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Abstract. Self-consistent density-functional calculations, in an exchange-only framework,
are reported for the energies and moments of the 23S excited states of the helium isoelectronic
sequence, according to the prescription of Harbola and Sahni. The total energy values show
excellent agreement with “exact” nonrelativistic values while the moments are also quite
satisfactory.
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1. Introduction

Since 1964, density functional theory (DFT) has enjoyed remarkable successes in
vividly explaining the electronic structure, binding and properties of atoms, molecules,
clusters and solids in their ground states (Bamzai and Deb 1981; March and Deb
1987; Parr and Yang 1989; Kryachko and Ludena 1990; Trickey 1990; Labanowski
and Andzelm 1991). However, one of the major unsolved problems in DFT has been
its inability to satisfactorily deal with excited states. Because of this, large areas in
spectroscopy and molecular reaction dynamics (where both time-dependence and
excited states are involved) have remained outside the purview of DFT.
There are several reasons for DFT’s discomfiture concerning excited states:

(1) There is no Hohenberg-Kohn theorem for a general excited state of a many-
electron, system, since in this case the wave function cannot be bypassed through
the pure-state density. This is apparent from the hydrodynamical form of the wave
function in terms of the density and the phase function (Deb and Ghosh 1987). The
latter is not constant for a general excited state:

- (2) Exact functional forms of the kinetic energy ( T) and exchange-correlation energy

(E,.) in terms of the density are still unknown. In particular, E, [p] for an excited
state need not have the same functional dependence on density as for the ground state.
(3) Abandoning the concept of a state function within DFT and working solely in
terms of single-particle densities is advantageous for the ground state but disadvanta-
geous for excited states. One loses linear superposition and encounters nonlinearity.

*For correspondence
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(4) The very complicated problem of ensuring Hamiltonian and wave-function
orthogonalities which is faced by any variational method: In other words, for an
excited state, its overlap matrix element and the Hamiltonian matrix element with
any lower state must vanish. This is outside the orthogonality requirement auto-
matically satisfied by the space and spin symmetry of the states.

In §2, we first briefly review the salient features of the main attempts (Slater 1974,
Theophilou 1987; Gross et al 1989; Harbola and Sahni 1989, 1992; Koga 1990, 1991;
- Sen and Harbola 1991; Sen 1992) for a DFT calculation of excited-state energies and
densities. This is necessary because although we still do not have a viable excited-
state DFT, success may eventually come from similar methods or perhaps a
combination of such methods. This section also describes briefly the Harbola—Sahni
approach which has the potential of being applicable to excited states. Section 3
discusses our computed results on the 23S states of the helium isoelectronic
sequence by using the Harbola—Sahni (1989, 1992) method. Finally, § 4 makes a few
concluding remarks.

2. An overview of some excited-state DFT calculations

2.1 The ensemble density approach

The first step towards a DFT for excited states came around 1970, with Slater’s (1974)
transition-state theory. Here, the equations were exactly like the Kohn-Sham
equations (see, e.g., Parr and Yang 1989), but the density was assumed to correspond
to a fictitious transition state in which one or more orbitals are fractionally occupied.
Theophilou (1987) showed that there is a rigorous justification of Slater’s theory, where
the fractional occupation numbers are derived rigorously. But, instead of corres-
ponding to a single state of the many-electron system, the density actually is the sum
of M lowest-energy eigenstate densities, with equal weightage. This is the equiensemble
concept. Thus, information about the Mth eigenstate is obtained by solving two sets
of Kohn—Sham equations, one set for the M and one set for the (M-1) lowest-energy
eigenstate densities. |

An important drawback of the transition-state approach is that it assumes the XC
potentials for ground and excited states to have the same functional dependence on
electron density.

In a generalization and extension of Theophilou’s approach, Gross et al (1989)
derived a Rayleigh-Ritz variational principle for more general ensembles in which
the lowest M eigenstates are weighted unequally. For non-interacting systems, these
ensembles correspond to fractionally occupied single-particle states. This approach
leads to an exact expression relating the excitation energies to the Kohn-Sham
eigenvalues. However, approximations must be invoked in order to make this
formally exact relation practical for computation. Gross et al (1989) have extended
their treatment to arbitrarily large ensembles including degenerate states.

However, numerical calculations according to the above approach have not been
very encouraging. Thus, in an application to the He atom Gross et al (1989a) observed
that the calculated (i) excitatiory’energies are typically wrong by about 20% and (ii)

radial density for the 4F state (1s4f) is not satisfactory.

-
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2.2 The local scaling transformation method

This method, devised by Kryachko and Ludena (1990), Koga (1990, 1991) and others,
consists of the following features for the ground state. .

(@) Start from a reference N-electron wave function W (r,,---,ry) corresponding to
a reference electron density p, (r).

(b) Generate an N-electron wave function ¥, (r;,---,ry) from a given (trial) electron
density p(r) through a unique one-electron transformation T, where p(r) = Tp,(r).
(c) If p(r) contains adjustable parameters, then these would enter into ¥, enabling
one to variationally optimize the parameters. v

(d) Even if one uses a trial density p(r) which is considerably simpler than the
Hartree—Fock (HF) density, the method can deliver atomic density and energy of
near-HF accuracy.

The advantages of this approach are: (1) Simplicity and accuracy in the calculated
density and energy. (ii) Retention of the wave-function concept within DFT (hence,
this may be applicable to excited states). (iii) Improvement of an approximate wave
function ¥, (ry,---,ry). The disadvantages of this approach are: (i) This may not be
regarded as a genuine first-principles method. Here, one needs to work with W, po, p
and ¥,. Actually, this method improves ¥, and p,, and does not obtain an unknown
¥. (ii) The adjustable parameters in ¥, are to be optimized through multivariate
nonlinear optimization. This may be quite tedious. Still, this is a clever method.

For an excited state, the following steps are to be taken (Koga 1991).

(a) Use a configuration-interaction (CI)-type reference wave function.

(b) Choose a trial density p(r) which approximates the nth-state density (of interest).
Generate all the lower mth-state wave functions {'¥,, ,}, m <n, in such a manner that
the following wave-function and Hamiltonian orthogonalities are satisfied:

<‘Pn,pI‘Pm,p> = 5mm (1)
¥ o[ HIW 0> = En(p)d - | @

(c) Determine the nth-state density p(r) so as to minimize the energy density
functional defined through ¥, ,, viz. :

Eo(0) = (¥, HIP, /(¥ | P - | 3

It is clear from the above description that in this procedure the choice of a good ¥,

“is very important. Then, this can be improved further, keeping the density relatively

simple. In Koga’s calculation on the 2 S state of the He atom, the computed radial
density agreed to within 0-005, the energy to within 0-09%, (+*> to within 1-73%; and
{r~2) to within 0-07%, with the corresponding “exact” results.

3. The Harbola—Sahni approach within the local density approximation

The Kohn-Sham (KS) DFT equatidns (Parr and Yang 1989) may be written as
(atomic units employed, es = electrostatic)

[—1V2 4+ V(0 + W @1 () = e4(r), @
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p) =TIV 5)

Harbola and Sahni (HS) (1989, 1992) proposed that the effective local X C potential
(W,.) that the electrons move in can be obtained by calculating the work done in
moving an electron in the electric field of its Fermi—Coulomb hole-charge distribution.
Thus, W, (r) is given by the line integral

W)= — J ()l ©)
g (l') - J‘pxc(ra rl)_(r ; l") dl'l. (7)
xc Ir . r/| ‘

g,.(r) is the electric field for an electron at r due to the Fermi—Coulomb hole-charge
density p,. (r,r') at r'.
If only exchange is considered (i.e., no correlation), then

0
200) ©

P, )=
y(r,r') = single-particle density matrix

= Z YEEY, (), {Y,(r)} = orbitals. %)

For spherically symmetric systems, the line integral in (6) is reduced to an integral
over the radial coordinate only. _ )

This interpretation of W, is similar in spirit to the interpretation of the Hartreé
electrostatic potential V,(r). The X C energy is thus the interaction energy between
the electron density and the Fermi—Coulomb hole charge.

In order that the potential is well-defined, the work done must be path-independent,
1e, V x €,.(r)=0. This is automatically true for spherically symmetric systems. For
non-spherical systems, an approximate poténtial can be obtained from the longitudinal
(curl-free) component of the electric field.

Although one solves KS equations with this W_,(r), the KS W, (r) and the HS W,,
(r) are not equivalent. The KS scheme is variational while the HS scheme is non-
variational. Therefore, the latter may be employed for excited states, assuming that
a Jocal X C potential exists for the excited states. The first excited-state calculations.
were done by Sen (1992) for Be and Na, using single-determinantal wave functions, in
an exchange-only framework. The next such calculation appears-to be ours, in the
present paper.

The HS approach essentially gives a prescription based on the physics of interaction
between charges and does not involve any explicit functional form. Therefore, within
a local density approximation, this prescription may be regarded as universal, since
it admits the possibility that W, may have different functional dependence upon the
density for different excited states.
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4. The helium isoelectronic sequence: Results and discussion

In our laboratory, we have set up a computer program for numerically obtaining
self-consistent solutions of KS-type equations for atomic systems, for any effective
local potential, of which the HS potential is one example. The code of Herman and
Skillman (1963) has been suitably modified to incorporate the given effective potential.
The same program has been used to calculate ground-state properties of atoms as
well as the 2 3S(1s2s) excited states of He and other members of its isolectronic series
(up to Ne®*), using the HS prescription.

Table 1 compares our calculated results in an exchange-only framework for He,
Li and Be with those of Harbola and Sahni (1992). For He, our results for total
energy, the highest occupied orbital energy and moments {rp, {r*), <{r=1>, {r™ 2,
agree very well with the HF and HS results. In contrast to the HS results, our results
are not identical to the HF ones for He although they are very close. The largest
discrepancy is observed for the highest occupied orbital energy and the moment
{r~?>, our values being smaller in magnitude. All our computations have been
performed in double precision and the wave function has been normalized up to the
15th decimal place. Note that for Li and Be our total energy values are closer to the
HF ones. With an increase in the numerical accuracy of computations, this situation
should improve further.

Table 2 reports the energy values for the 2 *S states of the He isoelectronic sequence.
The “exact” values (Thakkar and Smith 1977), shown for comparison, incorporate
electron correlation whereas our results do not. It is quite gratifying that our calculated
total energies are in error only to the extent of 0-08 to 0-0002%. Since the core orbital
shrinks progressively due to increasing nuclear charge, the effects of electron correla-
tion for this excited state would decrease along the isoelectronic sequence. In
other words, agreement of our results with the “exact” ones is expected to be worst
for He and to improve along the sequence up to Ne®*. This is what is by and large

Table 1. Comparison between our results and those of Harbola and Sahni (1992), for total
energy, highest occupied orbital energy and the moments {r>, 2, {rm Yy, {r 23, for the
ground states of He, Li, and Be atoms. The energies are in rydbergs while the moments are
in atomic units. (PW = present work, HS = Harbola—Sahni).

Highest
Total energy occupied
-E orbital energy
Atom PW HS PW HS ay > IR
He 57232 5724 —1781 —1-836 0-9272 1-1846 1-6873 59822
(5724¢ (— 1-836)" (09273)®  (1-1848)°  (L-6873)° (59955
Li 14-8656 14-864  —0:373 — 0405 1-6321 5-8557 1-9074 10-0348
(14-866)* (—0-393)° (1-6320)®  (5-8541)® (1:9073)® (10-0624)
Be - 29-1432 29-142 —0:592 —0-626 1-5140 42213 2-1041 14-3411
(29-146) (—0619) (1-5140)>  (4-2211)*  (2:1040)° (14-3918)°

*Hartree—~Fock results; ®taken from Harbola and Sahni (1992)
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Table 2. Total energy (in rydbergs) and (— V/T) values for the 23§ states of the He
isoelectronic sequence. The “exact” values are from Thakkar and Smith (1977). Values in
parentheses denote percent errars.

Total energy (-E)

Atom/ion Present work “Exact” -V/T

He 4-3469 (0-08) 4:3505 1-99998
Li* : 10-2177 (0-04) 10-2215 2:00001
Be2* 18-5895 (0-03) 18-5943 1-99998
B3* 29-4624 (0-02) 29-4678 199998
C** 42-8358 (0-01) 42-8415 -1-99999
NS+ 58:7094 (0-01) 58-7154 1-99998
os+ 77-0923 (—0-004) 77-0893 2:00003
F7+ 97:9630 (0-0002) 97-9632 199994
Nef* 121-3350 (0-002) _ 121-3373 1-99995

Table 3. Expectation values (a.u.) of single-particle operators r, r?, r~1, r™2 for the 23§
states of the He isoelectronic sequence. For He, the corresponding accurate resuits from
Thakkar and Smith (1977) are given in parentheses.

Atom/ion D o : &Y &
He 25117 11-0958 1-1559 41548

(2:5505) (11-4641) (1-1547) (41705)
Li* } 14814 37046 17815 9-5623
Be?* 10576 1-8583 24064 17:2052
B3+ 08236 111172 30314 270806
CHt 06747 0-7457 36563 ° 391850
NS+ 05715 0-5330 42813 53-5159
oS+ 04958 0-4001 49067 700807
F7* 04378 03113 55317 88-8570
Ne®* 03920 0-2491 61565 109-8477

observed in table 2. The ratio (— V/T) is exactly 2, according to the virial theorem;
this is also satisfied well in our computations. However, the energy of O%* has gone
slightly below the “exact” nonrelativistic value, probably indicating a minor numerical
error. Note that O%*, F7* and Ne®* manifest the worst agreement with the virial
theorem. However, taken together, the energy values may be regarded as excellent.

Table 3 reports the moments, <r), (r¥), (r™1), (r~2), for the 23S states of the
isoelectronic sequence. For He, the comparison with more accurate results (including
electron correlation, Thakkar and Smith 1977) shows that, for the higher moments
{r?y, {r~ %), our exchange-only results have 3-2 to 0-5% error respectively, while the

lower moments show better agreement. The radial densities for all the systems are
shown in figure 1. '
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Figure 1. Radial densities in the 2 S states of the He isoelectronic sequence. All values are
in atomic units.

5. Conclusion

The present calculations and those of Sen (1992) indicate that the HS prescription
for the XC potential has considerable potential for excited states. However, so far
the method has been applied to spherically symmetric systems, with single-deter-
minantal wave functions.  Further work is necessary before the approach can be
extended to even ground states of diatomic molecules. Excited states of molecules
and multideterminantal wave functions would require other modifications.
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