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Abstract. We show the regularity of the discrete time behaviour of hy-
brid automata in which the rates of continuous variables are governed by
linear differential operators in a diagonal form and in which the values of
the continuous variables can be observed only with finite precision. We
do not demand resetting of the values of the continuous variables during
mode changes. We can cope with polynomial guards and we can tolerate
bounded delays both in sampling the values of the continuous variables
and in effecting changes in their rates required by mode switchings. We
also show that if the rates are governed by diagonalizable linear differen-
tial operators with rational eigenvalues and there is no delay in effecting
rate changes, the discrete time behaviour of the hybrid automaton is re-
cursive. However, the control state reachability problem in this setting
is undecidable.

1 Introduction

We study the behaviour of hybrid automata in which the rate functions associ-
ated with the modes are restricted linear differential equations. We show that if
the values of the continuous variables can be observed only with finite precision,
then the discrete time behaviour of a large class of hybrid automata is regular.
Further, these behaviours can be effectively computed. The key feature of our
setting is that we do not demand that the value of a continuous variable be
reset during a mode switch. Our results suggest that focusing on discrete time
semantics and the realistic assumption of finite precision can lead to effective
analysis methods for hybrid automata whose continuous dynamics is governed
by (linear) differential equations.
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In the related literature, one often assumes that the rates are piecewise con-
stant. This is so, at least in settings where one obtains positive verification
results [7, 10, 13]. Even here, since the mode changes can take place over con-
tinuous time (a transition may be taken any time its guard is satisfied), basic
verification problems often become undecidable [4, 9]. In contrast, it was shown
in [8] that one can go much further in the positive direction for piecewise constant
rate automata, if one defines their behaviour using a discrete time semantics. As
argued in [8], if the hybrid automaton models the closed loop system consisting
of a digital controller interacting with a continuous plant, then the discrete time
semantics is the natural one; the controller will observe via sensors, the states
of the plant and effect, via actuators, changes in the plant dynamics at discrete
time points determined by its internal clock. In [2] it was shown that, in this
setting, one can in fact tolerate bounded delays both in the observation of the
plant states and in effecting changes in the plant dynamics.

Both in [8] and [2], the transition guards were required to be rectangular;
conjunctions of simple linear inequalities involving just one variable. We showed
in [3] that one can cope with much more expressive guards—essentially all ef-
fectively computable guards—if one assumes that the values of the continuous
variables can be observed only with finite precision. In many settings including
the one where the hybrid automaton models a digital controller interacting with
a continuous plant, this is a natural assumption.

Here our goal is to show that the combination of discrete time semantics and
finite precision can not only allow more expressive guards but can also take us
beyond piecewise constant rates. One of our main results is that under finite
precision, the discrete time behaviour of a hybrid automaton is regular and
effectively computable even when the rate of a continuous variable in the control
state q is governed by an equation of the form dx/dt = cq · x(t). This holds even
though we do not demand resetting of the values of the continuous variables
during mode changes. Further, we can cope with arbitrary computable guards.
We can also tolerate bounded delays in sampling the values of the continuous
variables and in effecting changes in their rates required by mode switchings.

We also show that the discrete time behaviours of hybrid automata in a
much richer setting are recursive. Specifically, the rates of continuous variables
at the control state q are governed by a linear differential operator represented
by a diagonalizable ([11]) matrix Aq with rational eigenvalues. Further, we al-
low polynomial guards but do not permit delays in effecting rates changes. A
consequence of this positive result is that one can effectively solve a variety of
bounded model checking problems [6] in this rich setting. However, we show that
the control state reachability problem is undecidable for this class of automata;
this is so, even if the guards are restricted to be rectangular.

The proofs of the above two results seem to suggest that one can hope to
go much further if update delays are allowed. This will prevent the hybrid au-
tomaton from retaining an unbounded amount of information as its dynamics
evolves. The key obstacle is that we do not know at present how to take advan-
tage of this observation since we lack suitable techniques for tracking rational



6 M. Agrawal et al.

approximations of exponential terms with real exponents. In this connection,
the fundamental theory presented in [5] may turn to be important. We also feel
that the techniques presented in [14, 15] will turn out to be useful even though
they are developed under a regime where continuous variables are reset during
mode changes.

In the next two sections, we define our hybrid automata and develop their
discrete time semantics. In section 4, we present our main result concerning
hybrid automata whose discrete time behaviours are regular. In section 5, we
study a subclass of hybrid automata whose discrete time behaviours are recursive
but whose control state reachability problem is undecidable.

2 Hybrid Automata Preliminaries

Through the rest of the paper, we fix a positive integer n and one function symbol
xi for each i in {1, 2, . . . , n}. We will often refer to the xi’s as “continuous”
variables and will view each xi as a function (of time) xi : IR≥0 → IR with IR
being the set of reals and IR≥0, the set of non-negative reals. We let Q denote
the set of rationals.

The transitions of the hybrid automaton will have associated guards that
need to be satisfied by the values of the continuous variables for the tran-
sitions to be enabled. A polynomial constraint is an inequality of the form
p(x1, x2, . . . , xn) ≤ 0 or p(x1, x2, . . . , xn) < 0 where p(x1, x2, . . . , xn) is a polyno-
mial over x1, x2, . . . , xn with integer coefficients. A polynomial guard is a finite
conjunction of polynomial constraints. We let Grd denote the set of polynomial
guards. Unless otherwise stated, by a guard we will mean a polynomial guard.

A valuation V is just a member of IRn. It will be viewed as prescribing the
value V (i) to each variable xi. The notion of a valuation satisfying a guard is
defined in the obvious way.

A lazy finite-precision differential hybrid automaton is a structure
A = (Q, qin , Vin ,Delay , ε, {ρq}q∈Q, {γmin , γmax}, −→) where:

– Q is a finite set of control states with q, q′ ranging over Q.
– qin ∈ Q is the initial control state.
– Vin ∈ Qn is the initial valuation.
– Delay = {δ0

ob , δ
1
ob , δ

0
up , δ1

up} ⊆ Q is the set of delay parameters such that
0 ≤ δ0

up ≤ δ1
up < δ0

ob ≤ δ1
ob ≤ 1.

– ε, a positive rational, is the precision of measurement.
– {ρq}q∈Q is a family of rate functions associated with the control states.

In the general case, ρq will be of the form ẋ = Aqx + bq where Aq is an
n × n matrix with rational entries and bq ∈ Qn. For each i in {1, 2, . . . , n}
this specifies the rate function of xi as the differential equation dxi/dt =∑n

j=1 Aq(i, j) · xj(t) + bq(i) where Aq(i, j) is the (i, j)-th entry of Aq.
– γmin , γmax ∈ Q are range parameters such that 0 < γmin < γmax .
– −→ ⊆ Q×Grd ×Q is a transition relation such that q �= q′ for every (q, g, q′)

in −→.
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We shall study the discrete time behaviour of our automata. At each time
instant Tk, the automaton receives a measurement regarding the current values
of the xi’s. However, the value of xi that is observed at time Tk is the value that
held at some time t ∈ [Tk−1 + δ0

ob , Tk−1 + δ1
ob ]. Further, the value is observed

with a precision of ε. More specifically, any value of xi in the half-open interval
[(m − 1/2)ε, (m + 1/2)ε) is reported as mε where m is an integer. For a real
number v, we will denote this rounded-off value relative to ε as 〈v〉ε and often
just write 〈v〉. More sophisticated rounding-off functions can be considered as
in [3] but for ease of presentation, we shall not do so here.

If at Tk, the automaton is in control state q and the observed n-tuple of
values (〈v1〉, 〈v2〉, . . . , 〈vn〉) satisfies the guard g with (q, g, q′) being a transition,
then the automaton may perform this transition instantaneously and move to
the control state q′. As a result, the xi’s will cease to evolve according to the
rate function ρq and instead start evolving according to the rate function ρq′ .
However, for each xi, this change in the rate of evolution of each xi will not
kick in at Tk but at some time t ∈ [Tk + δ0

up , Tk + δ1
up ]. In this sense, both the

sensing of the xi’s and the rate changes associated with mode switching take
place in a lazy fashion but with bounded delays. We expect δ0

ob , δ
1
ob to be close

to 1 and δ0
up , δ1

up to be close to 0 while both δ1
ob − δ0

ob and δ1
up − δ0

up to be small
compared to 1.

In the idealized setting, the value observed at Tk is the value that holds at
exactly Tk (δ0

ob = 1 = δ1
ob) and the change in rates due to mode switching would

kick in immediately (δ0
up = 0 = δ1

up). In addition, assuming perfect precision
would boil down to setting 〈v〉 = v for every real number v.

The parameters γmin , γmax specify the relevant range of the absolute values
of the continuous variables. The automaton gets stuck if |xi| gets outside the
allowed range [γmin , γmax ] for any i. Loosely speaking, the γmax bound is used
to restrict the amount of information carried by a continuous variable evolving
at a (positive or negative) constant rate (ẋ = c) and a continuous variable
increasing at an exponential rate (ẋ = c · x(t), c > 0). On the other hand, γmin
is used to restrict the amount of information carried by a continuous variable
decreasing at an exponential rate (ẋ = c ·x(t), c < 0). We note that our setting is
quite different from the classical continuous setting. Hence the standard control
objective of driving a system variable to 0 is not relevant here and thus does not
pose a serious limitation.

We will be mainly interested in the setting that each Aq is a diagonal matrix
and in the more general case where each Aq is a diagonalizable matrix having
n distinct rational eigenvalues. In the former setting we show that the control
state sequence languages generated by our hybrid automata are regular and
can be effectively computed provided every continuous variable either evolves
at (possibly different) constant rates in all the control states or at (possibly
different) exponential rates in all the control states. In the latter setting, with
the additional restriction that there are no delays associated with rates update
(δ0

up = 0 = δ1
up), we show that the control state sequence languages generated
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by our hybrid automata are recursive, but the control state reachability problem
is undecidable.

3 The Transition System Semantics

Through the rest of this paper we fix a lazy finite-precision differential hybrid
automaton A and assume its associated notations and terminology as defined
in the previous section. We shall often refer to “lazy finite-precision differential
hybrid automata” simply as “hybrid automata”. The behaviour of A will be
defined in terms of an associated transition system. A configuration is a triple
(q, V, q′) where q, q′ are control states and V is a valuation. q is the current control
state, q′ is the control state that held at the previous time instant and V captures
the actual values of the variables at the current time instant. The valuation
V is said to be feasible if γmin ≤ |V (i)| ≤ γmax for every i in {1, 2, . . . , n}.
The configuration (q, V, q′) is feasible iff V is a feasible valuation. The initial
configuration is (qin , Vin , qin) and is assumed to be feasible. We let Conf A denote
the set of configurations. We assume that the unit of time has been fixed at some
suitable level of granularity and that the rate functions {ρq}q∈Q have been scaled
accordingly.

Suppose the automaton A is in the configuration (qk, Vk, q′k) at time Tk.
Then one unit of time will be allowed to pass and at time instant Tk+1, the
automaton A will make an instantaneous move by executing a transition or
the silent action τ and move to a configuration (qk+1, Vk+1, q

′
k+1). The silent

action τ will be used to record that no mode change has taken place during
this move. The action µ will be used to record that a transition has been taken
and as a result, a mode change has taken place. As is common, we will collapse
the unit-time-passage followed by an instantaneous transition into one “time-
abstract” transition labelled by τ or µ. We wish to formalize the transition
relation =⇒ ⊆ Conf A × {τ, µ} × Conf A. For doing so, we note that given a
matrix A ∈ Qn×n, a vector b ∈ Qn, a positive real T and a valuation V , we
can find a unique family of curves (see [11]) {xi}1≤i≤n with xi : [0, T ] → IR
such that for every i we have xi(0) = V (i) and for every t ∈ [0, T ] we have
dxi/dt =

∑n
j=1 Aq(i, j) ·xj(t)+ bq(i). In what follows, we shall denote the valua-

tion (x1(T ), x2(T ), . . . , xn(T )) thus obtained as Val(A, b, T, V ) without explicitly
displaying the curves xi’s.

Let (q, V, q′), (q1, V 1, q1′) be in Conf A. Suppose there exist reals tupi , i =
1, 2, . . . , n, in [δ0

up , δ1
up ] such that V 1 is related to V as follows: Let tupπ1

≤ tupπ2
≤

· · · ≤ tupπn
with π1, π2, . . . , πn being a permutation of the indices 1, 2, . . . , n. Then

there exist valuations Ui, i = 1, 2, . . . , n, such that U1 = Val(Aq′ , bq′ , tupπ1
, V );

Ui+1 = Val(Ai, bi, t
up
πi+1

− tupπi
, Ui) for i = 1, 2, . . . , n − 1; and V 1 = Val(An, bn,

1 − tupπn
, Un), where for i = 1, 2, . . . , n, the matrix Ai ∈ Qn×n and the vector

bi ∈ Qn are given by: if j ∈ {π1, π2, . . . , πi}, then the j-th row of Ai (bi) equals
the j-th row of Aq (bq); otherwise the j-th row of Ai (bi) equals the j-th row of
Aq′ (bq′).
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The intuition is that at time Tk+1 the continuous variables have valuation V 1
while at time Tk, the continuous variables have valuation V and A resides at
control state q. Further, at time Tk−1, the automaton was at control state q′.
For each i, the real number Tk + tupi is the time at which xi ceases to evolve
at the rate dxi/dt =

∑n
j=1 Aq′(i, j) · xj + bq′(i) and starts to evolve at the rate

dxi/dt =
∑n

j=1 Aq(i, j) · xj + bq(i).
Now we state the condition that =⇒ must fulfil. Let (q, V, q′), (q1, V 1, q1′) be

in Conf A. Suppose there exist reals tupi , i = 1, 2, . . . , n, in [δ0
up , δ1

up ] such that
V 1 is related to V as dictated above.

– Suppose q1 = q1′ = q. Then (q, V, q′) τ=⇒ (q1, V 1, q1′).
– Suppose q1′ = q and there exists a transition (q, g, q1) in −→ and reals

tobi , i = 1, 2, . . . , n, in [δ0
ob , δ

1
ob ] such that (〈w1〉, 〈w2〉, . . . , 〈wn〉) satisfies g,

where wi is the i-th component of the valuation Val(An, bn, tobi − tupπn
, Un)

for i = 1, 2, . . . , n. Then (q, V, q′)
µ

=⇒A (q1, V 1, q1′).

As might be expected, the real Tk + tobi is the time at which the value of xi was
observed for each i = 1, 2, . . . , n.

Basically there are four possible transition types depending on whether q = q′

and whether τ or µ is the action label. For convenience, we have collapsed these
four possibilities into two cases according to τ or µ being the action label, and
in each case have handled the subcases q = q′ and q �= q′ simultaneously.

Now define the transition system TSA = (RCA, (qin , Vin , qin), {τ, µ}, =⇒A)
via:

– RCA, the set of reachable configurations of A is the least subset of Conf A
that contains the initial configuration (qin , Vin , qin) and satisfies: Suppose
(q, V, q′) is in RCA and is a feasible configuration. Suppose further,
(q, V, q′) α=⇒ (q1, V 1, q1′) for some α ∈ {τ, µ}. Then (q1, V 1, q1′) ∈ RCA.

– =⇒A is =⇒ restricted to RCA × {τ, µ} × RCA.

We note that a reachable configuration can be the source of a transition
in TSA only if it is feasible. Thus infeasible reachable configurations will be
deadlocked in TSA. A run of TSA is a finite sequence of the form

σ = (q0, V0, q
′
0) α0 (q1, V1, q

′
1) α1 (q2, V2, q

′
2) . . . (q�, V�, q

′
�)

where (q0, V0, q
′
0) is the initial configuration and (qk, Vk, q′k) αk=⇒A (qk+1, Vk+1,

q′k+1) for k = 0, 1, . . . , 	−1. The state sequence induced by the run σ above is the
sequence q0q1 . . . q�. We define the state sequence language of A denoted L(A)
to be the set of state sequences induced by runs of TSA.

4 Diagonal Rate Matrices

We first study the setting where each Aq is a diagonal matrix and where every
continuous variable either evolves at constant rates in all the modes or at expo-
nential rates in all the modes. It turns out that the language of state sequences
in this setting is always regular. More precisely:
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Theorem 1. Let A be a lazy finite-precision differential hybrid automaton such
that Aq is a diagonal matrix for every control state q. Suppose there exists a fixed
partition {DIF ,CON } of the indices {1, 2, . . . , n} such that for each control state
q, ẋi = Aq(i, i) ·xi if i ∈ DIF and ẋi = bq(i) if i ∈ CON . Then L(A) is a regular
subset of Q�. Further, a finite state automaton accepting L(A) can be effectively
computed from A.

Proof of Theorem 1: The basic strategy is to generalize the proof of the main
result in [3]. As before, the proof consists of two major steps. The first one
is to quotient the set of reachable configurations RCA into a finite number of
equivalence classes using a suitably chosen equivalence relation ≈. The crucial
property required of ≈ is that it should be a congruence with respect to the
transition relation of TSA. In other words, if (q1, V 1, q1′) ≈ (q2, V 2, q2′) and
(q1, V 1, q1′) α=⇒A (q3, V 3, q3′), then we require that there exists a configura-
tion (q4, V 4, q4′) such that (q2, V 2, q2′) α=⇒A (q4, V 4, q4′) and (q3, V 3, q3′) ≈
(q4, V 4, q4′). The second step is to show that we can effectively compute these
equivalence classes and a transition relation over them such that the resulting
finite state automaton generates the language of state sequences.

For notational convenience, we assume Vin(i) > 0 for every i ∈ DIF . It will
become clear that this involves no loss of generality. The key consequence of this
assumption is that in any reachable configuration, the value of xi for i ∈ DIF
will be positive.

We also assume without loss of generality that for each guard g in A, the
valuation V satisfies g only if V is feasible.

Let ∆ be the largest positive rational number that integrally divides every
number in the set of rational numbers {δ0

ob , δ
1
ob , δ

0
up , δ1

up , 1}. Define Γ to be the
largest rational which integrally divides every number in the finite set of rational
numbers {Aq(i, i) · ∆ | q ∈ Q, i ∈ DIF}

⋃
{bq(j) · ∆ | q ∈ Q, j ∈ CON }

⋃

{γmin , γmax}
⋃

{ε/2}.
Let ZZ denote the set of integers. Define Θcon to be the finite set of rational

numbers {hΓ ∈ [−γmax , γmax ] | h ∈ ZZ}. In other words, Θcon contains integral
multiples of Γ in the interval [−γmax , γmax ].

Let ΘIR be the set of irrational numbers {ln((m + 1/2)ε) | m ∈ ZZ, 〈γmin〉 ≤
mε ≤ 〈γmax 〉}

⋃
{lnγmin , ln γmax}. Define Θdif to be the finite set of real num-

bers {hΓ ∈ [ln γmin , ln γmax ] | h ∈ ZZ}
⋃

{	Γ + θ ∈ [ln γmin , ln γmax ] | 	 ∈
ZZ, θ ∈ ΘIR}. In other words, Θdif contains rational numbers of the form hΓ
in the interval [ln γmin , lnγmax ] where h is a (positive) integer, and irrational
numbers of the form 	Γ +θ in the interval [ln γmin , ln γmax ] where 	 is an integer
(that can be positive, zero or negative) and θ is a member of ΘIR.

Loosely speaking, the set Θcon (respectively Θdif ) contains bounds relevant to
the values of continuous variables xi’s for i ∈ CON (respectively i ∈ DIF ). The
points in Θcon (Θdif ) cut the real line into a finite number of segments. We shall
use this segmentation to in turn partition the set of reachable configurations into
finitely many equivalence classes. The simple but key observation that enables
this is, in the (natural) logarithmic scale, exponential rates get represented as
constant rates.
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In this light, let the members of Θdif be {θ1, θ2, . . . , θ|Θdif |} where θ1 < θ2 <
· · · < θ|Θdif |. We define the finite set of intervals Idif = {(−∞, θ1), (θ1, θ2), . . . ,
(θ|Θdif |−1, θ|Θdif |), (θ|Θdif |, ∞)}

⋃
{[θi, θi] | i = 1, 2, . . . , |Θdif |}. In the same way,

we define Icon from Θcon .
Let IR+ be the set of positive reals. Define the map ‖·‖dif : IR+ → Idif

via: ‖v‖ = I if ln v ∈ I. Define ‖·‖con : IR → Icon via: ‖v‖ = I if v ∈ I.
Finally we define ‖·‖ : RCA → (Idif ∪ Icon)n by: ‖V ‖ = (I1, I2, . . . , In) where
Ii = ‖V (i)‖dif for i ∈ DIF and Ii = ‖V (i)‖con for i ∈ CON . We can now define
the equivalence relation ≈ ⊆ RCA × RCA by: (q1, V 1, q1′) ≈ (q2, V 2, q2′) iff
q1 = q2, ‖V 1‖ = ‖V 2‖ and q1′ = q2′. The crucial property of ≈ is that it is a
congruence relation with respect to the transition relation =⇒A.

Claim 2. Suppose (q1, V 1, q1′) ≈ (q2, V 2, q2′) and (q1, V 1, q1′) α=⇒A (q3, V 3,
q3′), then there exists a reachable configuration (q4, V 4, q4′) such that
(q2, V 2, q2′) α=⇒A (q4, V 4, q4′) and (q3, V 3, q3′) ≈ (q4, V 4, q4′).

Proof of Claim 2: Clearly q1 = q2 and q1′ = q2′. Set q4 = q3 and q4′ = q3′. We
show that (q2, V 2, q2′) is a feasible configuration and there exists a valuation V 4
such that (q2, V 2, q2′) α=⇒A (q4, V 4, q4′) and ‖V 4‖ = ‖V 3‖.

We first note that the configuration (q2, V 2, q2′) is feasible. Fix an i ∈ DIF .
Since the configuration (q1, V 1, q1′) is feasible, we have ln γmin ≤ ln V 1(i) ≤
ln γmax . Since ln γmin , ln γmax are members of Θdif and ‖V 1(i)‖dif = ‖V 2(i)‖dif ,
we conclude ln γmin ≤ ln V 2(i) ≤ ln γmax and so γmin ≤ |V 2(i)| ≤ γmax . Simi-
larly it is easy to see that γmin ≤ |V 2(i)| ≤ γmax for i ∈ CON .

We show the existence of V 4 by considering two cases according to α = τ or
α = µ.

—Case 1: α = τ
It follows from the definition of TSA that there exist reals tupi ∈ [δ0

up , δ1
up ],

i = 1, 2, . . . , n, such that lnV 3(i) = lnV 1(i) + Aq′ (i, i) · tupi + Aq(i, i) · (1 − tupi )
for i ∈ DIF and V 3(i) = V 1(i) + bq′(i) · tupi + bq(i) · (1 − tupi ) for i ∈ CON . It
suffices to show that there exist reals sup

i ∈ [δ0
up , δ1

up ], i = 1, 2, . . . , n, such that
‖V 4‖ = ‖V 3‖, where ln V 4(i) = lnV 2(i) + Aq′(i, i) · sup

i + Aq(i, i) · (1 − sup
i ) for

i ∈ DIF and V 4(i) = V 2(i) + bq′(i) · sup
i + bq(i) · (1 − sup

i ) for i ∈ CON .
In what follows, we will often need to give similar arguments for i ∈ DIF and

i ∈ CON . To avoid repetition, we will omit the latter.
Fix an i ∈ DIF . We show the existence of sup

i . Assume ‖V 3(i)‖dif = (θ, θ′)
where θ, θ′ ∈ Θdif and Aq′(i, i) > Aq(i, i). It will become clear that other cases
can be similarly handled. For any real u, let Φτ (u) be the condition

∃ tup ∈ IR. δ0
up ≤ tup ≤ δ1

up∧
θ < u + Aq′(i, i) · tup + Aq(i, i) · (1 − tup) < θ′ .

It is easy to see that Φτ (u) holds iff η < u < η′ where η = θ − Aq′ (i, i) · δ1
up −

Aq(i, i) · (1 − δ1
up) and η′ = θ′ − Aq′(i, i) · δ0

up − Aq(i, i) · (1 − δ0
up).

Since Φτ (ln V 1(i)) holds, we have η < ln V 1(i) < η′. Note that η, η′ are mem-
bers of Θdif (if η, η′ ∈ [ln γmin , ln γmax ]). Applying ‖V 2(i)‖dif = ‖V 1(i)‖dif then
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yields η < ln V 2(i) < η′ and consequently Φτ (ln V 2(i)) holds. This establishes
the existence of sup

i for i ∈ DIF .
—Case 2: α = µ

As in Case 1, it follows from the definition of TSA that there exist reals
tupi in [δ0

up , δ1
up ], i = 1, 2, . . . , n, such that lnV 3(i) = lnV 1(i) + Aq′ (i, i) · tupi +

Aq(i, i)·(1−tupi ) for i ∈ DIF and V 3(i) = V 1(i)+bq′(i)·tupi +bq(i)·(1−tupi ) for i ∈
CON . Further there exist reals tobi ∈ [δ0

ob , δ
1
ob ], i = 1, 2, . . . , n, and a guard g such

that the following conditions are satisfied: Firstly, (q1, g, q3) ∈ −→. Secondly,
(〈U(1)〉, 〈U(2)〉, . . . , 〈U(n)〉) satisfies g, where U is the valuation with lnU(i) =
ln V 1(i)+Aq′(i, i)·tupi +Aq(i, i)·(tobi −tupi ) for i ∈ DIF ; U(i) = V 1(i)+bq′(i)·tupi +
bq(i)·(tobi −tupi ) for i ∈ CON . We shall show the existence of reals sup

i ∈ [δ0
up , δ1

up ],
sob

i ∈ [δ0
ob , δ

1
ob ], i = 1, 2, . . . , n, such that ‖V 4‖ = ‖V 3‖ and ‖U ′‖ = ‖U‖ where

V 4 is the valuation given by lnV 4(i) = lnV 2(i)+Aq′(i, i)·sup
i +Aq(i, i)·(1−sup

i )
for i ∈ DIF and V 4(i) = V 2(i)+bq′(i)·sup

i +bq(i)·(1−sup
i ) for i ∈ CON . And U ′

is the valuation given by lnU ′(i) = lnV 2(i)+Aq′ (i, i) · sup
i +Aq(i, i) · (sob

i − sup
i )

for i ∈ DIF and U ′(i) = V 2(i)+bq′(i) ·sup
i +bq(i) ·(sob

i −sup
i ) for i ∈ CON . First

we argue that the existence of U ′ satisfying ‖U ′‖ = ‖U‖ will guarantee 〈U ′(i)〉 =
〈U(i)〉 for i = 1, 2, . . . , n. This follows from the fact ln((m + 1/2)ε) ∈ Θdif for
integers m with 〈γmin〉 ≤ mε ≤ 〈γmax 〉 and (m + 1/2)ε ∈ Θcon for integers m
with 〈−γmax 〉 ≤ mε ≤ 〈γmax 〉. Thus U ′ also satisfies the guard g since U satisfies
g. So the existence of sup

i , sob
i , i = 1, 2, . . . , n, suffices to establish the claim.

Fix an i ∈ DIF . Assume ‖V 3(i)‖dif = (θ, θ′), ‖U(i)‖dif = (ϑ, ϑ′) where
θ, θ′, ϑ, ϑ′ ∈ Θdif and Aq′(i, i) > Aq(i, i) > 0. Other cases can be similarly
handled. For any real u, let Φµ(u) be the condition

∃ tup ∈ IR. ∃ tob ∈ IR. δ0
up ≤ tup ≤ δ1

up∧
θ < u + Aq′(i, i) · tup + Aq(i, i) · (1 − tup) < θ′∧
δ0
ob ≤ tob ≤ δ1

ob∧
ϑ < u + Aq′ (i, i) · tup + Aq(i, i) · (tob − tup) < ϑ′ .

As in Case 1, it is easy to see that Φµ(u) holds iff η < u < η′, where η is the larger
of θ−Aq′(i, i) ·δ1

up −Aq(i, i) · (1−δ1
up) and ϑ−Aq′(i, i) ·δ1

up −Aq(i, i) · (δ1
ob −δ1

up).
On the other hand, η′ is the smaller of θ′ −Aq′(i, i) · δ0

up −Aq(i, i) · (1− δ0
up) and

ϑ′ −Aq′(i, i) · δ0
up −Aq(i, i) · (δ0

ob − δ0
up). It follows that η, η′ are members of Θdif

(if η, η′ ∈ [ln γmin , ln γmax ]). Thus, as in Case 1, one concludes that Φµ(ln V 2(i))
holds and the existence of sup

i , sob
i for i ∈ DIF is established.

By filling in similar but simpler arguments for i ∈ CON , we can complete the
proof of Claim 2. ��
Having established the claim that ≈ is a congruence with respect to =⇒A, we
now argue that one can effectively construct a finite automaton which accepts
L(A). Clearly, the members of Θdif and Θcon can be effectively represented.
Further, the members of Θdif (Θcon) can be effectively ordered and thus the
finitely many equivalence classes of ≈ can be effectively represented. Note that, to
compare two members of Θdif one just needs to determine whether em1 < m2 for
integers m1, m2. This can be done by approximating e sufficiently precisely using
for instance the power series expansion of e. Now construct a finite transition
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system B whose states are the finitely many equivalence classes of ≈. Further,
there is a transition from C1 to C2 with label α iff there exists (q, V, q′) in
C1, (q1, V 1, q1′) in C2 such that (q, V, q′) α=⇒A (q1, V 1, q1′). From the proof
of Claim 2, to determine whether there exists a transition from C1 to C2 with
label α amounts to comparing members of Θdif (and Θcon). Hence the transition
system B can be effectively computed. It is now straightforward to construct
from B a finite state automaton which accepts L(A). This completes the proof
of Theorem 1. ��

It is clear that the proof of Theorem 1 also holds for any effectively computable
language of guards instead of just polynomial guards.

As usual, a variety of verification and controller synthesis problems become
decidable for hybrid automata satisfying the conditions set out in Theorem 1
above. One basic verification problem in this context is the control state reacha-
bility problem; to decide, for a designated state qf , whether there exists a state
sequence whose last letter is qf .

5 Diagonalizable Rate Matrices

The regularity result of the previous section requires the matrices Aq to be di-
agonal. A natural way to relax this requirement is just to demand that every
Aq be diagonalizable [11]. We recall that the n × n matrix A is diagonalizable
in case there is a basis of eigenvectors {f1, f2, . . . , fn} so that under the asso-
ciated coordinate transformation, A can be represented as the diagonal matrix
diag(λ1, λ2, . . . , λn) with the λi’s being the eigenvalues of A. Given our concern
for effective computations, it then seems reasonable to demand that, in addition
to being diagonalizable, every matrix Aq should also have (n distinct) rational
eigenvalues.

We further restrict ourselves to the case that there is no delay associated with
the update of rates of the continuous variables (δ0

up = 0 = δ1
up). This is due to the

fact at present we don’t know how to deal with differential equations of the form
ẋ = Ax+b. One will have to deal with such equations if update delays are present
(δ0

up < δ1
up). This is due to the fact that the rate changes of the continuous

variables may kick in at different times in the interval [Tk + δ0
up , Tk + δ1

up ].
Assuming there are no update delays we first show that the state sequence

language of every lazy finite-precision differential hybrid automaton is recursive.
This result may be intuitively obvious it still requires an argument. This is so,
since the decidability of the first order theory of the reals extended with the
exponential operator is still open [17] and the results developed in [14] crucially
exploit the resetting property. We then show that the control state reachability
problem is undecidable in this setting.

Theorem 3. Suppose A is a lazy finite-precision differential hybrid such that
δ0
up = 0 = δ1

up and for every control state q, Aq is a diagonalizable matrix having
n distinct rational eigenvalues. Then L(A) is a recursive subset of Q�.
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Proof. First we note that the first order theory of the reals augmented with
the constant e is decidable. For convenience we shall denote this augmented
structure as (IR, +, ·, <, 0, 1, e) but emphasize that e, the base of the natural
logarithm is being used as a constant and not as an operator. To see that the
augmented theory is decidable, we observe that one can effectively determine
whether p(e) < 0 for any given polynomial p(e) with integer coefficients. Since
e = 1 +

∑∞
h=1 1/h!, we have

1 +
k∑

h=1

1
h!

< e < 1 +
k∑

h=1

1
h!

+
∞∑

h=k+1

1
kh−k

= 1 +
k∑

h=1

1
h!

+
1

k − 1
.

Note that the polynomial p(u) with one variable has finitely many real roots.
Hence for sufficiently large k, p(u) has no root in the interval [1 +

∑k
h=1 1/h!,

1 +
∑k

h=1 1/h! + 1/(k − 1)] and so p(e) has the same sign as p(1 +
∑k

h=1 1/h!).
Clearly such a k can be effectively found. Now, given a sentence ϕ in
(IR, +, ·, <, 0, 1, e), one can apply Tarski’s quantifier elimination algorithm [16]
to obtain a quantifier-free sentence ϕ′ such that ϕ is true iff ϕ′ is true, and ϕ′ is
a boolean combination of formulas of the form p(e) < 0.

Next we show that given control states q, q′, q1, q1′ and α ∈ {τ, µ}, one can
construct in (IR, +, ·, <, 0, 1, e) a formula Φq,q′,q1,q1′,α(V, V 1) with free variables
V (i), V 1(i), i = 1, 2, . . . , n, that asserts (q, V, q′) α=⇒A (q1, V 1, q1′). In what
follows, we fix q, q′, q1, q1′ ∈ Q and α ∈ {τ, µ}.

Clearly we can effectively compute the rational eigenvalues λi, i = 1, 2, . . . , n,
of Aq, and for each i = 1, 2, . . . , n find a rational eigenvector fi ∈ Qn corre-
sponding to λi (i.e. Aq · fi = λi · fi). Let F = (f1 f2 . . . fn) be the matrix in
Qn×n whose i-th column is fi for i = 1, 2, . . . , n. From [11] it is easy to see that
for a real T ∈ [0, 1], Val(Aq, bq, T, V ) = H(eT ) where H : IR → IRn is given by

H(u) = F diag(uλ1 , uλ2 , . . . , uλn) F−1(V + A−1
q bq) − A−1

q bq .

It is easy to see that for α = τ , the formula Φq,q′,q1,q1′,α(V, V 1) can be con-
structed. The only point to note is that constants of the form er where r ∈ Q
are definable in (IR, +, ·, <, 0, 1, e). The case α = µ will follow from two obser-
vations that we now outline.

Let (q, V, q′), (q1, V 1, q1′) be reachable configurations of A such that
(q, V, q′)

µ
=⇒A (q1, V 1, q1′). It follows from the definition of TSA that

(q, V, q′)
µ

=⇒A (q1, V 1, q1′) iff V 1 = Val(Aq, bq, 1, V ) and there exist reals tobi

in [δ0
ob , δ

1
ob ], i = 1, 2, . . . , n, and a guard g such that (q, g, q1) is a transition

in −→. Further, (〈w1〉, 〈w2〉, . . . , 〈wn〉) satisfies g, where wi is the i-th compo-
nent of Val(Aq, bq, t

ob
i , V ) for i = 1, 2, . . . , n. Firstly we note that the function

t ∈ [δ0
ob , δ

1
ob ] → et ∈ [eδ0

ob , eδ1
ob ] is continuous, increasing and onto. Thus there

exist reals tobi , i = 1, 2, . . . , n, satisfying the desired condition iff there exist reals
ui ∈ [eδ0

ob , eδ1
ob ], i = 1, 2, . . . , n, such that wi is the i-th component of H(ui) for

each i = 1, 2, . . . , n.
Secondly, we note that −γmax ≤ wi ≤ γmax for every i = 1, 2, . . . , n. For

a guard g in A, let Valuations(g) be the finite set of valuations given by:
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(v1, v2, . . . , vn) is in Valuations(g) iff for each i, vi = miε where mi is an in-
teger with 〈−γmax 〉 ≤ miε ≤ 〈γmax 〉, and (v1, v2, . . . , vn) satisfies g. It follows
that (w1, w2, . . . , wn) satisfies g iff (〈w1〉, 〈w2〉, . . . , 〈wn〉) is in Valuations(g).

Putting together the above two observations, it is now clear how the formula
Φq,q′,q1,q1′,µ(V, V 1) can be constructed. It is then also straightforward to see that
given a state sequence q0q1 . . . q� one can construct a sentence Φq0q1...q�

such that
Φq0q1...q�

is true iff q0q1 . . . q� is in L(A). ��

Theorem 3 implies that one can in principle solve bounded model checking prob-
lems [6] for the class of hybrid automata satisfying the conditions set out in the
statement of the theorem. The next result shows that one can not hope to do
much better in this setting.

Theorem 4. There is no effective procedure which can, given a lazy finite-
precision differential hybrid automaton A satisfying the restrictions stated in
Theorem 3 and a control state qf of A, determine whether qf is reachable in A.
In other words, whether there exists a reachable configuration (q, V, q′) of A such
that q = qf .

Proof. We shall reduce the halting problem of two-counter automata ([12]) to
the control state reachability problem of the class of hybrid automata stated in
the theorem.

Let C = (S, sin , shalt , �) be a two-counter automaton where S is a finite
set of states, sin ∈ S the initial state, shalt ∈ S the halting state and � ⊆
S × {ZERO ,POS}2 × {INC ,DEC}2 × S the instruction table. The instruction
(s, O1, O2, α1, α2, s

′) indicates that at state s, if the sign of the integer stored in
counter i is Oi then C can perform action αi (increment or decrement) on counter
i and move to state s′. For example, the instruction (s,ZERO ,POS , INC ,DEC ,
s′) specifies that at state s, if counter 1 is zero and counter 2 is positive, then
C can increment counter 1, decrement counter 2 and move to state s′. The
semantics of C is defined in the obvious way.

In what follows, we construct a lazy finite-precision differential hybrid au-
tomaton A = (Q, qin , Vin , {δ0

ob, δ
1
ob , δ

0
up , δ1

up}, ε, {ρq}q∈Q, {γmin , γmax}, −→) over
continuous variables x1, . . . , xn such that δ0

up = 0 = δ1
up and every ρq is of the

form ẋ = Aqx+bq, where Aq is a diagonalizable matrix having n distinct rational
eigenvalues. Further, a designated control state qf ∈ Q is reachable in A iff the
halting state shalt ∈ S is reachable in C. In fact, we will construct {ρq}q∈Q in
such a way that every Aq is a diagonal matrix.

We set n = 3 and hence A will be over x1, x2, x3. We first outline the construc-
tion of Q, qin , Vin , {ρq}q∈Q, −→ and later discuss the choice of the parameters
δ0
ob , δ

1
ob , ε, γmin , γmax .

The set of control states Q is S
⋃

{s

ξ, s




ξ | ξ ∈ �} where for ξ = (s, O1, O2,

α1, α2, s
′) in �, s


ξ = (s, O1, O2, α1, α2, s
′, �) and s



ξ = (s, O1, O2, α1, α2, s
′, ��).

Intuitively, the continuous variable x1 (x2) will represent values of counter 1 (2).
A counter having value h will be represented by the corresponding continuous
variable taking the value 1+ e−1 + e−2 + · · ·+ e−h. In particular, a counter with
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value zero will be represented by the corresponding continuous variable taking
the value 1.

Suppose at time Tk, the hybrid automaton A is at control state s and wants
to “execute” the instruction (s, O1, O2, α1, α2, s

′). This is to be done by moving
first to (s, O1, O2, α1, α2, s

′, �) at time Tk+1, and then to (s, O1, O2, α1, α2, s
′, ��)

at exactly time Tk+2, and finally to land at s′ at exactly time Tk+3. In this
process, the variable x3 will be used to control that A “stays” for exactly one
time unit at each of (s, O1, O2, α1, α2, s

′, �), (s, O1, O2, α1, α2, s
′, ��).

The initial control state is sin . The initial valuation is (1, 1, 1).
The rate functions are as follows. For s ∈ S, we set ρs to be ẋ1 = 0 = ẋ2 = ẋ3.

Suppose (s, O1, O2, α1, α2, s
′) ∈ � is an instruction of C and step ∈ {�, ��}, then

the rate function of (s, O1, O2, α1, α2, s
′, step) is: ẋ1 = F step

α1
(x1), ẋ2 = F step

α2
(x2),

ẋ3 = Hstep(x3) where:

– F 

INC (xi) = −xi and F 



INC (xi) = 1 for i = 1, 2.
– F 


DEC (xi) = −1 and F 


DEC (xi) = xi for i = 1, 2.

– H
(x3) = 1 and H

(x3) = −1.

The transition relation −→ of A is
⋃

ξ∈� TRξ, where for each ξ = (s, O1, O2,
α1, α2, s

′) in �, the members of TRξ are

(s, gs
ξ , (s, O1, O2, α1, α2, s

′, �)) ,

((s, O1, O2, α1, α2, s
′, �), g


ξ, (s, O1, O2, α1, α2, s
′, ��)) ,

((s, O1, O2, α1, α2, s
′, ��), g



ξ , s′) ,

with the guards gs
ξ , g


ξ, g


ξ being specified as follows. The guard gs

ξ is ΦO1(x1) ∧
ΦO2(x2) where ΦZERO (xi) is xi ≤ 1 and ΦPOS (xi) is xi > 1 for i = 1, 2. The
guard g


ξ is x3 ≤ 2 and g


ξ is x3 ≥ 1.

It remains to choose the parameters δ0
ob , δ

1
ob , ε, γmin , γmax appropriately. Re-

call that a valuation (v1, v2, . . . , vn) satisfies a polynomial constraint p(x1, x2,
. . . , xn) < 0 iff p(〈v1〉ε, 〈v2〉ε, . . . , 〈vn〉ε) < 0. Thus the main technicality is to
ensure that the guards are “stable” even with finite precision measurement of
values. The only restriction we need for the choice of δ0

ob , δ
1
ob , ε, γmin , γmax is

that ε integrally divides every member of {1, δ0
ob, δ

1
ob}, 〈1 + e−1〉ε > 1, γmin ≤ 1,

γmax ≥ 2. We emphasize that we need not demand δ0
ob = 1 = δ1

ob .
It is now straightforward to establish that the halting state shalt is reachable

in the two-counter automaton C iff the control state shalt is reachable in the
hybrid automaton A. ��

We note that the above proof shows that the undecidability result goes through
even if we restrict ourselves to just rectangular guards. This is not surprising
since we have the undecidability result of [10]. From the above proof, it is also
easy to construct a lazy finite-precision hybrid automaton A1 satisfying the
conditions in Theorem 4 such that L(A1) is not regular. For example, let C1
be the two-counter automaton ({sDEC , sINC , shalt}, sDEC , shalt , �) where the
members of � are: (sDEC ,ZERO ,ZERO , INC , INC , sINC ), (sINC ,POS ,POS ,
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INC , INC , sINC ), (sINC ,POS ,POS ,DEC ,DEC , sDEC ), (sDEC ,POS ,POS ,
DEC ,DEC , sDEC ). Let A1 be the hybrid automaton constructed from C1 as
in the proof of Theorem 4. It is easy to show that L(A1) is not regular.

6 Summary

We have shown here that the twin features of discrete time semantics and fi-
nite precision can be used to cope with hybrid automata whose dynamics are
governed by restricted linear differential operators and whose transitions have
polynomial guards. It is easy to show (see [1]) that each of our results, namely
Theorem 1, 3, 4, also holds if the combination of finite precision and polynomial
guards is replaced by that of perfect precision and rectangular guards.

Our results seem to suggest that once observational and update delays are
included to further reduce the expressive power of these automata, one may be
able to handle much richer continuous dynamics. The key obstacle here is the
lack of means for constructing suitable rational approximations of the continuous
dynamics. Here, the mathematical foundations provided in [5] and the logical
underpinnings developed in [14, 15] promise to be good starting points.
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