The First-Order Isomorphism Theorem

Manindra Agrawal

Department of Computer Science
IIT Kanpur
Kanpur 208016, India
manindra@iitk.ac.in

Abstract. For any class C closed under NC! reductions, it is shown
that all sets complete for C under first-order (equivalently, Dlogtime-
uniform AC°®) reductions are isomorphic under first-order computable
isomorphisms.

1 Introduction

One of the long-standing conjecture about the structure of complete sets is the
isomorphism conjecture (proposed in [BH77]) stating that all sets complete for
NP under polynomial-time reductions are polynomial time isomorphic. As the
conjecture cannot be resolved either way unless we discover non-relativizable
techniques (see [KMR88,KMR89,FFK92] for more details), efforts have been
made to prove the conjecture in restricted settings by restricting the power of
reductions (see for example [Agr96,AAR98]). One of the most natural definition
of restricted reductions is that of functions computed by uniform constant-depth
(or AC?) circuits (first studied in [CSV84]). These reductions provide the right
notion of completeness for small complexity classes (logspace and below). Also,
it has been observed that matural complete problems for various complexity
classes remain complete under such reductions [IL95,Imm87]. Although the class
of ACO functions is much smaller than the class of polynomial-time functions,
it is interesting to note that, till recently, there was no known example of an
NP-complete set that is not complete under uniform AC® reductions [AAIT97].

The notion of uniformity to be used with ACP circuits is widely accepted
to be that of Dlogtime-uniformity (see Section 3 for definition). Under this
uniformity condition, these circuits admit a number of different characteriza-
tions [BIS90,AG91]: functions computed by first-order logic formulae [Lin92],
O(1)-alternating log-time TMs [Sip83], logspace rudimentary predicates [Jon75]
etc.

The isomorphism conjecture for complete sets for NP under AC? reductions
has been studied before. Allender et. al. [ABI93] showed that all sets complete
under first-order projections (these are very simple functions computed by uni-
form circuits with no gates [IL95]) are Dlogtime-uniform ACC-isomorphic (i.e.,
the isomorphism between any two such sets is computable in both directions by
Dlogtime-uniform AC? circuits). This was improved in [AAR98] who showed that
all sets complete under u-uniform (for any u) AC® reductions are non-uniform

ACO%-isomorphic. Notice that this result proves the isomorphism conjecture for
non-uniform AC® reductions but not for Dlogtime-uniform reductions. The uni-
formity condition for isomorphisms was improved first in [AAI*97] to P-uniform
and then in [Agr01] to logspace-uniform thus proving the isomorphism conjecture
for P-uniform and logspace-uniform AC° reductions respectively. More specifi-
cally, for all sets complete under u-uniform AC° reductions, [AAT+97] shows
that they are (u+P)-uniform AC°-isomorphic, while [Agr01] shows that they are
(u+logspace)-uniform ACC-isomorphic. However, the conjecture remains open
for Dlogtime-uniform AC° reductions, which is, in many ways, the correct for-
mulation of the isomorphism conjecture for constant depth reductions.

In this paper, we prove that all complete sets for NP under u-uniform AC°
reductions are (u+Dlogtime)-uniform ACC-isomorphic thus proving the isomor-
phism conjecture for constant depth reductions. Since there are a number of al-
ternative characterizations of Dlogtime-uniform AC? circuits, this theorem can
be viewed in many interesting ways, e.g., all sets complete under first-order reduc-
tions are first-order isomorphic (first-order functions are computed by first-order
formulae). The above in fact holds for any class closed under TC reductions.

The next section provides an outline of our proof. Section 3 contains defini-
tions, and the subsequent sections are devoted to proving the result.

2 Proof Outline

The overall structure of the proof remains as given in [AAR98]. The proof
in [AAR98] is a three stage one:

Stage 1 (Gap Theorem): This shows that all complete sets under u-uniform
ACP reductions are also complete under non-uniform NC° reductions. This
step is non-uniform.

Stage 2 (Superprojection Theorem): This proves that all complete sets un-
der u-uniform NCP reductions are also complete (u+P)-uniform superprojec-
tions, where superprojections are functions similar to projections. This step
is P-uniform.

Stage 3 (Isomorphism Construction): This proves that all complete sets
under u-uniform superprojections are isomorphic under (u+Dlogtime)-uniform
AC? isomorphisms. This step is Dlogtime-uniform: starting with Dlogtime-
uniform superprojections, one gets Dlogtime-uniform AC? isomorphisms.

The proof of Gap Theorem uses the Switching Lemma of [FSS84] in the con-
struction of NC? reductions and is the reason for its non-uniformity. In [AAT+97]
the lemma was derandomized using method of conditional probabilities making
the stage P-uniform. Improving upon this, in [Agr01], the lemma was deran-
domized by constructing an appropriate pseudo-random generator. This made
the stage logspace-uniform.

The Superprojection Theorem of [AAR98] uses the Sunflower Lemma of [ER60]
which is P-uniform. This construction was replaced in [Agr0O1] by a probabilis-
tic construction that could be derandomized via an appropriate pseudo-random
generator. This again resulted in a logspace-uniform construction.

Clearly, the uniformity of both these stages needs to be improved to obtain
Dlogtime-uniformity. It is useful to note here that we need to make both the
stages AC%-uniform only as that makes the isomorphism constructed by Stage 3
also AC%-uniform and then the ACO circuit used in uniformity can be incorpo-
rated in the ACO circuit for the isomorphism making the resulting AC® circuit
Dlogtime-uniform. In fact this is the best that we can hope to do as it is known
that the Gap Theorem cannot be made Dlogtime-uniform [AAR9S].

We preserve the idea of [Agr01] of first giving a probabilistic construction and
then derandomizing it via an appropriate pseudo-random generator in both the
stages. The improvement in the uniformity condition of first stage is achieved by
a careful construction of the pseudo-random generator needed that allows it to
become ACC-uniform. The second stage presents a bigger problem. We replace
the probabilistic construction used in [Agr01] by a more involved probabilistic
construction and then derandomize it to obtain AC®-uniformity.

Combining the above constructions together with the Isomorphism Construc-
tion, we get Dlogtime-uniform ACC-isomorphisms.

3 Basic Definitions and Preliminaries

We assume familiarity with the basic notions of many-one reducibility as pre-
sented, for example, in [BDGS88].

A circuit family is a set {C,, : n € N} where each C,, is an acyclic circuit
with n Boolean inputs z1,...,2, (as well as the constants 0 and 1 allowed as
inputs) and some number of output gates yi,...,y,. {Cr} has size s(n) if each
circuit Cj, has at most s(n) gates; it has depth d(n) if the length of the longest
path from input to output in C,, is at most d(n).

For a circuit family {C,}, the connection set of the family is defined as:

Conng = {{n,t,i,5) | gateiin C, is of type t and takes input from gate j}.

A family {Cy} is u-uniform if the connection set can be computed by a machine
(or circuit) with a resource bound of u. In this paper, we will consider two
notions of uniformity: Dlogtime-uniformity [BIS90] and AC°-uniformity. In the
first, the connection set is computed by a TM with random access tapes working
in O(logn) time (which is linear time as a function of input size), and in the
second, the connection set is computed by an AC? circuit of polynomial size
(which is exponential size in terms of input size). We will follow the standard
convention that whenever the connection set is computed by a circuit family,
the circuit family is assumed to be Dlogtime-uniform. So, for example, ACP-
uniform means that the set can be computed by a Dlogtime-uniform AC® family
of circuits.

A function f is said to be in ACY if there is a circuit family {C},} of size n©()
and depth O(1) consisting of unbounded fan-in AND and OR and NOT gates
such that for each input z of length n, the output of C,, on input z is f(z). We
will adopt the following specific convention for interpreting the output of such a
circuit: each C,, will have n* + klog(n) output bits (for some k). The last klogn

output bits will be viewed as a binary number r, and the output produced by
the circuit will be binary string contained in the first r output bits. It is easy to
verify that this convention is AC%-equivalent to any other reasonable convention
that allows for variable sized output, and for us it has the advantage that only
O(logn) output bits are used to encode the length.

With this definition, the class of Dlogtime-uniform AC°-computable func-
tions admits many alternative characterizations, including expressibility in first-
order with {+, x, <}, [Lin92,BIS90] the logspace-rudimentary reductions of Jones
[Jon75,AG91], logarithmic-time alternating Turing machines with O(1) alter-
nations [BIS90] and others. This lends additional weight to our choice of this
definition.

NCP is the class of functions computed in this way by circuit families of
size n®1) and depth O(1), consisting of fan-in two AND and OR and NOT
gates. Note that for any NC° circuit family, there is some constant ¢ such that
each output bit depends on at most ¢ different input bits. An NC° function is
a projection if its circuit family contains no AND or OR gates. For the sake of
simplicity, we assume that NC° and projection functions do not have variable
sized output. This may seem restrictive at a first glance, however, as we show
later, that at least for complete sets we can ensure this property.

For a complexity class C, a C-isomorphism is a bijection f such that both f
and f~! are in C. Since only many-one reductions are considered in this paper,
a “C-reduction” is simply a function in C.

(A language is in a complexity class C if its characteristic function is in C.
This convention allows us to avoid introducing additional notation such as FAC?,
FNC!, etc. to distinguish between classes of languages and classes of functions.)

4 ACC%-Uniform Gap Theorem

In this section, we prove the AC®-uniform version of the Gap Theorem of [AAR98]:

Theorem 1. For any class C closed under NC! reductions, all complete sets for
C under u-uniform AC® reductions are also complete under (u + AC°)-uniform
NC° reductions.

Proof. We begin by outlining the proof in [AAR98] and improvements of [Agr01]
as we make use of both of them.

Fix a set A in C that is complete under u-uniform AC? reductions and let
B € C be an arbitrary set. We need to show that B reduces to A via a (u+ AC)-
uniform NC° reduction. We first define a set f?, which is a highly redundant
version of B, as accepted by the following procedure:

On input y, let y = 1%02. Reject if k does not divide |z|. Otherwise,
break z into blocks of k consecutive bits each. Let these be ujusus - - - uq.
For each i, 1 < i < g, let v; be the parity of bits in w;. Accept iff
ViV -+ Vg € B.

As one can readily observe, corresponding to a string in B there are infinitely
many strings in B. Also, B reduces to B via an NC! reduction and so B € C.
Fix a reduction of B to A given by u-uniform ACP circuit family {C,}, say. Now
define a reduction of B to B as follows (it would be useful to keep the above
definition of B in mind while reading this definition):

Given an input , |z| = n, let m = n’ for an appropriate constant ¢ to
be fixed later. Consider the circuit Cp, /p4 14 With the first m /n+1 bits
set to 1"/70 resulting in circuit C! , say. Apply the Switching Lemma
of [FSS84] on C!, to obtain a setting of all but £2(n - (logn)?) input bits
such that the circuit reduces to an NCP circuit and in addition, all the n
blocks of m/n = n!=! consecutive bits in the input have at least (logn)?
unset bits (it was shown in [AAR98] that this can be ensured and this
is what governs the choice of constant t). Now set all those unset bits
to zero that influence at least one of the last k - logn bits of the output
(remember that these bits encode the length of the output as per our
convention). This sets O(logn) additional unset bits. Since each block
had (logn)? unset bits to begin with, each block would still have at least
two unset bits. Now for each of the n blocks, set all but one bits of the
block to ensure that the number of ones in the block is 0 modulo 2 (this
can also always be done as there is at least one unset bits available for
setting). This sets all the m bits of input to C}, except for n bits and
on these n unset bits the circuit C!, becomes an NC° circuit. Now map
x to a string of length m/n + 1 4+ m whose first m/n + 1 bits are set to
1™/7() and the remaining bits are set according to the above procedure
and the it remaining unset bit is given the value of i** bit of z.

It is easy to verify that the mapping constructed above is indeed a reduction
of B to B. Notice that this reduction is simply a projection: each input bit
is mapped to some output bit directly and there are no gates in the circuit
computing the reduction. It is also clear that a composition of this reduction
with the reduction of B to A is a reduction of B to A that can be computed by
an NC° circuit family. The uniformity machine (or circuit) for this NCO circuit
family is required to do the following tasks, apart from generating the circuit
Cy, itself:

1. identity the settings of input bits to circuit C!, that make the circuit an NC°
circuit,

2. given such a setting, transform the circuit C/, to the equivalent NC° circuit,
and

3. set some of the unset bits as outlined above to leave only one unset bit in
each block (in which string = would be placed).

The second task can be done by a Dlogtime-uniform ACP circuit that, for each
output bit of the circuit C},, guesses the O(1) input bits influencing the cor-
responding NCO circuit and then verifies this guess by evaluating C!, on all

possible settings of these bits and noting if the chosen output bit of C!, becomes
constant for each setting or not.

For the third task, a Dlogtime-uniform AC? circuit can identify which unset
bits influence the output bits coding length of the output, however, to set bits
in a block appropriately (so that number of ones is 0 modulo 2), one requires a
parity gate making the overall circuit an NC! circuit.

For the first task, we first note that according to the Switching Lemma
of [FSS84] most of the settings work. In [AAT97], a polynomial-time algorithm
was given to identify one such setting given the circuit C!, thus making the NC9
circuit P-uniform. In [Agr01], a pseudo-random generator was constructed that
stretches a seed of O(logn) bits to m bits such that on most of the strings output
by the generator the circuit C! reduces to an NC° circuit. Using this, a unifor-
mity machine can be constructed that first generates all possible n®™) outputs
of the generator and then, in parallel, checks which one of these is “good” by at-
tempting to transform C!, to an NC? circuit as outlined above. The power of the
machine is decided by the difficulty of computing the generator. In [Agr01], the
generator designed can be computed in logspace making the entire construction
logspace-uniform.

To obtain AC?-uniformity, we need to improve upon both the first and third
tasks. For the first task, one can try to obtain a generator that is computable
by a Dlogtime-uniform ACP circuit. However, improving the third one seems
impossible at the first glance as it is well known that computing parity of n
bits cannot be done by even non-uniform ACP circuits [FSS84]. We solve this
problem be a clever design of the generator: the generator would be such that
it associates a sign (0 or 1) with each unset bit and the parity of all the set bits
and signs of unset bits in a block is always zero! This trivializes the third task.
The reduction of B to B has to be changed slightly to make this work: map the
it" bit of & to the i** unset bit if its sign is 0, else map it to the i** unset bit by
first complementing it.

We now give the generator construction of [Agr01] and then show how to
improve it so that both the first and third tasks are completed. The generator is
a combination of two types of primitive generators: (1) generators that produce
bits that are ﬁ—biased, O(log n)-wise independent [NN90], and (2) generators,
based on Nisan-Wigderson designs [NW94]. The generator consists of £ primitive
generators of each type where £ is a constant dependent on the depth and size
of the circuit C/,. Also, each one of these primitive generators requires seed of
length O(logn), and therefore, the seed length of the generator is O(logn). The
generator is constructed as follows:

Let Giyp, .-, Géxp be £ primitive generators producing bits that are
ﬁ—biased, O(log n)-wise independent, and Gy, - . ., G4y be primi-
tive generators based on NW-designs (their construction will be discussed
later). The ‘" bit of the generator G of [Agr01] is computed as: write
i in binary and let i = iyia---igp1 where |i;| = I for 1 < j < £ (we
assume [i| to be a power of two to avoid complications). Compute bit
Gywlijij41 - ieq1] (we use G[k] to denote the k' bit of function G)

for 1 < j < /. Let jo be the first j for which GfVW[z'jijJrl -+ dgy1] is zero.
If there exists such a jo then let G[i] = ®1<j<joGnplijije1---ies1]-
If there is no such jo then leave G[i] unset and compute its sign as
®1<j<eGinplisijt - -ies1]-

The following lemma was proved for this generator in [Agr01]':

Lemma 1. [Agr01] Let C be any AC® circuit of a depth and size bounded by
C}. having m input bits. Then on at least half of the outputs of G, C reduces to
an NCO circuit.

It is clear from the construction of G above, that the computational resources
required for G depend on the resources required to compute the two types of
primitive generators. In particular, if both these types of primitive generators
can be computed by Dlogtime-uniform ACP? circuits, the generator G' can also
be computed by such circuits.

Let us now see constructions for these primitive generators. Three simple
constructions of ﬁ—biased, O(logn)-wise independent generators are given
in [AGHP90]. We choose one based on quadratic residues in a small field (in [Agr01]
a different generator is used): i*" bit of G5 (s?) is 1 iff the number s/ +i is a
quadratic non-residue in the field F, with prime p = n®®) (here s/ is the seed).
This can be done by a Dlogtime-uniform ACP circuit: first an appropriate prime
p is computed (fixing the field F,), then s’ is added to ¢ (addition is modulo
p), and finally it is checked if there exists an = such that 22 = s/ +i. All these
computations can be done by Dlogtime-uniform ACP circuits as the field size is
small (as shown in [BIS90]).

The generator GgVW is defined as: let i = 145 with |i1| = |i2| = k; let seed
s) = s]s)---sl with |s]| = |s}| = --- = |sJ| = k for appropriate constant c;

compute i’ = Y¢_, s4 - (i)°~! where all the operations are over field Fy:, and
set the it® bit to 1 iff i’ = 4;. Again, all the computations here can be done by
a Dlogtime-uniform ACP circuit (shown in [BIS90]).

Thus the generator G can be computed by a Dlogtime-uniform ACP circuit.
The primitive generator Gk, sets exactly one bit to 1 in consecutive blocks of
m? bits, the generator G2 sets exactly one bit to 1 in consecutive blocks of
m3 unset bits remaining, etc. Thus the generator G leaves exactly unset one bit
in consecutive blocks of m2 3T +2r = 11757 bits which makes a total of m 3
unset bits. Now choosing t = 2t (recall that m = n') ensures that each of the
n blocks contains exactly n > (logn)? unset bits as required.

However, this generator does not guarantee that the parity of all the set
bits and signs of the unset bits in a block is zero (the length of a block is
m/n =n2""~1). To achieve this, we change the definition of generators G4, in
such a way that parity of all the bits that it contributes to setting of bits and signs

! Actually, in [Agr01] the generator construction is slightly different: G[i] is simply set
to G plijo - - - te+1] when jo exists. However, the lemma holds for this modification
too, and this modification makes our current construction simpler.

in a block is zero. Notice that the generator G35 ,, contributes exactly n2™" ' ~1

bits to a block. Change the generator G}, by replacing every (f - log n)th bit
by the parity of previous f-logn —1 bits for a large enough constant f (f should
be chosen so that it is power of two and the generator is required to be f'-logn-
wise independent for f' < f). Without loss of generality, we can assume that n
is of the form 22" and then, since f is a power of two, f - logn would divide n.
This ensures that the parity of all the bits contributed by the modified generator
to a block is zero. However, we now need to show that the modified generator
is still —jy-biased, O(logn)-wise independent. This follows immediately from
the fact that any set of < f -logn bits of the modified generator is still ﬁ—
biased (follows from [AGHP90]), and therefore these bits are independent with
a similar bias (shown in [NN90]). Thus with these modified primitive generators,
the generator G satisfies all the required conditions proving the theorem. O

5 AC°-Uniform Superprojection Theorem

We start with the definition of a superprojection [AAR98].

Definition 1. An NC° reduction {C,} is a superprojection if the circuit that
results by deleting zero or more of the output bits in each C,, is a projection
wherein each input bit (or its negation) is mapped to some output.

Now we prove the AC®-uniform Superprojection Theorem:

Theorem 2. For any class C closed under NC! reductions, all complete sets for
C under u-uniform NC° reductions are also complete under (u + AC°)-uniform
superprojections.

Proof. Fix aset A in C that is complete under u-uniform NC° reductions and let
B € C be an arbitrary set. We need to show that B reduces to A via a (u+ AC%)-
uniform superprojection. We first define, as before, a set B as accepted by the
following procedure:

On input y let y = 2’11z such that 2z’ € {00,01,10}*. Break 2z’ into pairs
of bits. Ignoring all the 00 pairs, consider the first log |z| pairs. Define
number k by setting i*? bit of k to 1 if the it® of the above log |z| pairs
is 10, to 0 otherwise. Reject if & does not divide |z|. Else, break z into
blocks of k£ consecutive bits each. Reject if the number of blocks is not
a multiple of four. Else, let z = ujuous - - - uaq with |u;| = k. Let v; be
the parity of bits in u;. Let w; = v4;-3v45_2v4;—1v4; for 1 < i < g (so
each wj; is a four bit string). If w; = 1111 for any 1 < ¢ < ¢, accept. Else
if some w; has exactly three ones, reject. Else, for each i, 1 < i < g, let
b; = 1 if w; has exactly two ones, b; = 0 if w; has exactly one one, b; = ¢
otherwise. Accept iff bibs ---b, € B.

The definition of set B is more complicated that the previous one. Even the
block size (= k) is coded in the string in a non-straightforward way. We refer to
the bits of 2’ of any instance y of B as length encoder bits and to the bits of z as
string encoder bits. It is easy to see that B reduces to B via an NC! reduction
and so B € C. Fix a reduction of B to A given by u-uniform NC? circuit family
{C,}, say. Let each output bit of any circuit C,, depend on at most ¢ input bits.

As before, we now define a reduction of B to B. The idea is same: for an
appropriate m and £, consider the circuit Cyio4m. Set some of the input bits
of Cyqo4m so that the circuit on remaining unset bits is a superprojection.
Now set some more bits (including all of length encoder bits) to satisfy all
the conditions in the definition of set B and finally map string # to remaining
unset bit positions. In [Agr01], a simple random construction for this was given
and then the construction was derandomized using an appropriate generator.
However, the random construction did not guarantee that in every block at least
one unset bit would be present after all the settings (that is why we need to have
“empty” blocks for which b; = €). This makes the mapping of bits of z difficult
as we need to use threshold gates to find the i¢* unset bit. This was not the case
in the previous proof as every block there had an unset bit and so the i** unset
bit can be identified by using an AC? circuit on the bits of the it* block.

We give a different construction to solve this problem. Interestingly, our con-
struction uses the central idea of the Switching Lemma proof of [FSS84] which
is also used in the construction in Gap Theorem.

We first discuss a simple idea (one that is used in [Agr01]) and see why it
does not work.

Consider circuit Cy424,- Randomly set every input bit of the circuit to
0 or 1 with probability % each leaving it unset with probability % Say
that an input bit in string encoder part is good if it remains unset and
there is at least one output bit that now depends only on this bit. For
any input bit that influences some output bit in Cy 424, the probability
that this bit is good is at least § - ($)°~* > ;=. Therefore, the expected
number of good input bits is 2(m') where m/' is the number of input bits
in the string encoder part of Cyi24,, that influence at least one output
bit. Identify all the good bits and set all the other unset input bits
appropriately. This makes the circuit Cyy24m,m on the remaining unset
bits a superprojection.

The above construction yields £2(m) good bits provided we can ensure that
nearly all the input bits influence the output (part of the complexity in definition
of B is due to this requirement). The construction can easily be derandomized
by using a 2¢-wise independent generator for selecting unset bits and setting
remaining bits. However, the problem pointed out earlier—it cannot be ensured
that every block has at least one unset bit—remains.

In our construction, we do use the above construction, but only after making
sure that every block is guaranteed to have at least one unset bit. For this, we
successively shrink the block size simultaneously making “bad” blocks (i.e., those

that do not have unset bits) “empty.” This is why we cannot fix the block size
in the beginning of the construction unlike the previous proof.

Let z, |z| = n, be an instance of B. Let m = (4n?)¢. Consider the circuit
Clac 1og m+2+m- To begin with, set the bit numbers 4*¢logm+1 and 4*¢logm + 2
of the input to Cyac jog mi2+m t0 1 identifying the first 4%¢logm bits as length
encoder and the last m bits as string encoder bits. Let C' be the resulting circuit.

Split the string encoder bits of the input to C into 4n block of equal size
(= n - (4n?)°~1). Firstly, we notice that every bit in every block must influence
some output bit. Suppose not. Let such a bit belong to (4i + j)th block. Set all
the bits in all the blocks except for block numbers 4i 4+ 1 through 47 + 4 so that
the parity of bits in every block is zero. Set bits in blocks 47 + 1 through 4¢ + 4
except those in block 47 4+ j such that parity of bits in these blocks is one. Set
all the bits in the block 4i + j except the the bit that does not influence any
output bit so that the parity of set bits is zero. This fixes the output of circuit
C. However, the value of the lone unset bit decides whether the input string
belongs to the set B or not, contradicting the fact that family {Cy,} computes a
reduction of B to A.

Apply a random restriction to input bits of C' as outlined above using a #—
biased, 43¢ log n-wise independent source to generate the restriction (instead of a
2c¢-wise independent generator—the reason for this would be clear soon). There
are two cases that can arise now:

Case 1. For every seed value of the generator, there is at least one block with
no good bit.

Case 2. There is a seed of the generator that leaves at least one good bit in
every block.

We tackle Case 1 first. Undo the above random restriction. Divide each block
into n sub-blocks of equal size (= (4n?)°~1). For each sub-block, do the following
experiment: set all other bits in all the other sub-blocks and blocks to zero, and
then see if by setting an additional 43¢logn length encoder bits to zero all the
output bits of the circuit C' now depend only on at most ¢ — 1 unset bits. We
show later that there must exist such a sub-block. Fix any such sub-block. Set all
bits in all other sub-blocks to zero and also those length encoder bits identified
for this sub-block resulting in a circuit whose every output bit depends only
on at most ¢ — 1 input bits. For each length encoder bit set to zero, set its
paired bit also to zero (rendering these pairs ineffectual for encoding length).
We now are left with exactly (4n?)°~! unset string encoder bits and at least
4%¢logn — 2 - 4%¢logn unset length encoder bits.

Apply the random restriction on these bits and repeat the same process. If
Case 1 keeps occurring, after ¢ — 1 iterations, we would be left with exactly 4n?
unset string encoder bits and at least (44¢—2(c—1)-43¢)-logn > 2c-log2n = logm
length encoder bits. And the circuit C' is simply a projection on these unset bits!
We can now fix the length encoder bits to code the block length as 1, set all the
remaining length encoder bits to zero, set all but first 4n of unset string encoder
bits to zero, set last three bits in every group of 4 unset bits to 100 and map the

i*" bit of = to the first bit of i group. This defines a projection reduction of B
to B and on outputs of this reduction, circuit C is also a projection. Therefore,
their composition is a projection (we shall see later that this composition can be
computed by an AC%-uniform circuit).

The other possibility is that after some iterations, Case 2 occurs. In that
case, identify the seed on which the generator output leaves at least one good
bit in each block. Set the length encoder bits to code the current block length
(we argue later that this can always be done). In every block, set all the bits
except one good bit to zero. Now map the string x to these good bits as above.
Use the modified generator G}, of previous proof so that the parity of all the
set bits plus the signs in each block is zero (to incorporate the sign, we just
need to xor it with the settings of all the unset bits). This defines a projection
reduction of B to B whose composition with C is a superprojection.

There are two things remaining to be done: (1) we need to show that when
Case 1 occurs then there exists a sub-block with the desired properties and when
Case 2 occurs then there are enough unset length encoder bit pairs are available,
(2) we need to show that the above construction can be done by a Dlogtime-
uniform ACP circuit. The second is easy to show: we have already seen that
the generator output can be computed by Dlogtime-uniform ACP circuit. The
remaining tasks can easily be done be a Dlogtime-uniform ACO circuit.

To show the first, we make use of the central idea in [FSS84]. For jt* block,
let o1, ..., o, be all the output bits of C' that depend on some bit in the block.
For output bit o;, let I; be the set of input bits that influence o;. Clearly, |I;| < e.
On a random restriction as defined above, the probability that a bit in j** block
belonging to I; becomes good due to I; is at least . Let MaxSet be any mazimal
set of disjoint I;s. If [MaxSet| > 4%¢logn then drop some I;s from it to make
|[MaxSet| = 4%¢logn. Since the restriction bits are 43¢logn-wise independent
(with a small bias, of course) and MaxSet contains at most c-42°logn < 43¢logn
bits, the probablhty that at least one of the bits in the j** block belonglng to
some I; in MaxSet becomes good is at least 1 — (1 — £)*"logm — L 51 L
If each one of 4n blocks has this property, then the probability that each one of
them has at least one good bit is at least ; The same calculation works when
we drop from the set MaxSet those I;s that contain a bit from the first logm
unset pairs of bits of length encoder bits (we drop at most 4clog2n I;s). This is
the Case 2: we can keep sufficient number of length encoder bit pairs unset and
still have every block having at least one good bit.

Now consider the other possibility: there is a block with |[MaxSet| < 4%¢logn.
Divide this block into n sub-blocks of equal size as described above. Clearly, one
of these sub-blocks will contain no bit that belongs to MaxSet, since MaxSet has
less than ¢ - 42¢logn bits. Fix a sub-block that does not intersect with MaxSet.
Now if we set all the bits of all the other blocks and sub-blocks and also at most
c-42¢logn < 43¢logn length encoder bits (the ones that belong to MaxSet), all
the bits in MaxSet would be set and this would mean that each I; contains at
most ¢ — 1 unset bits. This is Case 1! O

References

[AATT97] M. Agrawal, E. Allender, R. Impagliazzio, T. Pitassi, and S. Rudich. Reduc-

[AAR9S]

[ABI93]

[AGO1]

ing the complexity of reductions. In Proceedings of Annual ACM Symposium
on the Theory of Computing, pages 730-738, 1997.

M. Agrawal, E. Allender, and S. Rudich. Reductions in circuit complexity:
An isomorphism theorem and a gap theorem. J. Comput. Sys. Sci., 57:127—
143, 1998.

E. Allender, J. Balcdzar, and N. Immerman. A first-order isomorphism the-
orem. In Proceedings of the Symposium on Theoretical Aspects of Computer
Science, 1993.

E. Allender and V. Gore. Rudimentary reductions revisited. Information
Processing Letters, 40:89-95, 1991.

[AGHP90] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions

[Agro6]
[Agr01]
[BDGSS]
[BH77]
[BIS90]
[CSV84]
[ER60]

[FFK92]

[FSS84]
[1L95]
[Imm8?7]
[Jon75]

[KMRSS]

[KMRSY]

of almost k-wise independent random variables. In Proceedings of An-
nual IEEE Symposium on Foundations of Computer Science, pages 544-553,
1990.

M. Agrawal. On the isomorphism problem for weak reducibilities. J. Com-
put. Sys. Sci., 53(2):267-282, 1996.

M. Agrawal. Towards uniform AC° isomorphisms. In Proceedings of the
Conference on Computational Complexity, 2001. to be presented.

J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complexity I. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1988.

L. Berman and J. Hartmanis. On isomorphism and density of NP and other
complete sets. STAM Journal on Computing, 1:305-322, 1977.

D. Barrington, N. Immerman, and H. Straubing. On uniformity within NC!.
J. Comput. Sys. Sci., 74:274-306, 1990.

A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility.
SIAM Journal on Computing, 13:423-439, 1984.

P. Erdos and R. Rado. Intersection theorems for systems of sets. J. London
Math. Soc., 35:85-90, 1960.

S. Fenner, L. Fortnow, and S. Kurtz. The isomorphism conjecture holds
relative to an oracle. In Proceedings of Annual IEEE Symposium on Foun-
dations of Computer Science, pages 30-39, 1992. To appear in SIAM J.
Comput.

M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial hier-
archy. Mathematical Systems Theory, 17:13-27, 1984.

N. Immerman and S. Landau. The complexity of iterated multiplication.
Information and Computation, 116:103-116, 1995.

N. Immerman. Languages that capture complexity classes. SIAM Journal
on Computing, 16:760-778, 1987.

N. Jones. Space-bounded reducibility among combinatorial problems. J.
Comput. Sys. Sci., 11:68-85, 1975.

S. Kurtz, S. Mahaney, and J. Royer. The structure of complete degrees.
In A. Selman, editor, Complezity Theory Retrospective, pages 108-146.
Springer-Verlag, 1988.

S. Kurtz, S. Mahaney, and J. Royer. The isomorphism conjecture fails
relative to a random oracle. In Proceedings of Annual ACM Symposium on
the Theory of Computing, pages 157-166, 1989.

[Lin92] S. Lindell. A purely logical characterization of circuit complexity. In Pro-
ceedings of the Structure in Complezxity Theory Conference, pages 185-192,
1992.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions
and applications. In Proceedings of Annual ACM Symposium on the Theory
of Computing, pages 213-223, 1990.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys.
Sci., 49(2):149-167, 1994.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of Annual ACM
Symposium on the Theory of Computing, pages 61-69, 1983.

