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Abstract. We present an ‘overview’ of coherence-to-decoherence transition in certain selected
problems of condensed matter physics. Our treatment is based on a subsystem-plus-environment
approach. All the examples chosen in this paper have one thing in common – the environmental
degrees of freedom are taken to be bosonic and their spectral density of excitations is assumed to
be ‘ohmic’. The examples are drawn from a variety of phenomena in condensed matter physics
involving, for instance, quantum diffusion of hydrogen in metals, Landau diamagnetism andc-axis
transport in highTc superconductors.
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1. Introduction

Environment-induced decoherence is an important issue in the topical subjects of meso-
scopic phenomena and quantum information processes. We shall discuss this issue in
the context of certain problems in condensed matter physics which we have worked on
recently. At the outset, it is necessary to indicate what we mean by coherence and deco-
herence. For this, the following classical paradigm, borrowed from a recent article by Imry
[1] suffices. Consider a beam of particle wave with momentumk0 incident from the left
on two rigid, elastic, point scatterers denoted by crosses and located atx1 andx2 (figure 1).
The beam is scattered with a wave vectork resulting in a momentum transferK = k0�k.
The scattering intensity, assuming that the two amplitudes of scattering are the same, can
then be written as

SK = jAK

�
eiK :x1 +eiK :x2

�
j
2; (1)

which has two parts:

SK = SI
K +SII

K ; (2)

where
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Figure 1. Elastic scattering from two rigid point scatterers.

Figure 2. Symmetric double-well with minima at�a. The barrier heightV0 equals
1=2mω2a2, ω being the small oscillation frequency in each well.

SI
K = 2jAK j

2 (3)

and

SII
K = 2jAK j

2cos(K:d); (4)

d beingx1 � x2. Note that the first contribution to the intensity,SI
K would have resulted

had we simply added the two probabilities (each beingjAK j
2 in this case) – this contribu-

tion may then be regarded as ‘classical’. The second contribution:SII
K directly relates to

the wave aspect of the incident and the scattered beams and depends on what is called the
‘phase shift’,(K:d). It is this contribution which is responsible for interference in wave
optics and quantum mechanics, and has its origin incoherence. Decoherence (or dephas-
ing) then is the process of diminishing of the interference of the two waves. Decoherence
occurs due to interaction of the interfering entity with the degrees of freedom of the envi-
ronment, e.g., lattice vibrations, electromagnetic fields, other entities not measured in the
experiment, and so on.

One of the simplest schemes for studying coherence vs. decoherence in quantum me-
chanics can be formulated in terms of a one-dimensional symmetric double-well model,
illustrated schematically in figure 2, and defined by the potential
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V(x) =
1
2

k(jxj�a)2: (5)

The two lowest eigenfunctions and the energy eigenvalues, as a function of a dimensionless
distance (which is proportional toa), are shown in figures 3 and 4 [2]. From figure 3 it
is clear that the symmetric(ψ0 +ψ1) and the antisymmetric(ψ0�ψ1) combinations of
the two lowest eigenfunctions yield two functions which are localized and peaked about
the right minimum and the left minimum of the double-well, respectively. These may
then be considered to be the ‘physical’ states corresponding to wave packets localized in

Figure 3. The ground state wave functionψ0 and the first excited state wave function
ψ1, plotted against a dimensionless distance ¯x=

p
2mω=~x, for

p
2mω=~a= 4.
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Figure 4. The quantum numberν = (E=~ω)� (1=2), E being the energy eigenvalue,
is plotted against ¯a =

p
2mω=~a. For ā = 0, we have the special case of a single

harmonic oscillator with the origin as the minimum whereas for ¯a! ∞ we have two
disjoint harmonic oscillators with minima at�∞. Thus forā ‘large’, the eigenvalues
collapse pairwise and become doubly degenerate.

the right and the left wells. Furthermore, these are the only states to reckon with if the
temperature is low enough such that the Boltzmann populations of the levels other than
the first two energy levels can be ignored. The Hilbert space of the system is then shrunk
into a two-state one for which the physical states can be represented by the pseudospin
eigenstates of the Pauli operatorσZ, j+i corresponds to the wave packet being localized
in the right well, whereasj�i corresponds to the wave packet being localized in the left
well. The system tunnels between the two states with a frequency which is the difference
between the lowest energy eigenvalues and is given in the WKB approximation by
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∆0 =

r
8ωV0

~π
exp

�
�

2V0

~ω

�
: (6)

We have earlier discussed the issue of coherence in a static picture, through eq. (4). Equally
well, we can think of a time-dependent description of coherence in which the mean position
of the wave packet is an oscillatory function of time:

hx(t)i= X0cos(∆0t): (7)

On the other hand, when decoherence sets in, the mean position is expected to be exponen-
tially damped:

hx(t)i= X0exp(�t=τ); (8)

wherein, however, the time constantτ may depend on the tunneling frequency∆ 0, the
temperatureT and the strengthK of interaction with other degrees of freedom, as we shall
analyze later.

The plan of this ‘overview’ is then as follows: Inx2 we will discuss a physical realization
of the two-state model in terms of the tunneling of an interstitial hydrogen in niobium in
the presence of other trapping impurities, e.g. oxygen. Decoherence in this system is
occasioned by the coupling of the tunneling hydrogen (or proton, for that matter) with
metallic electrons. Coherence-to-decoherence transition, as the temperature is increased,
will be illustrated in terms of the structure factor of neutron scattering from the tunneling
centres. The model employed inx2 for describing the heat bath which induces ‘quantum
dissipation’, and thereby decoherence, is a generic one that serves to exemplify similar
decoherence phenomena in other very different systems. Thus, inx3, we will consider
the quantum theory of diamagnetism and argue that the transition from the Landau to the
Bohr–Van Leeuwen regime can indeed be viewed as a coherence to decoherence transition.
The problem discussed inx2 relates to a subsystem (of the tunneling centre) which has a
finite Hilbert space whereas the one inx3 has a subsystem (of the circulating charge in a
magnetic field) that is characterized by an infinite-dimensional Hilbert space. An effective
combination of the two paradigms in which the subsystem is a composite one, with both
finite and infinite-dimensional character, is introduced inx4, which deals with the issue
of c-axis transport in layered superconductors. Again, the observed suppression ofc-axis
tunneling is viewed in the light of a coherence-to-decoherence transition. Finally, inx5, we
address the question: ‘Can there be dissipationless decoherence?’, and conclude the paper
with a few remarks.

2. Quantum diffusion of H in Nb(OH) 0:002

The niobium metal has a bcc structure and becomes superconducting at low temperatures.
However, we shall consider only those experiments in which superconductivity is annuled
by an applied magnetic field and hence we will have to deal only with the normal state elec-
trons. Furthermore, our focus of interest will be the dilute system of hydrogen interstitials
which occupy tetrahedral sites, indicated bya;b; : : : ;e, and which can be trapped by an
interstitial oxygen that can occupy an octahedral site (see figure 5). From a large body of
experimental data involving X-ray and channeling measurements, it has been ascertained
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Figure 5. The bcc structure of Nb. The big open circles are Nb sites, the solid circle
is the octahedral site of immobile oxygen whereasa;b;c;d;e are possible symmetry-
allowed tetrahedral sites of the hydrogen. Because of the presence of oxygen, the hy-
drogen occupies one of the two sites marked as ‘encirclede’.

that the hydrogen, which can be considered one at a time in view of the specified dilution,
can occupy one of the two sites marked as encirclede in figure 5 [3]. We then have our
text book example of a double-well in which the hydrogen, being a light quantum particle,
tunnels back and forth, but unlike the one mentioned inx1, this double-well is asymmetric
because of long-range elastic interactions between OH-pairs (figure 6). Of course, the
asymmetry is random at different hydrogen sites and has to be averaged over in the final
analysis.

At this stage it is appropriate to ask what are the relevant energy scales in the problem.
It turns out that the tunneling energy∆0, the asymmetry energy~ε and the thermal energy
KBT (at temperatures of experimental interest) are all of the same order: a few meV. On the
other hand, the harmonic oscillator like energy separation (in each well), the Debye energy
(associated with phonons), and the Fermi energy are all at least two orders of magnitude
higher. Therefore, the two-state abstraction of the double-well, in which the subsystem-
Hamiltonian can be described in terms of Pauli operators alone, as discussed inx1, is
indeed a valid model for the tunneling centre.

As has been mentioned already, our treatment will be focused on neutron scattering
measurements. It is well-known that neutrons have a large scattering cross section with
hydrogen atoms resulting in a structure factor which is the Fourier transform of a Van
Hove correlation function:
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Figure 6. The two-level abstraction of the asymmetric double-well in which the hy-
drogen moves in the presence of the trapping impurity, oxygen. The energy associated
with small oscillation frequenciesω

�
is much larger than the asymmetry energy~ε,

the tunneling energy~∆0 and the thermal energyKBT. In this limit the left and the
right minima of the double well are mapped into the pseudospin states forσZ =�1 and
σZ = 1, respectively.

S(K;ω) =

Z ∞

�∞
dteiwt

he�iK :r(0)eiK :r(t)
i: (9)

In eq. (9),K is the wave vector transfer in the scattering process (as in figure 1),ω is the
corresponding frequency transfer, andr at times 0 andt are the positions of the scatterer, in
this case the hydrogen. The point to note is thatr(t), which is obtained from the Heisenberg
evolution of r(0), is a quantum operator thatdoes notcommute withr(0). Finally, the
angular bracketsh: : :i imply a quantum statistical average over the entire system of interest,
maintained at a fixed temperatureT.

What is then the system of interest? The answer is, it is the subsystem comprising of
the tunneling centre plus the environment with which it is coupled. Now, as the hydrogen
(which is normally stripped off its electron and therefore behaves as a proton) moves, it
is dragged by the cloud of conduction electrons of niobium. Therefore, the environment
is a heat bath of conduction electrons that causes ‘quantum friction’. Since the thermal
energy is much smaller than the Fermi energy the relevant excitations are those of electron-
hole pairs of the Fermi surface and can be represented by bosons. Motivated by these
considerations the system of interest may be described in terms of what Leggettet al term
as the spin-boson Hamiltonian [4]:
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Figure 7. The inelastic neutron scattering structure factorS(ω), for fixed K, as a
function of ω, for two different temperatures 0.1 K and 5 K, when the sample of
Nb(OH)0:002 is put in an external magnetic field of 0.7 tesla.

H =Hs+∑
k

Gk(bk+b+k )σZ +∑
k

~ωkb
+
k bk: (10)

In eq. (10),Hs is the subsystem Hamiltonian given by

Hs =
~

2
(�∆0σX + εσZ): (11)

As the details of the calculations are already available in the literature [5,6], we will sim-
ply discuss the main results in relation to the measured neutron scattering data [7]. What
are shown in figures 7a and 7b are the structure factor as a function of the neutron energy
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gainω (in meV) for fixedK, when the sample is placed in a magnetic field of 0.7 tesla.
The data in figure 7a, taken at 0.1 K, clearly indicate an ‘inelastic’ peak located at energy

�~

q
∆2

0+ ε2, which is the consequence of thecoherenttunneling motion of the hydrogen,

picked up by the scattered neutron. The other inelastic peak on the right shoulder, located

at energy~
q

∆2
0+ ε2 is suppressed because of the detailed balance factor, but shows its

presence at a somewhat higher temperature of 5 K (figure 7b). These two figures 7a and 7b
are then the signatures of coherence, as far as neutron scattering is concerned. Now, as the
temperature increases, there is more phase space available for the tunneling centre to inter-
act with the excitations of the heat bath. The coherent clock-like motion of the hydrogen
is then impeded and decoherence sets in. As a result, neutron scattering changes over to
the ‘quasi-elastic’ regime from the inelastic one, yielding a central line (figure 8) [7]. The
latter, for a fixedK, can be fitted to a sum of Lorentzians:

S(ω) = ∑
j

ajΓ j

ω2+Γ2
j

; (12)

whereaj ’s are constant coefficients andΓ j ’s are widths related to the jump rate of the
hydrogen. We should emphasize, however, that these jumps are associated with what may
be called thequantumdiffusion of the hydrogen.

One of the intriguing results is the plot of the jump rate of the hydrogen as a function of
temperature, derived from figure 8 and shown in figure 9. It is seen that in the temperature
range of about 10–60 K the jump ratedecreaseswith temperature, following a power
law: T2K�1, whereK is a measure of the strength of the coupling with the bath. This
power law is a direct consequence of the fact that the heat bath in the present instance
is composed of fermions and that the electron-hole excitations can be characterized by a
spectral density which is ohmic [8]. The upturn in the curve at temperatures beyond 60 K
is the result of phonon-assisted quantum diffusion of the hydrogen which, naturally, would
be accompanied by non-ohmic dissipation [9].

3. Landau diamagnetism in a dissipative environment

We turn our attention in this section to an enigmatic problem in solid state physics that
has prompted Peierls to dubb it as ‘one of the surprises of theoretical physics’ [10]. The
vexed issue is that of orbital diamagnetism of an ideal gas of electrons in a box under the
influence of an applied magnetic field. It is well known through the work of Bohr and
Van Leeuwen that if one calculates the diamagnetic moment using the tool ofclassical
statistical mechanics the answer one gets is zero! The textbook proof of what is called
the Bohr–Van Leeuwen theorem is somewhat facile in that the presence of the magnetic
field is shown to be ‘gauged away’ from the partition function of the system – hence its
logarithmic derivative which yields the average moment is identically zero [11]. Only later
it was clarified by Van Vleck, amongst others, that the reason for the vanishing of the
orbital moment is a more subtle one – the contribution from the circulating electrons in
the bulk is exactly canceled out by the contribution coming from the so-called ‘skipping
orbits’ due to the electrons bumping onto the walls of the enclosure and getting reflected
back. Thus, the ‘surprise’ element is that the boundary of the enclosure which holds the

Pramana – J. Phys.,Vol. 59, No. 2, August 2002 211



Sushanta Dattagupta

Figure 8. The quasielastic scattering at temperatures higher than those depicted in
figure 7.

Figure 9. The jump rate of hydrogen in the temperature range of 10–60 K, deduced
from the width of figure 8.

212 Pramana – J. Phys.,Vol. 59, No. 2, August 2002



Coherence vs. decoherence in condensed matter physics

electrons comes into essential reckoning, even in the thermodynamic limit. It was Landau
who showed that diamagnetism could be explained only by invoking the rules of quantum
mechanics. Because the position and the momentum of the electron do not commute the
bulk contribution is different from the surface one, yielding a nonvanishing diamagnetic
moment.

Diamagnetism has its origin in coherent circular motion of the electron in a plane normal
to the magnetic field such that the position vector follows an equation similar to eq. (7),
∆0 being a measure of the cyclotron frequency. We may then ask the question: what would
happen to the Landau diamagnetism if the coherent precessional motion of the position
vector of the electron is disturbed due to interaction with other degrees of freedom, e.g.,
defects, other electrons, phonons, etc? This question can again be addressed within a
system-plus-bath approach, already introduced inx2, in which the total Hamiltonian for
the system at hand can be written as

H =Hs+∑
j

"
1

2mj
p2

j
+

1
2

mjω
2
j (qj

� r)2

#
; (13)

where the subsystem HamiltonianHs is given by

Hs =
1

2m

�
p�

eA
c

�2

: (14)

In eqs (13) and (14),m is the mass of the electron of chargee, p its canonical momentum,
r its position vector andA is the vector potential associated with the magnetic fieldB.

The strategy is to integrate the bath variablesp
j
(t) andq

j
(t) in terms of their initial

values, say at timet = 0, employ quantum statistical expressions for their fluctuations at
a fixed temperatureT and thereby derive aquantumLangevin equation for the subsystem
variablesr andp [12]. In this description one has to consider the case in which the number
of bath oscillators is infinitely large and their spectrum is continuous. Introducing then the
spectral density as

J(ω) =
~

2 ∑
j

mjω
3
j δ (ω �ω j); (15)

ohmic dissipation, considered already inx2, can be modeled as

J(ω) = γω; (16)

γ being a ‘friction’ coefficient, proportional to the parameterK of the previous section.
From the underlying Langevin equation the time-dependent magnetic moment can be

computed using the formula:

MZ(t) =
jej
4c

Imh(ξ̇ ξ †+ξ †ξ̇ )i; (17)

whereξ is the complex variablex+ iy, x andy being the planar coordinates of the electron
circulating around theB field along theZ-axis, dot denotes time derivative, dagger implies
hermitian adjoint and the angular brackets indicate a statistical average over the ‘noise’ in
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the Langevin equation, itself a quantum operator. The results are given in [13] but here we
simply quote the asymptotic(t ! ∞) form, in the case of ohmic dissipation, though the
non-ohmic case can be easily tackled [14]. We find

M = lim
t!∞

MZ(t) =�
2KBT

B
w2

c

∞

∑
j=1

1
(ν j + γ)2+ω2

c
; (18)

wherewc (= eB=mc) is the cyclotron frequency andν j is defined as

ν j =
2π
~

KBT j: (19)

As is to be expected, when the coupling between the subsystem and the environment is
switched off the friction coefficientγ goes to zero and we recover the Landau expression:

lim
γ!0

M =
e~

2mc

�
2KBT

~ωc
�coth

�
~ωc

2KBT

��
: (20)

The result given in eq. (18) is a remarkable one in that an equilibrium property
like the diamagnetic moment has an explicit dependence on a rate constant such as the
friction coefficientγ . This suggests in view of the exactness of the result that the solution
presented above, as it were, is the outcome of a full many-body treatment of an electron in
a magnetic field, in interaction with bosonic excitations. The result in eq. (18) is also remi-
niscent of another familiar expression in solid state physics, viz., the Drude formula for the
electrical conductivity which also, in the steady-state, depends on the damping parameter
γ . Indeed this observation has motivated us to re-express eq. (18) as a ‘Landau–Drude’
formula [15]:

�
mc
e~

M =
1
ν

∞

∑
j=1

1
1+(µ̄ j + r̄)2 ; (21)

where

ν =
~wc

2KBT
; µ̄ j =

π j
ν

; (22)

and ¯r is a scaled resistance which is the ratio of the Drude resistivityr to the Hall resistivity
R:

r̄ =
r
R

; r =
mγ
ne2 ; R=

B
nec

; (23)

n being the number density of electrons. In figure 10, we show a plot of the left-hand side
of eq. (21) vs. ¯r, for two different values ofν . As resistance is the most basic manifestation
of dissipation it is evident that larger values of ¯r lead to decoherence. Further, larger the
cyclotron frequencyν , the more perceptible is the persistence of coherence. Figure 10 is
then a nice illustration of how the system transits from the coherent ‘Landau regime’ to the
decoherent ‘Van Leeuwen regime’, at least asymptotically.
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Figure 10. The negative of the dimensionless magnetization�(mc=e~)M is plotted
against the scaled resistance ¯r, for two different values of the scaled cyclotron frequency
ν. For r̄ = 0, we recover the Landau limit.

4. ‘Zeno blocking’ of cc-axis transport in YBCO

The high-Tc superconductors like YBa2Cu3O6+x, in short YBCO, are characterized by
anisotropy, in the direction normal to the CuO planes which are stacked up as layers. One
of the manifestations of this anisotropy is the measured value of the resistivityρ(T) as a
function of temperature. Both the in-plane resistivityρ ab and thec-axis resistivityρc (c
being normal to theab-plane of CuO), over a significantly large temperature range and
concentration valuesx, have the following temperature dependence in thenormal phase
[16]:

ρ =
a
T
+BT: (24)

What is significant as far as the linear temperature-dependence is concerned is the value of
B:

Bab = 1:4�10�6; Bc = 3�10�5: (25)

Thus, transport along thec-axis is an order of magnitude ‘slower’ though the mechanism
of transport, as evidenced by the identical temperature-dependence, must be the same for
both the intra-layer and the inter-layer electrons.
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Following the discussion inx2, the two planes involved in the tunneling process are
mapped into the two states of a pesudo-spin Pauli matrixTZ, whereas the tunneling be-
tween the two states is thought to be mediated by the operatorTX which is completely
off-diagonal in the representation ofTZ. The normal state electron is a free one but under-
goes ‘quantum Brownian motion’ due to interaction with bosonic degrees of freedom of
the bath, as envisaged inx2 andx3. The full Hamiltonian may be written as

H =
p̂2

2m
+ x̂

"�
1
2
+TZ

�
∑
q

gq(aq+a+q )+

�
1
2
�TZ

�
∑
q

Gq(bq+b+q )

#

�~δTX +∑
q
~
�
ωqa+q aq+Ωqb+q bq

�
: (26)

Again, we skip the detailed derivations which have been published recently [17]. Instead
the principal result is sketched in figure 11 in which we plot the ‘stay-put’ probability
P(t)

�
= 1

2 + hTZ(t)i
�

vs. a scaled timeδ t, defined by the tunneling frequencyδ . Choosing
the initial condition:P(0) = 1, P(t) is a measure of the ‘leakage’ of the electron from a
given plane. The oscillations shown in figure 11 for moderately low values of the friction
coefficientγ are signatures of quantum coherence. The transition to decoherence occurs
for values ofγ = 0:5 and above. Since resistive transport is in fact an incoherent process
we propose that the exponential relaxation ofP(t) can be fitted to

P(t) = exp
�
�δ̂ 2τt

�
; (27)

Figure 11. The stay-put probabilityP(t) vs. the scaled timeδ t for four different values
of the damping parameterγ; γ = 0:1: dots,γ = 0:25: dashes,γ = 0:5: circles and
γ = 0:75: stars.
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whereδ̃ is a renormalized tunneling frequency andτ is the intra-planar inelastic scattering
time proportional toγ�1. If d is the inter-planar distance, eq. (27) allows us to define a
mobility

µ = dδ̃ 2τ ; (28)

which is then inversely proportional toρc. On the other hand, it is the sameτ which
determines the in-plane resistivity through the Drude formula:

ρab =
m�ab

ne2τ
; (29)

m�ab being the effective mass andn is the number density of electrons. Thus, our proposal
is that it is the parameterτ which dictates the temperature dependence of bothρ c andρab.

5. Dissipationless decoherence

In all the examples discussed inxx 2–4, the interaction Hamiltonian is chosen to be off-
diagonal in the representation in which the subsystem and the heat bath Hamiltonians are
simultaneously diagonal. The point is, it is the interaction Hamiltonian which causes tran-
sitions between the energy levels of both the subsystem and the heat bath. As a result there
is continuous energy transfer between the subsystem and the heat bath though the latter,
being a very large system, has its thermal equilibrium undisturbed. In the language of
scattering theory we are then led to consider only inelastic scattering processes mediated
by the coupling between the subsystem and the heat bath. As a variant to this approach
we now ask: what if the interaction Hamiltonian continues to be off-diagonal in the heat
bath representation but is chosen to be diagonal in the representation of the subsystem? A
concrete example can be constructed in which the interaction Hamiltonian is taken to be
proportional to the subsystem HamiltonianHs itself! Thus we write

H =Hs+Hs∑
k

gk

�
bk+b+k

�
+∑

k

~ωkb
+
k bk: (30)

Defining a ‘reduced’ density operatorρs for the subsystem from the total density opera-
tor ρ as

ρs = Trb(ρ); (31)

where Trb(: : :) denotes trace over the bath degrees of freedom, we can derive a master
equation [18]:

d
dt

ρs =�i [Hs;ρs]+ iη(t)
�
H

2
s ;ρs

�
� γ(t)

�
H

2
s ρs�2HsρsHs+ρsH

2
s

�
:

(32)

In eq. (32),η(t) andγ(t) are damping parameters arising from the heat bath.
As the subsystem HamiltonianHs commutes with the total HamiltonianH there is no

energy dissipation in the subsystem. But, is there any decoherence? Clearly, this ques-
tion can be meaningfully posed only if the initial state of the subsystem is prepared in
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a non-eigenstate. In this restrictive sense, coherence-to-decoherence transition has been
discussed in a couple of model examples of eq. (30) [18]. The discussion also corrobo-
rates an observation made earlier that the crossover from coherent to incoherent dynamics
in damped quantum systems depends in general on the specific dynamical quantity under
consideration and the initial preparation [19].

The process of decoherence that we have analyzed here is also known as ‘dephasing’,
especially in the context of the contemporarily interesting topic of mesoscopic physics
[20]. Whether dephasing can occur when the temperatureT ! 0 – which is possible to be
studied within the presently discussed models because of the quantum nature of the heat
bath – has generated a great deal of controversy in recent times. It is generally believed that
purely elastic scattering does not cause decoherence at zero temperature. Yet, in the model
governed by eq. (30), there are decoherence effects in certain dynamical quantities perhaps
because of the presence of energy non-conserving terms involving heat bath variables, even
though the subsystem remains dissipationless! The destruction of quantum coherence by
environmental influence is therefore still a hotly debated issue and it is hoped that the
present overview will be an useful contribution to this debate.
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