorem 1. Let ¢l and ¢2 be two reachable configurations such that ||cl|| =
||c2]|. Suppose o € Act U {7} and cl' is a reachable configuration such that
cl =>4 c1'. Then there exists a reachable configuration c2' such that ¢2 == 4 ¢2'
and |[cl'|| = [|e2']].

Proof. Clearly cl is feasible and since ||cl|| = ||c2], it follows that ¢2 is also
feasible.

Assume that ¢l = (q1,V1,q1") and 2 = (¢2,V2,4¢2') and that ||[V1| =
(K1,21) and ||V2| = (K2, 22). Since ||c1|| = ||c2||, we can set ¢ = ¢l = ¢2,

¢ =ql' =¢q2" and (K,2) = (K1,21) = (K2,22). If z =0 then V1 = V2 and
hence ¢l = ¢2 and the result follows.

So assume that z = 1 and V1 # V2. Hence V1,V2 € (K.I,(K +1).I")
and hence ||(g,V1,¢)] = ||(g,V2,¢")| = (¢, (K, 1), ¢'). Furthermore, there exist
vl,v2 € (0,I') such that vl #v2 and V1=K -I'+ vl and V2 = K - I' + v2.
In what follows, for the sake of convenience, we will assume that 0 < py < p,
and that v2 < vl. From the structure of the proof it will be obvious that this
involves no loss of generality.

Let cl’ = (s,V1’,q). Then we have (¢,V1,¢') = (s, V1, q). We are required
to show that there exists V2 such that (q,V2,q') == (s,V2/,q) with ||[V1|| =
|[V2'||. We shall do this by considering four cases.

Casel:g=¢ and a = 7.

Since ¢ = ¢/, no mode change has taken place in the previous time interval.
Hence the automaton will evolve at rate p; during the current unit interval. On
the other hand, @ = 7 implies that s = ¢ and hence no mode change takes place
at the end of this unit interval either. Consequently, we must have V1’ = V1+p,.
We now set V2 = V2 + p,. Then it follows that (g,V2,¢') == (q,V?2',q). We
need to argue that ||[V1'|| = [|[V2'].

In what follows, we define for ¢ € {g, dg4, h,0n, 1}, N¢ to be the positive integer
satisfying ( = N¢ - A. These positive integers must exist by the choice of A.



Now p; = pg-1=pg-N1-A=N,-N;y-I. (Recall that p,- A= N,-I"). But
then V1,V2 € (K-T,(K+1)-I') and hence V1',V2 € (K+N,-N;)-T, (K +
14+ Ny - Nq)-I'). This at once leads to |V1'|| = ||[V2'|.

Case 2: ¢ = ¢ and o € Act.

Since ¢ = ¢ we again have that no mode change has taken place in the
previous interval and hence the automaton will evolve at rate p; in the current
interval. Hence, as in the previous case, we must have V1' = V1 + p,. Again, we
set V2' = V2+ p,. Consequently as shown in the previous case, |V1'|| = ||[V2]|.
So if we show that (g,V2,q") == (s,V2,q), then we are done.

We are given that (g,V1,¢') = (s,V1’,q). Hence there exists a transition of
the form (g, @, I, s) in A and there exists t1 € [h, h+ 3] such that V1+p,-t1 € I.
We just need to show that there exists t2 € [h, h+ 3] such that V2+p,-t2 € I.

In order to fix t2, recall that h = N, - A and dp, = Nj,, - A. We first note that
tl € [Ni-A, (Nr+Ns,)-A]. Noticing that pg- A = Ny-I" and hence pg-(A/Ny) =
I' we set Ay, = A/Ny, and observe that ¢t1 € [N}, - Ny - Ag, (N + N, ) - Ng - 4g].
Let N be the least integer in the interval [Nj - Ny, (N + Ns, ) - N,] such that
t1e[N-Ag (N+1)- A Let 61 =1 — N - A,. Clearly 61 € [0, A,].

Suppose 01 = 0. Then p, - t1 = p; - N - Ay = N - I and hence Vi =
Vidpg-tl € (K+N)-T, (K+14N)-I'). Set t2 = t1. Then V2 = V2+p,-tl €
(K+N)- I (K+1+N)-I') too. Now assume that I = [l, 7]. Then there exist
integers IV; and and N, such that [ = N;-I" and r = N, - ' with N; < N,.. Since
Vie I, r], we must have N; < (K + N) < (K + N + 1) < N,.. But this implies
that V2 =V2+ pq - t1 € [I,7] too. Hence (g,V2,q') == (s,V2',q).

The case 01 = A, can be dealt with in a similar manner by again setting
t2 =t1.

So now assume that 1 € (0, A/N,). Then clearly Vi=v1+ pq - tl €
1+ (K + N)-I,vl+(K+ N+1)-I. (Recall that vl = V1 — K - I" and
v2 =V2— K - I'.) There are three possibilities to consider.

Firstly, suppose V1 € [vl + (K + N) - I, (K + N + 1) - I'). Then we set
t2 = N-A,. Clearly V2 = V2+4p,-N-A, € (K+N)-TI', (K+N+1)-T). But then
Vi€ [vl+(K+N)-T,(K+N+1)-T) implies V1 € (K+N)-T', (K+N+1)-I).
Consequently V1 € [{, r] implies N; < (K + N) < (K + N + 1) < N, as before
and this in turn implies V2 € [, r]. This leads to (¢,V2,¢') = (s,V2', q).

Secondly, suppose vl = (K + N +1)-I'. Then, (K+N+1)-I' € (v2+ (K +
N)-T,v2+(K+ N +1)-I'). From Lemma 1, it follows that there exists 6, in
[0, A,] such that v2+ (K +N)-I'+pg-02 = (K+N+1)-I'. Set t2 = N-Ay+0,.
Clearly, V2 = V2 +pg-t2 = Vi= (K+ N +1)-I. Again, Vie (I, r] implies
V2e [I, r] as required.

Thirdly, suppose V1 € (K + N +1)-I', vl + (K + N + 1) - I'l. Then we
set 12 = (N +1)- A, Clearly V2 = V24 p, - (N+1)- 4, € (K+ N +1) -
I'(K+N+2)-T).Butthen Vie (K+N+1)-I,vl+ (K+N+1)-T]
implies vl € (K + N +1)-I', (K + N +2)-I). Thus again, Vie [{, 7] implies
V2ell,r].



Case3:g#¢ and a = 7.

Since q # ¢', an instantaneous transition has taken place at the end of the
time-passage move leading to (q,V1,q’). Hence the automaton will continue to
evolve at rate py until some t1 € [g, g+J4] and then will evolve at the rate p, for
the rest of the period 1—#1. Moreover t1 is such that V1' = V1+p; -t14p,-(1—-t1).
We need to find t2 € [g, g + d4] such that V2' = V2+ py - t2 + p, - (1 — t2) and
[|[V1'|| = [|[V2']. In order to fix #2, let g = Ny - A and §; = N;, - A.

Noticing that (pg — pg) - A = Nyq - I" and hence (p; — pg) - (A/Nygr) = I we
set Agqr = A/Nyqr, and observe that t1 € [Ng-Nygr-Agqr, (Ng+Ns, ) Nogr - Agqr]-
Let N be the least integer in the interval [Ny - Nygr, (Ng + Nj,) - Ngg] such that
tl € [N-Agy, (N+1)-Agyy]. Let 01 =¢1 — N - Agyr. Clearly 01 € [0, Agy].

‘We now have V].I =V1 +pq/ -N - Aqq’ +pq’ .01 +pq . (Aqq’ — 91) +pq . (N1 .

Nyg — N — 1) - Agyr. (Recall that Ny - A = 1.) Expanding this expression and
simplifying using the definitions of Ny, Ny, Nyo and Agyr, we get:
V1 =V14+(N1-Ng—N)-I'—(pg—pq')-01. We recall that vl = V1-K-I" and v2 =
V2—K-TI. Since 01 ranges over [0, Agq], we have that (pg — pg’) - 01 ranges over
[0, I']. Hence V1’ € [vl+ (K +Ny-N,—N)T, v1+(K+N;-N,— N+1)-T']. Again
there are three situations to consider. For convenience, let K’ = N; - N, — N.

Suppose V1’ € [vl1+(K+K')-I',(K+K'+1)-I'). Then we set t2 = N-Ayq.
Then it is easy to see that t2 € [g, g+d4]. Now let V2' = V2+pgr - 12+ pg- (1 —12).
Then by our choice of t2, we have, V2' = V2+py-N-Agq+pg-(N1-Ngg —N)-Agg -
Simplifying this expression, we get V2' = V2 + K'-T'. Since V2 =92+ K - T,
we then get V2' € (K+ K')-I',(K+ K'+1)-I'). As aresult, ||[V1']| = ||[V2].
By the choice of ¢2, it is also clear that (¢,V2,q') == (s,V2',q).

The case V1' € (K+ K'+1)-TI', vl+(k+ K +1)-I'] is handled in a similar
manner by setting t2 = (N 4 1) - Agqy.

So suppose that V1’ = (K + K’ + 1) - I'. Then by Lemma 1 we can find
02 € (0, Ayy) such that with t2 = N - Ay + 62, and V2 = V2 + pyr - t2 +
pq - (1 — ¢2), we can obtain V2" = (K + K’ 4+ 1) - I'. This follows from the
fact that as 62 ranges over [0, Ayy], we will have V2’ ranging continuously over
[vV24+(K+K')-I', v24+ (K +K'+1)-I'] and surely (K +K'+1)-I" lies within this
range. Clearly by the choice of ¢2 and V2/, we have (¢,V2,¢') == (5,V2',q). It
also follows at once that ||[V1'|| = ||[V2']].

Case 4: ¢ # ¢ and « € Act.

This is the most general case where the rate will change during the current
period and the time-pass move will be followed by an instantaneous execution
of a transition of A.

Since (¢, V'1,¢') = (s, V1, q), there exist t1 € [g, g+6,] and t1’ € [h, h+33]

and a transition ¢ @D ¢ in A such that V1’ = V1 + pg - t1 4+ (1 —t1) - pg
and V1 + pg - tl + pg - (t1' — t1) € I. We need to find ¢2 € [g, g + J4] and
t2' € [h, h + i) such that V2 + py - 12+ p, - (t2' — t2) € I and ||V1'|| = ||[V2/|]
where V2' = V24 pg - 12 4 (1 — t2) - pyg.

As before, we set Agyy = A/Nyy and let N be the least integer in the
interval [Ng 'qul, (Ng +N59) -qu/] such that t1 S [N Aqq’; (N+ 1) . Aqq’]- Let
01 =¢t1—N-A,y. Clearly 61 € [0, Ayy]. Using the argument developed to settle



the previous case, we can conclude that V1’ = V14+(N1-Ny—N)-I'—(pg—pgy ) -61.
As before, we set K' = Ny - N, — N. We need to examine two cases. (It is worth
recalling here that we are operating under the assumptions 0 < p} < p, and
v2 < vl).

Suppose V1' € w1+ (K+K')-T', v2+(K+K'+1)-I']. Consider 2 = (N+1)-
Agqr+02 for some 02 € [0, Agy]. Define V2' = v2+(K'+K+1)-I'=02-(pg—pgr)-
As 02 ranges over [0, Ayy], V2’ will range over [v2+ (K' + K) - I, v2+ (K +
K'+1)-I']. Hence, by Lemma 1, we can fix a 62 such that V2' = V1’

Suppose on the other hand, V1’ € (v2+(K+K'+1)-Ivl+(K+K'+1)-I.
Then we set 62 = 0 so that ¢2 = (N+1)-A,, and hence V2' = v2+(K+K'+1)-T.
Clearly both V1’ and V2' liein (K + K'+1)-I, (K + K' +2) - I'). Hence
VY| = [Iv2].

We note that in either case, our choice of 2 guarantees that V1’ = V2 or
V2 < V1 with V1 — V2 <ol —02.

Turning to the choice of t2’, we define as before, A, = A/N,. Let J be
the least integer in the interval [Np, - Ny, (N + Ns, — 1) - N| such that ¢1’ €
[J- Ay, (J+1)-4,]. Let 01’ =¢1" — (J - 4,). Clearly 01’ € [0, A,].

Let V1" = V1+pg .t1+pg-(t1'—¢1). Then V1" = V1+py-N-Ayy +pg -01+
Pg(Agqy —01)+pg-(J-Ng-Ayg— (N+1)- Ayyr) + pg - 61'. Again expanding and
simplifying this expression, we get V1" = V1+(Ny-J —N)-I' — (pg — pg') - 01+
pq-01". Let L =Ny-J—N.Then V1" = vl+(K+L)-I'—(pg—pq)-01+pq-01".

Now V1" = v1+(K+L)-I'—-(pg—pq)-01 must lie in [v1+(K+L)-I', v1+(K+
L+1)-I']. Suppose V1" lies in [v1+(k+L)-I', v2+(K+L+1)-I']. Then our choice
of 62 ensures that v2+ (K+L)-I'—(pg—pq )62 = v1+(K+L)-I'—(pg— pg)-01.
We now set 02’ = 61’ and t2' = J - A, + 62'. Clearly t2' € [h, h + 3] and
V2" =V2+ py -2+ pg - (82" — ¢2) = V1" € I and hence we have, as required,
(¢,V2,4) == (5,V2,q) with |[V1']| = [[V2'].

Finally, assume that V1" = vl + (K + L) - I' — (pg — pg') - 01 lies in (v2 +
(K+L+1)-Ivl 4+ (K + L+ 1)-I] Then our choice of §2 ensures that
V2" = w24+ (K+ L).I — (pg — pg) - 02 = v2+ (K + L+ 1)- I and thus
V1" — V2" < vl — v2. Now depending on 61’, the value of V1” must lie in
(2+(K+L+1)-Ivl+(K+L+2)-I'.IfV1" liesin (v2+ (k+L+1)-
I', v2 + (k+ L + 2) - I'] then we can, by lemma 1, pick 62’ € [0, 4,] so that
V2" = V1" where V2" = V2 + py - 12+ py - (£2' — £2) with 2/ = J - A, + 62/ If
on the other hand, V1" lies in (v2+ (K +L+2)-I, vl1+ (k+ L+2)-I'] we can
set 02' = Ag and t2' = J - A+ 62’ so that V2" =v2 + (K + L+2)-I'. In either
case, we have t2' € [h, h + 6] and V2" € T so that (¢,V2,¢') == (5,V2,q)
with [|[V1']| = ||V2|. O

We now define the finite state automaton Z4 = (D, (gin, (ko,0), ¢in), Act U
{7}, ~, D) where ko-I" = V;,, and the transition relation ~~C Dx(ActU{7})xDis
given by: (g, (k,d),q') ~ (q1, (k1,d1),q1’) iff there exist configurations (g, V,q’)
and (q1,V1,ql’) such that (q,V,q) = (q1,V1,q1’) and ||V| = (k,d) and
[V1]| = (k1,dl). In what follows, we will often write Z4 as just Z. Note that,we
are setting all the states of Z to be its final states.



We define L4(Z) to be the subset of @* as follows. A run of Z is a se-
quence of the form (qO, (lO, d0)7 q6) Qo (qh (llvdl)vqa) ap ... (QWH (lm7 dm)7 ‘.#n)
where (q01 (l0a dO)a q(l)) = (qina (k()a 0)5 QML) and
(%, Ly ds), @5) ~ (@415 (1, djt1),@j4q) for 0 < j < m. Next we define
4041 - - - @m € Lsi(Z) iff there exists a run of Z of the form
(0, (lo, do), @) o (q1,(l1,d1),q1) @1 . (Gm, (Im, dm), @y,)- Clearly Lg(2) is a
regular subset of @* and it does not involve any loss of generality to view Z4
itself as a representation of this regular language.

Theorem 2. The automaton Z 4 can be computed effectively. Moreover L (A) =
Lst(Z4) and Lot (A) = L(Z 4) where L(Z 4) is the regular subset of (ActU{r})*
accepted by Z 4 in the usual sense. (Note that all the states of Z 4 are final states.)

Proof. Clearly the finite set of states D and the initial state (gin, (ko,0), gin) can
be computed easily. The transition relation ~~ is expressible in the first order
theory of the real ordered field which is a decidable theory [11] . For instance, to
determine if (g, (k,1),q") <> (q1, (k1,1),q), with a € Act, we first check if there is
a transition ¢r in A of the form (g, a, I, q1). If there is no such transition then we
conclude that (g, (k,1),q') ~ (q1,(k1,d1),q) is not a transition in Z4. If there
is such a transition then for each such transition tr we construct the formula
©¢r, take the disjunction of all such formulas and check for its satisfiability.
Suppose tr = (g, a, I, ql). Then ¢, will conjunctively assert the following:

— There exists V such that k- I' <V < (k+1)- I

— There exists t1 such that g < t1 < g+d5 and k1-T" < V+pg-t14+pg-(1—11) <
(k14+1)-T.

— There exists t2 such that A < ¢2 < h+0p and I < V+pgr-t1+pq-(12—t1) <7
(where I =[I, r]).

To see that L4(A) = Lt(Z) we first note that Ls;(A) C L (Z) follows from the
definition of Z 4. To conclude inclusion in the other direction, we will argue that
for each run (qo, (lo, do), qp) @o (g1, (11,d1),91) @1 - - - (@m (Im> dm), @, ) Of Z there
exist Vg, Vi ...V, € IR such that (qo, Vb, q}) @o (41, V1,4}) @1 - - (@my Vin, ¢.,) is
a run of T'S4. And furthermore, ||V;|| = (I,d;) for 0 < j < m. The required
inclusion will then follow at once. For m = 1, it is clear from the definitions and
so suppose that (g0, (1o, do), q0) @0 (q1, (11, d1),q1) @1 - - - (@ms (Ims dm), Q1)
am (@m+1, (Im+1,dm+1), @y 1) is @ run of Z. By the induction hypothesis, there
exists a run (go, Vo,90) @0 (q1,V1,41) @1-..(¢ms Vi, q,,) of T'S4 with the
property, [|V;|| = (I;,d;) for 0 < j < m.

Now (¢m, (Im,dm), d.,) g (@m+1, (Im+1,dm+1), 44 1) implies that there ex-
ist Vy, and Vy..y such that (gm, Vs @) ¥ (@1, Vi1, rrn) and Vil =
(Im,dm) and ||V} 11|| = (lm+1, dm+1)- But this implies that ||V, || = ||V;n |- Hence
by Theorem 1, there exists Vy,11 such that (¢m, Vin, @) ~5 (@m+15 Vint 1> s 1)
and moreover ||V, ;|| = [[Vin41ll. Thus L (A) = L(Z.4). It now also follows
easily that Lqo(A) = L(Z4). 0

In what follows, we will refer to Z as the zone version of A.



3.2 The n-dimensional Case

We now consider an n-dimensional hybrid automaton A4 defined as in the pre-
vious section with the associated terminology and notations. Our goal is to
show that L (A) is a regular subset of @* while £,.:(.A) is a regular subset of
(Act U {7})*.

To do so, we first define the family of one dimensional automata {A‘} =
(Qa ACta q;na V;Zna Da {p;}qEQa B7 _>i) where:

— V(@) is Vin(i), the i-th component of V.

- pg= Pq(i)

-gq (a—’ln) ¢’ iff there exists ¢ @1 ¢ in A with I = I(i). Again, I(i) denotes
the i-th component of 1.

Let Z* be the zone version of A’ with
Zt = (D, (gin, (k&,0), qin), Act U {7}, ~;). We now define the finite state au-
tomaton Z4 = (D, (gin, Ko, Gin), Act U {7}, ~», D) which will constitute the zone
version of the n-dimensional automaton A as follows.

— D, the states of this automaton, will be of the form (g, &, q’) with ¢,¢' €
Q and Kk € ((Z X {0,1})” Let k = ((kl,dl),(kg,dg)...,(kn,dn)). Then
(¢,k,q") € D iff there (g, (ki,d;),q') € D for each i in {1,2,...,n}.

— ko = ((k§,0), (k2,0),...,(k3,0)

— ~»C DX (ActU{r}) x D is given by:

Let (g,%,4"),(ql,k1,q1") € D with k = ((k1,d1), (k2,d2) ..., (kn,d,)) and
kl = ((kl1,dl1), (kl2,dls). .., (kl,,d1,)). Then (g,%,q") % ((q1,K1,41")
iff (q7 (kiadi)vq,) Vl})i (q]-a (klzadlz)aq) for each i € {17 27 . '7n}‘

As before, we will often write Z instead of Z4 and refer to it as the zone
version of A. We denote by Ls(Z) the state sequence language of Z and define
it in the obvious way. We also define £(Z) to be the subset of (Act U {7})*
accepted by the finite state automaton Z.

Theorem 3. The automaton Z4 can be computed effectively. Moreover L (A) =
ﬂst(ZA) and Eact (A) = ‘C(Z.A)

Proof. Since, by Theorem 2, each of the finite state automata Z* can be com-
puted effectively, so can Z be.

We define the runs of Z in the obvious way. Now suppose
o = (20, Vo, @) @0 (q1, Vi, 4}) @1 (g2, V3, @b) - - - (G, Viny @) is & run of T'S4. Then
by the definition of A* we have that
o' = (g0, Vo(4), 90) @0 (g1, V1 (1), q1) 1 (2, V2(), @2) - - - (ans Vu(9), ¢) is & Tun of
TS 4: for each ¢. Hence by the definition of the transition relations ~~; and ~,
it follows that
(go, k0, @) o (g1, K1, 4}) a1 (g2,K2,G5) - . . (gm, &M, q},,) is a run of Z where kj =
VI IV -5 [[Vi(n)]])) for 0 < j < m. Hence Lg(A) € Lor(Za)-

To show inclusion in the other direction, consider the configurations (g, V, ¢’)
and (q1,V1,q) in C4 and suppose « is such that (g, V(i),q) =>; (¢1,V1(3),q)



in TS 4, for each i. Then, for each ¢, there exists t1; € [g, g + d4] such that
V1(i) = (V(@) + ply) - t1i + (p}) - (1 — t1;). If @ = act, then there also exists a
(unique!) transition (q,a,I,ql) in A and for each i there exists t2; € [h, h + dp]
such that V(i) + p¥, - t1; + pf - (t2; — t1;) € I(i). Hence we can conclude that
(0, V,q') == (q1,V1,q1") in TS 4 by defining 1 € [g, g + 6,]" to be #1(i) = t1;
and t2 € [h, h + d,]™ to be t2(i) = t1; for each i.

So now suppose (QO7 KO, Q(’]) Qo (q17 Hla qll) (251 (q27 K/27 ql2) te (QMa Km, q{m,)
is a run of Z. Then for each 1,
(g0, (Ko, d%))? 90) @0 (g1, (k1,d1), qll) a1 (g2, (K3, d3),03) - - - (gm, (kpys drn)s q;n) is a
run of Z*, the zone version of A’ with the assumption that xj(i) = (k},d}) for
0<j<mand1<i<mn. .Hence'from the proof of Theorem 2, it follows that
for each i, there exist Vy, Vy'... V] such that
(qu Vo, q(l])aO(ql, Vi, qll)al (q2a V2'L7 q/2) s (qmv Vi Q;n,) is a run of T'S 4:. Now de-
fine V; € R"™ to be V(i) = V} for 0 < j < m. Then by the argument above we
must also have that (qgo, Vo, q)) @o (g1, V1,41) @1 (a2, Va,45) - - - (@m, Vin, @b,
is a run of T'S 4. Clearly, this implies L£4:(A) = L(Z.4) and this in turn implies
‘Cact(-A) = E(ZA) ]

4 Some Extensions

In order to simplify the initial presentation, we placed a number of restrictions
on our automata. Here we first examine which of these can be relaxed so that,
with minor overhead, our main results go through smoothly. We then formulate
a composition operation for lazy hybrid automata in a standard way using which
large automata can be presented in a succinct fashion. These networks of lazy
hybrid automata can also be analyzed effectively.

Let A = (Q, Act, gin, Vin, D,{pq}tqcq, B,—) be a lazy hybrid automaton.
We could permit a set of initial control states and a set of initial valuations
for each initial control state, provided they can be specified using rectangular
constraints. Our results will go through with minor modifications. It is also clear
that our demand 0 < g < g+ dy < h < h+ 0, < 1 is only for convenience.
We could have different delay parameters for different variables and these delays
could spill over more than one time unit.

The restriction that there is at most one a-labeled transition between a pair
of control states is mainly for convenience. If this condition is violated we could
use renaming to enforce this property, construct the zone automaton and then
restore the old names.

We have also avoided the use of state invariants only for convenience. They
can be introduced in the expected manner. A similar remark applies to allowing
for resets of the variables during a mode switch. Finally, we have avoided the cus-
tomary use of differential inclusions to specify the rates mainly for convenience.
Our results will still go through, with some additional notational overhead if we
permit this extension.

The boundedness restriction on the allowed range B = [Bin, Bmaz] is cru-
cial. From a modeling point of view however, this is not a crippling limitation.



The fact that we have linear rates is again crucial. Our proof idea breaks down for
non-linear rates. The fact that non-empty closed intervals are used for specifying
the transitions of A is not important. However the fact that we have rectangular
constraints is important.

4.1 Product Automata

We now show that we can easily cope with networks of lazy hybrid automata
in which the component automata communicate by synchronizing on common
actions.

Let P be a finite set of agent names with u,v ranging over P. We define
a product lazy hybrid automaton to be a structure Ap = Huep A, where
Ay = (Qu, Actu, gty Vin, Dy {0y }ae@.» B, —u) for each u in P. For convenience,
we will write T'S,, instead of T'S4, to denote the transition system over the
reachable configurations of A, as defined in section 2. The operational behavior
of [[,ep Au is given by the transition system denoted as 7'Sp and defined as
follows.

Let RC, be the set of reachable configurations of A, with c¥ as the ini-
tial configuration for each u. Then RCp, the set of reachable configurations of
[I.cp Au and the transition relation ==p are the least sets satisfying:

— Cin = HueP ci, € RCp and is the initial configuration.

— Suppose ¢ = [[,cpc* € RCp and c* ==, d* for each u. Then d =
[[.cpd* € RCp and c =5 d.

— Suppose ¢ = [[,cpc* € RCp and a € Act and c* ==, d* for each u
satisfying a € Act,. (Act, is the set of actions that A, participates in.)

Furthermore, suppose ¢* =, d* for every u such that a ¢ Act,. Then
d =[lyep d* € RCp and c =5 d.

We now define T'Sp to be the transition system T'Sp = (RCproc, Act U
{7}, ¢in,=>p). The notion of runs of T'Sp and the language of state sequences,
Lot(ITuep Au) and Lace([T,cp Au) are defined in the expected manner. These
languages are also regular and they can be effectively represented as follows.

Let Z* = (D", (¢%,, k&, ¢%), Act,U{T}, ~>4, D*) be the zone version of A4, for
each u. We now define the automaton Zp = (Dp, ][], cp K5, Act U{T},~p,Dp)
via:

— Zp = [Luep D"

— Suppose X = [[,cp(q1*,£%,q2%) and Y = [],cp(q3%, K%, q4") are in Dp
and (q1%, k%, q2%) ~5, (g3, k%, q4") for each u. Then X ~3p Y.

— Suppose X and Y are as above and a € Act and (q1%, k%, q2"*) ~5,, (3%, k%, g4*)
for each u such that a € Act,. Suppose also (g1%, k%, q2%) ~5, (¢3%, k*, g4¥)
for each u such that a ¢ Act,. Then X ~3p Y.

It is now easy to prove that Zp represents both L4 (Autp) and Lyct(Ap) in
the expected manner.



5 Conclusion

We have formulated here the class of lazy hybrid rectangular automata. These
are basically linear rectangular hybrid automata but where each automaton is
accompanied by the delay parameters {g, dg, h,dp}. Our main result is that the
discrete time behavior of these automata can be effectively computed if the
allowed ranges of values for the variables are bounded.

We have not outlined the verification problems for lazy rectangular hybrid
automata that can be settled effectively. It should be clear however, that due to
Theorem 1 and Theorem 2, we can model-check the discrete time behavior of
our automata against a variety of linear time and branching time temporal logic
specifications. We have also not established the precise complexity bounds for
the procedure constructing the zone version of our automata.

We believe that associating non-zero bounded delays with the sensors and
actuators is a natural assumption. It also cuts down on the expressive power of
hybrid automata. We also wish to argue that it is useful to focus on the discrete
time behavior of hybrid automata. Finally, it is our hope that the ideas presented
here may have a larger scope of application. In particular, we conjecture that
the discrete time behavior of lazy linear hybrid automata (with bounded allowed
ranges of values) can be effectively computed.
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