

Superconductivity in layered nickel oxides

C N R RAO*, A K GANGULI and R NAGARAJAN

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.

MS received 1 February 1989

Abstract. Likely presence of superconductivity in layered nickelates of K_2NiF_4 structure is pointed out.

Keywords. Superconductivity; nickel oxides; lanthanum-strontium-nickel oxides.

PACS No. 74.70

Since the discovery of superconductivity in $La_{2-x}Ba_xCuO_4$ by Bednorz and Müller (1986) just over two years ago, there have been innumerable reports on high-temperature cuprate superconductors (Rao 1988a, b, c, d; Rao and Raveau 1989). The maximum T_c today is close to 130 K. All these cuprates have two-dimensional CuO sheets just as in $La_{2-x}Ba_xCuO_x$. $La_{2-x}M_xCuO_4$ ($M = Sr$ or Ba) is tetragonal at room temperature and becomes orthorhombic at low temperatures, well before the superconducting transition. These oxides are marginally metallic at room temperature and have a nominal mixed valence of Cu. We have been interested in the study of La_2CuO_4 and other transition metal oxides of K_2NiF_4 structure for some years (Ganguly and Rao 1984; Rao and Ganguly 1987). Thus, we have compared the properties of transition metal oxides of K_2NiF_4 structure especially those of the formula $La_{2-x}Sr_xMO_4$ ($M =$ transition metal) with the corresponding three-dimensional perovskite oxides (Rao *et al* 1988).

Among these layered oxides, of special interest is $La_2NiO_{4+\delta}$ which is on the borderline between a metal and an insulator. The oxide shows a metal-insulator transition around 600 K in the *ab*-plane (Ganguly and Rao 1973; Rao *et al* 1984). The nickelate generally has an oxygen excess and the magnetic susceptibility is a strong function of δ . For $\delta = +0.001$, $\chi(T)$ is temperature-independent below 300 K and for 0.05 there is a small cusp in $\chi(T)$ at 160 K (Buttrey *et al* 1986). The presence of long-range quasi two-dimensional antiferromagnetic order below 200 K was suggested earlier. It is noteworthy that La_2CuO_4 has an antiferromagnetic Neél temperature around 290 K (Mitsuda *et al* 1987) and shows an orthorhombic-tetragonal transition around 505 K.

La_2CuO_4 is suggested to be in a quantum-fluid state wherein the spins are ordered over long distances, but no measurable time-averaged moment is detectable (Shirane *et al* 1987). Recent neutron scattering studies (Aeppli and Buttrey 1988) show that in

*To whom all correspondence should be addressed.

$\text{La}_2\text{NiO}_{4+\delta}$ also there is a strong influence of the orthorhombic-tetragonal transition (~ 240 K) on the magnetic correlations in the paramagnetic state. Furthermore, the in-plane magnetic dynamics as well as the three-dimensional Neél temperature depend strongly on oxygen stoichiometry. It is clear that $\text{La}_2\text{NiO}_{4+\delta}$ is very similar to $\text{La}_2\text{CuO}_{4+\delta}$ in most respects, the latter also showing a strong dependence of three-dimensional T_N on δ . Above T_N , there are two-dimensional magnetic correlations in both the oxides. Oxygen-excess $\text{La}_2\text{CuO}_{4+\delta}$ ($\delta > 0.0$), however, shows superconductivity (Beille *et al* 1987; Jorgensen *et al* 1988), but $\text{La}_2\text{NiO}_{4+\delta}$ does not.

$\text{La}_2\text{NiO}_{4+\delta}$ has two-dimensional NiO sheets and there is evidence for the presence of oxygen-holes in this oxide just as in the cuprate superconductors (Rao *et al* 1987, Rao 1988b; Chakraverty *et al* 1988). Recent studies in this laboratory show that metallic LaNiO_3 also has a high proportion of oxygen holes. It seems therefore likely that a two-dimensional nickel oxide, consisting of a fair proportion of nominal Ni^{3+} (or oxygen holes) should show superconductivity at reasonably high temperatures.

Leaving $\text{La}_2\text{NiO}_{4+\delta}$, the likely candidate for high T_c superconductivity would be oxides of the $\text{Ln}_{2-x}\text{M}_x\text{NiO}_{4+\delta}$ where $\text{Ln} = \text{La, Pr or Nd}$ and $\text{M} = \text{Ca, Sr or Ba}$. Here Ni is nominally mixed-valent. Unlike LaNiO_3 , LaSrNiO_4 is an insulator (Mohan Ram *et al* 1986). Increasing the number of perovskite layers in the $\text{La}_{n+1}\text{Ni}_n\text{O}_{3n+1}$ or $(\text{LaO})(\text{LaNiO}_3)_n$ series of which La_2NiO_4 is the $n = 1$ member, does not help since it only makes the material metallic similar to LaNiO_3 . A system such as $\text{La}_2\text{SrNi}_2\text{O}_{7+\delta}$ and $\text{La}_3\text{SrNi}_3\text{O}_{10+\delta}$ is another possibility. Small amount of Cu doping ($< 10\%$) in these layered nickelates would also favour superconductivity.

Preliminary measurements in this laboratory on the layered nickelates have shown indications of superconductivity in the Ln-Sr-Ni-O system. Although magnetic measurements are dominated by antiferromagnetic interactions due to Ni^{2+} , we see some evidence for the onset of diamagnetism in the 20–80 K range depending on composition and annealing conditions (figure 1). Details will be published shortly elsewhere.

Figure 1. Diamagnetic contribution in $\text{La}_{2-x}\text{M}_x\text{CuO}_4$ showing onset in the 20–80 K range.

Thanks are due to the Department of Science & Technology for support.

References

Aeppli G and Buttrey D J 1988 *Phys. Rev. Lett.* **61** 203
Bednorz J G and Müller K A 1986 *Z. Phys.* **B64** 187
Beille J *et al* 1987 *C.R. Acad. Sci. Paris* **18** 304
Buttrey D J, Honig J M and Rao C N R 1986 *J. Solid State Chem.* **64** 287
Chakraverty B K, Sarma D D and Rao C N R 1988 *Physica* **C156** 413
Ganguly P and Rao C N R 1973 *Mater. Res. Bull.* **8** 405
Ganguly P and Rao C N R 1984 *J. Solid State Chem.* **53** 193
Jorgensen J D, Dabrowski B, Pei S, Hinks D G, Soderholm L, Morosin B, Schiber J E, Venturini E L and
Ginley D C 1988 *Phys. Rev.* to be published
Mohan Ram R A, Ganapathi L, Ganguly P and Rao C N R 1986 *J. Solid State Chem.* **63** 139
Mitsuda S, Shirane G, Sinha S K, Johnston D C, Alvarez M S, Vaknin D and Moneton D E 1987 *Phys.
Rev.* **B36** 822
Rao C N R 1988a *J. Solid State Chem.* **74** 147
Rao C N R 1988b *Mod. Phys. Lett.* **B2** 1217
Rao C N R (ed.) 1988c *Chemistry of oxide superconductors* (Oxford: Blackwell)
Rao C N R (ed.) 1988d *Progress in high-temperature superconductivity* (Singapore: World Scientific) Vol. 7
Rao C N R and Ganguly P 1987 *Curr. Sci.* **56** 47
Rao C N R and Raveau B 1989 *Acc. Chem. Res.* to be published
Rao C N R, Buttrey D J, Ganguly P, Harrison H R, Sandberg C J and Honig J M 1984 *J. Solid State
Chem.* **52** 266
Rao C N R, Ganguly P, Hegde M S and Sarma D D 1987 *J. Am. Chem. Soc.* **109** 6893
Rao C N R, Ganguly P, Singh K K and Mohan Ram R A 1988 *J. Solid State Chem.* **72** 14
Shirane G, Endoh Y, Birgeneau R J, Katsner M A, Hidaka Y, Oda M, Suzuki M and Murakami T 1987
Phys. Rev. Lett. **59** 1613