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Relaxation behaviour of a biased two-level system, in metals in the
weak damping limit |
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Abstract. The dynamic properties of a biased two-level system in contact with a dissipative
bath are studied in the weak coupling limit using a resolvent expansion method. The theory
yields consistent results at low temperatures, a regime in which the widely used dilute bounce
gas approximation (DBGA) to an underlying functional integral expression breaks down.
The present results are however equivalent to a recently adapted functional integral technique
that goes beyond the DBGA. The calculated expressions are relevant for analyzing the
neutron scattering data on tunneling of light interstitials, e.g., hydrogen, in metals, at very
low temperatures.
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1. Introduction

Recently there has been a number of neutron scattering studies of the tunneling

motion of hydrogen in a biased (i.e. asymmetric) double-well potential in a metallic-

system e.g. Nb (Wipf et al 1987). The double-well is caused by other immobile
interstitial defects (e.g. oxygen or nitrogen) and the bias is due to long range strain
interaction between O-H (or N—H) pairs. At very low temperatures (~ 10K) the
neutron inelastic scattering shows peaks near the tunneling frequency of the hydrogen
with a finite width due to the interaction with the conduction electrons. As the
temperature increases there is a cross-over from inelastic to quasi-elastic scattering
owing to the destruction of the coherence of tunneling by thermally excited
electron—hole pairs. The most striking quantum effect of the metallic electrons is that
the width of the quasi-elastic peak decreases with temperature until a mihimum is
reached around 70K when phonon effects set in and enhance the width. In the
quasi-elastic regime the experiments require higher defect concentrations in order to
distinguish the peak from the background; hence the effect of the bias is very important
from this experimental point of view.

In the region of physical interest the pure tunneling motion in a double-well can
be adequately described by the Hamiltonian of an effective two-level system (Leggett
et al 1987):

Hg= —ihAyo, + Fheo, (D)
where o’s are the Pauli matrices, A, is the bare tunneling frequency and & is the bias.
‘ 579
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As is well-known the influence of the low-lying excitations off the Fermi surface of
the metallic electrons can be represented by bosons with a specific form of the spectral
density (given below in 4)) (Guinea 1984; Chang and Chakravarty 1985). Thus the
complete Hamiltonian for the tunneling system, coupled with the conduction electrons,

can be written in terms of what is known as the spin-boson Hamiltonian (Leggett
et al 1987):

H=Hs+0'zZGJ(bJ+ +bj)+ Zhw1b1+ bJ (2)
7 J

where b} is the creation operator for the jth boson of frequency w; and G, is the
coupling constant. In order that the bosons can effectively describe the fermionic
system of metallic electrons the spectral density function J(w) has to have a specific
form that describes ‘Ohmic dissipation’. Thus, J (w), defined by

J(w)E(Z/hz)Z GJ?5(0) —w;) 3)
J
is modelled as _/ ’
J(w) = Kwexp (— w/D). 4

In (4) K is a phenomenological dimensionless constant that parameterizes damping,
which arises in the model only in the limit of an infinitely large number of bosons,
and D is a cut-off frequency of the order of the Fermionic band-width.

The static and dynamic properties of the spin-boson Hamiltonian have been
reviewed comprehensively by Leggett et al (1987). Much of the theoretical work has
relied on the so-called dilute bounce gas approximation (DBGA) to the underlying
functional integral expression. Recently, however, it has been demonstrated that a
resolvent expansion of the Liouvillian, as is familiar in the literature on relaxation
phenomena in chemical physics, yields results that are complefely equivalent to those
obtained in the DBGA, both in the symmetric (¢ =0) and the biased (¢ # 0) cases

(Dattagupta et al 1989). This treatment relies on a unitary transformation that changes
the Hamiltonian in (2) to the form:

H' = —1hAo(B.o- +B_c,)+theo, + Y ho;bi b; (5
Jj

where o, =3(c, +0_) and where

BiEexp(i2Z(Gj/ha)j)(bj—bj+)>. (6)

The main point of the transformed Hamiltonian H' is that the interaction term is
now given in terms of renormalized coupling strengths B, . The DBGA then follows
from the ‘self-energy’ calculated up to second order in a systematic perturbation
treatment of the interaction (i.e. the first term in (5)). This fact clarifies the physical
meaning and the limitation of the DBGA; though the theory is valid for arbitrary
damping (since the original coupling constant G; now appears in the exponent in

B,), the tunneling frequency is effectively treatcd only up to second order—
‘interbounce interactions” are neglected.

d
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It is physically plausible that in the limit of either strong damping or high
temperatures, coherent tunneling motion would be so impeded that the effective
tunneling frequency would be ‘small’ and the DBGA would be a very good
approximation. However it turns out that even for weak damping the DBGA is a
systematic approximation at all temperatures, provided & = 0, since in that case the
neglected interbounce interactions can be shown to vanish as K? in the limit K — 0.

- On the other hand, for a biased system (¢ # 0) and in the limit of weak coupling, the

DBGA breaks down at low temperatures, as the interbounce interactions are no
longer negligible. .

The case of weak damping is especially important for neutron and muon studies
of metallic systems at low temperatures as the damping parameter is estimated to be
very small, namely K ~ 0-05. Motivated by this consideration, Weiss and Wollensak
(1989) have recently extended the functional integral technique beyond the DBGA.
In this paper we present an alternate treatment, in line with our earlier resolvent
expansion approach (Dattagupta et al 1989), and show that although the analytic
structures of our results are different from those of Weiss and Wollensak, numerically
they are hardly distinguishable. Our analysis is based on the simple physical realization
that if the damping is weak (i.e. the effect of the second term in (2) is small in some
sense) the two terms in Hg (cf. (1)) should be treated on the same footing, and hence
it is more meaningful to develop a perturbation theory on the original Hamiltonian
in (2) and not the transformed one in (5). The resultant treatment is much more
straightforward than the rather formidable functional integral technique and is

- presented here with the hope that the derived results would be more readily accessible

to experimenters interested in neutron scattering of H and muon diffusion in metals
at low temperatures.

2. Perturbation treatment in the weak damping limit

2.1 Preliminaries

In this and the subsequent sections we follow the same notation as employed in our
earlier paper (Dattagupta et al 1989). The quantity of interest in the analysis of neutron
scattering is the symmetrized correlation function

C(t)=3[£0.(0)0.(1)) + {a.(t)5.(0}>] | ()
where, for instance, |
{o.(0)o.(t)) = Tr(pgo,(0)exp (iHt/h)a . (0)exp (— iHt/h)) (8)
pg being the density matrix in equilibrium given by
exp(— fH)

PE = Tt fexp(— BH)T' ®)

In accordance with the objectives spelt out in §1 we would like to treat Hg in (1)
exactly. To this end we diagonalize Hg by performing a rotation in the ‘spin-space’
about the y-axis by an angle 6 = Arctan (A,/¢). In the rotated frame the Hamiltonian
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in-(2) reads

~ 1 1 -
H =510, — (60, + Ag0,) Y G, (b + b))+ 3 heo;b] b (10)
J

where ' ’

Q= (e + A2 - (11)
Correspondingly,

1
0.(0)o.(1))> = ETTr(ﬁE(saz(o) + Ay 0.(0))(e5..(t) + Ao 5.(1))) (12)

where pg is obtained from (9) upon replacing H by H, and
&.(t) = exp(iHt/h)o,(0)exp(— iHt/h). (13)

A similar expression holds for & (t).
Our strategy, as set out in § 1, is to split H as

H=Hg+H, + Hg , (14)
where 5
Hg=1hQo, (15)
1 .
Hy = — (60, + A00.) Y,G,(b] +b)) (16)
: i ’
7

In the above, we have introduced the subscripts I and B to emphasize that the
corresponding terms represent the interaction Hamiltonian and the bath Hamiltonian
respectivelty. As we would like to treat H, perturbatively we make the usual
factorization approximation to the density matrix:

PE® Ps P (18)
where
ps=3[1—tanh(3ApQ)0,] : (19)
and
]

Zg being the partition function associated with the purely bath Hamiltonian Hg.
It is customary to rewrite (13) as

5.() = [U())0,(0)] 21)

where U (t) is the so-called time-development operator defined by

U(t) = exp (i21) (22)

gy
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2 being the Liouvillian associated with . We shall work with the Laplace transform
of (22), i.e., the resolvent of the time-development operator given by-

U2 =1/z —i2). (23)

2.2 Bath-averaged time-development operator

Using (7), (12) and (18)—(23), the Laplace transform of the correlation function can
be expressed as :

R 1 )
C(2) = 757 Tr(pal(0.(0) + A5 0,(0) — stanh (375)]
x [U(2)(e0.(0) + Ao, (0))]). (24)

We may write out the trace explicitly with the aid of the spin states (denoted by |x>
with u= + 1) and the occupation number states (denoted by |n>), thus

Clz)= Y <nlpsln) ¥ Culleo,(0)+ Ago.(0) — etanh (LABQ)I|v)

nn' pvp'y’

V(60 (0) + Ao o (0> (nvnp| U () n'v'n' ). (29)

Introducing then the bath-averaged time-development operator as

LU (0)]a = X.<nlpgInd (nn|U@)|n'n') - (26)

nn'

we dbtain from ‘(25),

C@)= ¥ (ulleo.(0) + Ago,(0) — stanh G#AQ)]|v)

vy

x (V'|[e0,(0) + A a(0) 111 > (vl LU (2)Tau |V 1) (27)

Recalling from (14) how the Hamiltonian is split, the corresponding Liouvillian
operator can be split as

@=L+ L+ Ly | (28)
Up to second order in %, we can then show (Dattagupta 1987)
[O@)]y ~(z—iLs+ [ Lz —iLs—iZLs) L1]0)7, (29)

where [---],, has been defined in (26).

~ We need the matrix elements of [U(z)],, amongst the spin states (cf. (27)) for

calculating C(z). Hence it is useful first to enlist the matrix of the self-energy in (29).

The latter, upon repeated application of the properties of the Liouvillian, can be -
/




584 Tabish Qureshi and Sushanta Dattagupta

written as
¢'(z-)+ Plz.) $'(z-)+ blzs) Z%{$(Z)+2<5'(Z—)~¢A>’(2)}
o | ~FED=de) e+ dE) {3~ 28(-)+ ()}
0 0
Q* e . ~ g, ~ - N g .
FE b)) B} B+ PR+ 2P G)
0 0 0
+¢(z-)}
E . o > € (2 ~ N ~
LK;{¢(Z+)+¢(Z+)} —E{¢(z+)+¢(2+)} —¢(2)—¢'(2)
=30 +28() + @)}
0
—Af"-{— $@) =28 (z.) + ¢' ()} (30)
4]
— () —¢'(2)
2
$e)+ PO+ 25 (PG +6(2))
where the rows and columns are labelled by +—+, — —, + — and — + respectively
z,=z+iQ | (31)
b=z (XOX (O (2)
and , . |
X (5= Y.Gy(b;(0) + b7 (). (33)

In (32) and (33), we have to deal with the statistical mechanical properties of the bath
alone. This point has been emphasized by using the subscript B to refer to an average
over bath states only, while the time-dependence of the boson operators is governed
by just the bath Hamiltonian Hy. The matrix tabulated in (30) has to be combined
with the matrix for z —i.% and then inverted to obtain the matrix for [U(z)],,.

2.3 The bath correlations in the Ohmic case

Uptil now our method has been quite independent of the exact nature of the bath.
However, in order to compute C(z) we need an explicit structure of the correlation
function ¢(t). As the bath consists of an independent set of bosons it is easy to write

¢(t) = ), G} [coth (3hpaw;)cos (w;t) + isin (w;t)]. (34)

At this stage we invoke the dissipative character of the bath by going to a continuum

a—
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set of bosons, ie. by replacing the summation over j in (34) by an integral over w

with the aid of an appropriate spectral function (cf, (3)), Choosing for the latter the
Ohmic dissipation model (cf, (4)), we find from (34),

o) = I; f ) wexp (—};3) [coth(3ABw)cos (wt) + isin(wt)] dow. (35)
0

The integrals in (35) can be worked out explicitly in terms of Euler’s polygamma
functions (Abramowitz and Stegun 1965), thus

KLY
"“”“uhﬁf(‘”(”hﬁb*hﬁ)“”(”ﬁ“ﬁb“‘%ﬁ)

fA L Vi1 VK D%
2\t+up) "2\T=wp) )t T a7 (36)

Since we are interested in the low temperature dynamics, the limit #8D > 1 applies,

which simplifies the result for ¢(t). In this regime the Laplace transform of ¢ (1) can
be written as ' :

Fo=52F 0+ 0 - @7
where ’
B 2
Fl(z)=——W(l+—Z-2—7§)—1n(;l—%)-+-;;:—ﬁ+ln(D)——|//(l) (38)
and ' ‘
Ez(z) =i(D ~nz/2). ‘ (39)

2.4 Explicit results for the correlation function

As mentioned earlier, we need all the sixteen elements of the matrix for [U(z)],, in
order to evaluate C(z) (cf. (27)). These elements are obtained byinverting a 4 x 4 matrix
as prescribed in (29). Upon employing the algebraic form of P(2) (cf. (37), we perform
the task of matrix inversion with the use of an algebraic manipulator called REDUCE
(Hearn 1985). The following expression emerges for the spin correlation function:

22+ + K[S,(z) + tanh(348Q)S,(2)] + K2[Q, (2)

. + tanh (A4Q) 0, (2)]
Cla)= ] 2(z% + %) + KR, (z) + K’R, (9 (40)

where

S0 = gz @6z 2 (Fy(e) + Fy(2,)) 4 283z, P (o)
+2_Fy(2.)) + 222 A3F, (), @)
520 =i MOz, Fole ) 4 2 Fyley) 4 22F,(2), @)

Ry(2) 5(32/92)Z+Z—(Z+F1(Z—)'+Z—F1(Z+))+Z+Z-(Z+F1(Z+) ‘ v
+z_Fi(z.)) + 22*(A3/Q*)F, (2), (43)
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' 2
Ql(z)E‘@(22+Z—32F1(2f)F¥(Z+)+ZA%Fl(Z)(Z+F1(Z+)+.Z~F1(Z—)))
(44)

1 .
0.(0) =& 83/ e F1(z-)F(2+) + 2. Fy(2:)Fa(e-)
+Fy(0)zs Fi(zs )+ 2-Fy(z2))) (45)

Rz(Z)Eézi(zz+z—32F1(z_—)F1(z+)+ZAgFL(Z)(Z+F1(Z+)+Z—F1(Z—)))~
(46)

While this procedure allows us to obtain C(z) to all orders in the damping coefficient
K, consistency with the present perturbation theory demands that only terms to

lowest order in K are retained. Neglecting therefore terms of order K* from the
numerator and the denominator, (40) is reduced to

22 + &2+ K[S,(2) + tanh(3hBQ)S,(2)]

C@ = 222 + Q%) + KR, (2)

(47)

A quantity related to the correlation function C(t), and which allows for a direct
comparison with the results of Weiss and Wollensak (1989),is P(t), the time-dependent
expectation value {c,(t), with the specific initial condition that at t=0 the system

starts out from one of the two spin-states, say | + ». We readily find from (47), for
the Laplace transform of P(z),

22 +er+ K[Sl(z) + %Sz(z)]
z(z% + Q%) + KR, (2)

P = (48)

The results given in (47) and (48) describe completely the dynamics of the spin-boson
system, in the weak damping limit, down to T =0. Evidently, in the zero damping
case (K =0), we havc‘

R R 22 + &2
CO(Z)=PO(Z)=m’ (49)
a result that can be checked also by a direct calculation of the correlation function
for the bare spin-system with the aid of (1) alone.

~ Finally, one other consistency check on our formalism is to ensure that in the
asymptotic (¢t — o0) limit the correlation function has its correct equilibrium value.
We find from (47), and (36), before taking the A8D > 1 limit,

Lim C(f) = Lim zC(z) = (§tanh(3/5Q)). (50)

t—=+ z—+0

“The right hand side of (50) has the desired form of the square of the expectation value
of o, in the equilibrium ensemble defined by p; (cf. (19)), as is expected for a
thermodynamic system governed by the principle of mixing (Lebowitz and Penrose

-
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1973). This removes an important lacuna of the dilute bounce gas approximation
(DBGA) which predicts an incorrect equilibrium value of C(t) (Leggett et al 1987,
Dattagupta et al 1989).

3. Discussion

3.1 The symmetric case (¢ = 0)

First we concentrate on the symmetric case, the one which has been analyzed in great
detail by functional integral and other methods, Setting & = 0 in (40) we get

Clz)={z+ A5 o ' (51)
a z(1 + 2KF,(2)) )

It may be recalled that our expression in (40) was derived by neglecting terms of
O(K?). Interestingly, however, (51) is valid even up to O(K?), as the corresponding
terms cancel out exactly from the numerator and the denominator of (40).

At this stage it is pertinent to compare the result in (51) with that obtained in the
DBGA. The latter reads

C(z)=[z+ 2cos(nK)J (z)] (52)
where J(z) given in terms of certain gamma functions:

o B3( 2m )M-l T(1 — 2K)T(K + zhf/2n)
@)= "(E’EB T — K + zhp/2n)

2D (53)

For a meaningful comparison with (51) it is necessary to perform a small K
expansion on (52). Doing this, upon which the gamma functions reduce to corres-
ponding digamma functions (Abramowitz and Stegun 1965), (52) can be shown to be
identical to (51). Recalling from §1 that the DBGA treats the tunneling term
perturbatively the above result implies that for a symmetric system interbounce
interactions are negligible, even for weak damping. Coupled with the fact that in
arriving at (51) we have treated the equilibrium density matrix for the spin system
correctly (cf. (19)), we may conclude that the DBGA provides a systematic weak-
coupling approximation down to very low temperatures, provided however the
asymmetry parameter is zero.

We may finally remark that it is somewhat fortuitous that in the symmetric case
and the weak damping limit the DBGA agrees with the present perturbation theory,
although in the DBGA the tunneling term is treated perturbatively whereas it has
been taken into account exactly in the present work. The mathematical reason behind
this is that the tunneling term occurs only as the square of A, in the symmetric case
(cf. (51)) irrespective of how large A, is. This feature, we believe, is special to the
two-level case.

3.2 The biased case (¢ # 0)

The situation now is much more complex, and is described by the full expressions in

(47) and (48), in the weak damping limit. These are expected to describe the state of
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affairs much more accurately than the DBGA which is known to lead to unphysical
results in the weak damping and the low-temperature limit, one of which has been
mentioned already in the last paragraph of §2.

Recently, Weiss and Wollensak (1989) have extended the functional integral method
and gone beyond DBGA, specifically to treat the low temperature behaviour of the
weakly damped system. Their results for p(z), obtained after a careful regrouping of
all interbounce terms, has a different analytic structure than ours given in (48). We
believe, however, that the physical contents of the two results are the same. In order
to substantiate this point we plot in figures 1 and 2 p(z) obtained from (43) (solid
line) and p(z) obtained in the modified DBGA (dotted lines). Up to numerical accuracy
the two results are practically identical. They, however deviate substantially from the
DBGA prediction (the dashed lines). _

We compare also numerically the result for the correlation function C(z) obtained

by us, in the present paper and earlier in the DBGA (Dattagupta et al 1989), in

figures 3 and 4. While C(z) obtained in the present work remains positive, at all
temperatures, as it should, the DBGA values become negative at very low temperatures,
as can be seen from figure 4.

»
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Figure 1. Laplace transformed P(t) based on (48) (solid line), the DBGA result (dashed line)
and the result obtained by Weiss and Wollensak (dotted line). The Laplace transform variable

is set equal to iw +I'/2 where I has been fixed at 0-5 in order to account for a possible -

[instrumental width in the neutron scattering experiment. The tunneling frequency A, is fixed
at 1, the bias & at 2, the cutoff D at 100 and the damping coefficient K at 0-001. The
temperature 7= 1/hf is 0-01. The solid and the dotted lines overlap with each other.
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Figure 2. Laplace transformed P(t). All the parameters are the same as in figure 1 except
that the temperature 7 here is 0-0000001,
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Figure 3. Laplace transformed correlation function »Ca(z) based on (47) (solid line) and the
DBGA result (dashed line). I' is fixed at 01, A, at 1, ¢ at 2, D at 100 and K at 0-001. The

temperature 7 is 0:001. In this parameter regime our result based on (47) closely matches |

with vthe DBGA result. . \
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Figure 4. Laplace transformed correlation function C(z). All the parameters are the same

as in figure 3 except that 7 is 0:0000005. In this regime the DBGA result is totally unphysical
as expected. C(z) becomes negative near @ =0.

4. Conclusions

We have presented a systematic perturbation theory in the weak coupling approxima-
tion for a biased two-level dissipative §ystem. The results are expected to be relevant
for describing the dynamics of light interstitials e.g. H or pt in metals. Hence they
would be of some significance in the analysis of data on neutron scattering and muon
spin rotation.

The present work removes also certain unphysical predictions of the widely used

DBGA in the weak damping case, especially at low temperatures. On the other hand,
the fact that the present and the DBGA results match at high temperatures, even in
the weak damping case (cf. figures 1-4), shows that the interbounce interactions
become less significant as the temperature increases, a feature which is far from
intuitively obvious.

Of course, it should be stressed that the present approach is limited by the fact
that the damping is assumed to be weak at the outset. When the damping parameter
is not small one has to resort to either the DBGA or its equivalent. However the
present work fills in an important gap of the existing theory at low temperatures.
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