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To understand the effect of magnetic field on the abnormal flow conditions
caused by the presence of stenosis in arteries, analytical solutions are obtained
for the steady laminar conducting flow of an incompressible Newtonian fluid
in an axisymmetric channel of varying gap. Three approximation methods are
developed depending upon the geometrical configuration. The results obtained
are applied to study the flow of a conducting fluid through a smooth
constriction. It is observed that the overall effect of magnetic field is to decrease
the resistance to flow and shear stress at the wall and to reduce the abnor-
malities of flow due to irregular boundaries.

1. INTRODUCTION

It is well known (Young 1968) that at various locations in the arterial system,
stenosis may develop due to abnormal intravascular growths. For example, arteries may
be narrowed by the development of atherosclerotic plaques which is closely connected
to the hydrodynamics of blood flow through the artery. The study of the hydro-
dynamic aspect of the blood flow shows (Langlois 1958, Lee and Fung 1970, Chow
and Soda 1972) that the stenosis developed in the artery causes the abnormal flow
‘which is an important factor in the development and progression of arterial disease.
Although the specific reason for the initiation of growth, which eventually projects
into the lumen of the artery, is not known, it is clear that if such an event occurs
the flow characteristics in the vicinity of the resulting protuberance may significantly
be altered. The important flow characteristics in the arterial system are the pressure,
shear stress ang possible change in the flow characteristics. These, in the presence of
stenosis, are related respectively to the physiologically important problems of : increase
in the resistance to the blood flow; possible damages to the red and endothelial cells
due to the existence of high shear zones; and possible transition from laminar to
turbulent flow inside the blood vessel creating high intensity shear zones unfavourable
to the blood and arterial wall.

Previous works (Langlois 1958, Young 1968, Lee and Fung 1970, Chow and Soda
1972) on the study of flow through irregular boundaries are connected only with
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the hydrodynamic aspect of flow. But no literature is available, to the authors’
knowledge, on the study of blood flow in a vessel with an irregular surface in the
presence of an electromagnetic field. A human system, particularly the blood flow,
is influenced by the external electromagnetic fields. The effects of electromagnetic
force, i.e., Lorentz force, on the flow of blood in the presence of a stenosis are:

(a) To decrease resistance to flow with possible increase in blood flow which
creates high pressure regions in the areas of low pressure regions. In other words
the Lorentz force avoids the danger of complete occlusion.

(b) To reduce the high shear stress caused by stenosis and hence to prevent
the damage to the red and endothelial cells.

(¢) To delay the transition from laminar to turbulent flow (Chandrasekhar
1961, Rudraiah 1964a, b, 1970) inside the blood vessel and thus reducing high
intensity shear zones which are unfavourable to the blood and arterial wall.

Therefore, the effect of electromagnetic field on the flow in a vessel with
irregular surface is favourable in understanding and prevention of arterial diseases.
With this motivation in mind, we investigate here the flow of a viscous conducting
fluid in a channel of varying gap in the presence of a magnetic field.

In this study, to obtain analytical solutions, three approximate methods are
developed for three different situations. In the first method, wall slope is assumed
to be negligible and the results obtained are similar to those of Hartmann flow. In
the second method wall curvature is assumed to be negligible and the analysis is
carried out by approximating the channel to that of a divergent wedge with a source
at its vertex. In the third method, the results of the second method are expanded in
power series in terms of the wall slope and the results are applied to the problems of
flow in a channel with constriction. The results confirm the effects predicted in (a),

(b) and (c) above.

2. FORMULATION OF THE PROBLEM

The general problem of flow of blood through arteries (i.e. irregular boundaries)
is mathematically complicated due to non-Newtonian nature of blood through
irregular geometries. Because of the complexity of this problem for realistic flow
configurations, the study of simplified flow models is helpful in illuminating some
of the major physical features involved in the interaction of magnetic field with flow
characteristics induced by a stenosis (i.e. irregular boundary). An idealized model
for this purpose is an infinitely long channel of smoothly varying gap (Fig. 1)
through which laminar steady highly viscous conducting fluid flows for which closed
form solutions are possible. We assume that blood behaves like 2 homogeneous
conducting Newtonian fluid with constant density p, viscosity u, and electrical
conductivity .
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Fic. 1. Physical model.

It is further assumed that the channel has symmetry along the x-axis. It is of
interest to note that in actual problem of flow of blood through arteries, in general,
complex three-dimensional flow patterns are developed near the stenosis which are
virtually impossible to analyse. In some instances, the stenosis is known to be
more ‘collar like’ (Young 1968) with some degree of axial symmetry, Therefore,
the assumption of axial symmetry in the present paper is reasonably valid. A uniform
magnetic field B, is applied in the y direction. Suppose the walls of the channel be
represented by curves

y = -Lh(x) (2.1
where A(x) is continuous and positive for all x.
The equations of motions, neglecting inertia (for we are considering highly

viscous fluid) and induced magnetic field (i.e. we assume that the magnetic Reynolds
number is very small which is usual in the case of blood flow) effects, are

ou av _

o + 5}. =0 ..(2.2)
_oBs,_ 1 dp 2.3

viu o 4 o .(2.3)

vy L o (p+ %B2) . (24)

T ww
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where
62 82
2= I ~
V=T e
(4, v) are the components of velocity in the x- and y-directions, B, is the applied

magnetic field in the y-direction, B, the induced magnetic field in the x-direction, and
p the pressure. The boundary conditions are the no-slip boundary conditions

u(x, £h(x)) = v(x, £h(x) = 0. (25)

Eliminating the pressure between eqns. (2.3) and (2.4) we have third order differential
equation for ¥ and v. Hence in addition to the no-slip boundary condition (2.5) we
need one more boundary condition. This boundary condition is obtained by
calculating the flux across the channel which has to be constant at all cross-sections
of the channel for an incompressible fluid. Hence

h(x)

J udy = Q forall x ..(2.6)

—h(x)

where @ is the net flow through the channel.

3. SOLUTIONS OF THE PROBLEM
To find the solution of the problem three approximate methods depending
upon the three physical situations are developed and these are discussed in this
section.

First Approximation Method : Wall Slope Everywhere Negligible

If the wall slope A’(x) is everywhere small compared to unity, it is reasonable
to assume that at each value of x, the components of velocity and pressure gradient
are approximately equal to those obtained in the case of uniform channel flow.
This approximation leads to Hartmann velocity distribution with a pressure
gradient parallel to the axis of the channel, Under this approximation the basic
equations are

2o +1mn=0 ()
v=0 ...(3.2)
h? 2
g% w = % ~ M?*u ...(3.3)
2 p2
where y = hf and M® = Bi ks is the square of the Hartmann number.
23

The solution of (3.3) using eqns. (2.5) and (2.6) is
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_ OM [cosh (My/h) — cosh M

“= 2% |sinh M — Mcosh M (3.9)

where
_ sinh M — Mcosh M) B2 gp

Q= 2h[ M cosh M My, 9x ...(3.5)

The expression for pressure is
X
P j M3 cosh M dx ‘e
Qus ) 2(sinh M — M cosh M) B3 ...(3.6)

[

where ¢ is a constant of integration. Equations (3.4) and (3.6) in the limit M — 0,

become
30 y?
= (1 - hT) ..(3.7
and
o° 3 0ps
a“; =TT g ...(3.8)

which are the usual hydrodynamic equations. Equations (3.2) and (3.4) satisfy the
boundary conditions exactly, Although eqns. (3.4) to (3.6) are similar to the
Hartmann flow solutions, they differ from them in the sense that in the present
analysis « and p are functions of both x and y. The components of velocity, given
by eqns. (3.2) and (3.4) are the possible components, if and only if

1F <1 ]

' h(x) h'(x) cosh (Ahl_y)] |1 %} ...(3.9)
’h'(x) My sinh (~Ahl—y) ’ <L Jll

Equation (3.9) implies that for eqns. (3.4) to (3.6) to be valid both wall slope and
Hartmann number must be small.

Second Approximation Method : Wall Curvature Everywhere Negligible

We have discussed above the solution for the case where the wall slope is
negligible i.e. A'(x) < 1. This restriction can be removed by assuming that the flow
locally to be as if h(x) were a linear function of x. Depending on the sign of 4'(x) we
have different geometrical situations of the channel. If #'(x) is positive, the channel
is approximated by a divergent wedge with a source of flux Q at its vertex. If A'(x) is
negative, the wedge is convergent with a sink at its vertex. The analysis is carried
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out assuming h'(x) as positive and similar results can be obtained when #'(x) is
negative,

The equations of motion for the creeping flow in cylindrical co-ordinates (7, 0, z)
with an applied magnetic field in the §-direction are

% (ru) + %g_ -0 ...(3.10)
2
g% = (Vzu 2 %) ~ oBu (3.11)
2
gg_ = rus (Vzv -+ 7T g—:— —_ ;V?) + oBrBeu ...(3.12)

where u and v are the components of velocity in r and 6 directions respectively. By is
the applied magnetic field in 6-direction and B, is the induced magnetic field in the
radial direction, and

L 1 3 1 g

V = 372. ._;_ ,a_r_ + F W‘ ...(3-13)

The boundary conditions are

u(r, +a) = vr, +a) = 0 )
" ...(3.14
[ rudd= Q. |> G.19)
We assume By = (4/r) where A is a constant to be determined by the strength of an
isolated current flowing along the z-axis. Before finding the solutions of the problem,

we make (3.10) to (3.13) dimensionless using the quantities

D u y r
p* = P‘(;é’ u* = 'w—9 v = ;-’ r¥* = —B—
0* = Ofpw

where the asterisks denote the dimensionless quantities. For simplicity neglecting
the asterisks, we have (for R € 1)

o _gu, Low 1ou u 2 9
R =t 7 g tTrgm m+MY— 5= .G

Rop _ o, 1ov Vo, 20 v

r 00 ~ por2 r or + rt oee + rz g8 r? --(3.16)
where R = wf/v is the Reynolds number, M? = (cB3p*/pv) is the square of the
Hartmann number, « and § are respectively the characteristic velocity and length,

We assume the radial component of velocity to be of the form u = f(6)/r, then
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continuity eqn. (3.10) shows that (9v/99) = 0. In order to satisfy the no-slip
boundary conditions, v has to be zero throughout the field.

Thus
u=f@)/r, v=0. ..(3.17)
Equations (3.15) and (3.16) using (3.17) become
op. _ ')  M(
RaT =5 - r{() ...(3.18)
op 2f'(8
rZ -0 . (3.19)

Eliminating P between (3.18) and (3.19) we have

J" + 4a*f' =0 ...(3.20)
where
a =1— 1%

We have to solve (3.20) using the boundary conditions (3.14), Equation (3.20)
shows that the solutions of eqn. (3.20) are indeterminate at M = 2. Thus the cases
of M #£ 2 and M = 2 are treated separately,

Solution for the Case When M £ 2
Solving (3.20) and using separately eqns. (3.17) to (3.19) we have

__Qa sin? g — sin? af

¥ =" sin ax cos ax — ax + 2ax sin® ax -(3:21)

v=0 ...(3.22)
op _ _ 2a cos2af  aM? (sinz as — sin? ae)

R - Xx s\ Ty «(3.23)
op _ —2a*sin2af ( , M?

RY - T (a +5 ) (3.29)
P ad cos 2a0 | aM? ( sin® ax — sin® af )

RP = —5x 2r8 X

where

Q

= sin ga cOS ax — ax - 2ae sin? ao

Equations (3.21) to (3.24) satisfy the boundary conditions and differential
equations (3.10) to (3.12).



1112 B. C. CHANDRASEKHARA AND N. RUDRAIAH

Prior to applying these results to the problem of flow through a channel of varying
gap, we transform them to Cartesian system as shown in Fig. 2,

Fic. 2. Flow geometry.

Figure 2, clearly shows

Uz = u cos ab, sinab = L4 ,
Ax — X2+ Y2
. x— X
Wy = usmaf, cosab = ’
4/(x — X3 + Y?
. D 1
sih @n = ————, COS da =

where
tanae = D, r= 4(x — X)? + 2

x and y are non-dimensional coordinates. The components of pressure gradients
are given by

m— T e e e e 2L

l> ...(3:25)
I

Equations (3.21) to (3.24), using (3.25) become

_ Qa(x — X) D*(x — X)* — y*

e E{(x — X)* ¥ 372

.(3.26)
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QayD*(x — X)* — »*
E{x — X + 7
op_ _ —Qalx — X)

x RE

o [2a2(0 + D) {(x — X)* — 3y%} + M2 {D¥x — X)* + y* — y*(1 + D},
[(x — X)* + 2P

Uy =

«.(3.27)

..(3.28)

o _ _Qu
6y RE
[2a2(1+D”){3(x—-X)2~—y}+M2{D2(x—X)2—y~+(x—X)2(l D]
[(x — X)P + »P

...(3.29)

where

E = (sin ax cos ax — au + 2ax sin? aa) (1 + tan? ax)

=D — (1 — D*arctan D.

Equations (3.26) to (3.29), using the relation

h = D(x — X) ...(3.30)
become

Ug = %%5_}3)—? ...(3.31)

ap. - QhaD?

0x RE

o [2a5(1 + D7) (h* — 3D%®) + DM? {(h* — y%) — y(1 + D%}
E(R* + D*yip

...(3.33)

o __ Qo
oy RE
% [2a%(1 + D% 3h? — D%y? 4 M2 {D*h% — y*) + h*(1 4 D*}]
(% ¥ D%y :

..(3.34)

If the curvature of wall is everywhere small i.e. h(x) h"(x) is small compared to unity
then at each value of x the flow in the channel of varying gap may be approximated
to a flow in a wedge with vertex at X(x, 0) and vertex angle, 2 arc tan D(x), where
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D(x) = H(x), 1

h(x)

Y@ =*-pa" J

..(3.35)

The velocity components given by (3.31) and (3.32) satisfy the boundary
conditions and eqns. (3.33) and (3.34) satisfy the differential equations approximately

provided

| A(x) h'(x) | K 1
and

| B x) A"(x) | € 1
for all x.

If (3.36) and (3.37) is satisfied, then it is very easy to verify that

dp = $m+%

and we have

[o4
_20D3T [ (1 + DY a® DM 2a3QD4
P=-3 U En d"‘”]Ehad]

Xx

.+«(3.36)

.(337)

...(3.38)

>
y I[U + D) 3kt 4 Dy 4 M2 {DYR: — ) + K (1
(B + Diyip

where C is a constant of integration.
The stream function for the flow is given by

@ Dh(1 + D% y

—_ 2 .
P(x, y) R Diyt — (1 — D?) arc tan ]
and hence the velocity components are given by
Uz == g_;p’— \l
f

oy

Uy = — 5% + terms in A(x) D'(x).

J

Third Approximation Method : Power Series Expansion in the Wall Slope

+ D=)}] dy

..(3.39)

...(3.40)

.(3.41)

The second method discussed above leads to rather cumbersome results even
for analytically simple form of h(x) and also it may happen that the function A(x)
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satisfying (3.36) and (3.37) is such that A’(x) is small but not negligible. Then the
modified condition

[Dv] = K@) K1 ...(3.42)

is satisfied for some positive integer n. Now for n > 1 the results of the 2nd method
are expanded in power series in D and the terms of the nth or higher order in D are
neglected. In this method we restrict the analysis to the case when n = 3. Expanding
arc tan D in power series of D, we have

arctan D = D — D% + 3bs .. + 0D ...(343)
The function E expanded in terms of D is given by
= 4D3[1 — 2D 4+ O(DY) + ..... ...(3.44)
Hence
Dy _ 2
T =i+ 3D+ 0D+ ..) ...(3.45)

The expressions for the velocity components and pressure, after neglecting the
third and higher order in D, are

Uy = 3Qa [l — (/W2 [l — 2D*(y/h)2 + 2 D2 + ..} ...(3.46)

v = 33:1) ( )[1 — (¥/hy?] ...(3.47)

D = 2810t — 6D (yi? + FarD* + L DML — 297/
...(3.48)

D 18
% - “QR% ¥ 4“ + §M2] ...(3.49)
3 2 2
R S 1CD RITI(ECD) NN
¢ c
30 [, [ L+ 2D M? 3Dy'a® + M2y

P=ﬁ[2“ i B dx+j 2 dx_{_T*}]'

..(3.51)

Solutions for the Case When M = 2

The above analysis is restricted to the case when M £ 0, for the solutions (3.21)
to (3.24) become indeterminate when M = 2. However for M = 2, solutions can be
obtained by appealing to eqns. (3.18) to (3.20) and the solutions are of the form
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3
=2 w-w (3.52)
R g‘r’ - 2 2 39 g — 22 — 1) .(3.53)
2 3
R 5% = 4a3Qrz . (3.54)
RP = — 22 (0 — 2 — 1), (3.55)

Expressing § and « in terms of D

0 = arc tan?hZ and « = arc tan D
we have
_ 30Dh (arc tan D)2 — (arc tan (Dy/h))?
= = §(arc tan Db h® + D2yr ] +(3:36)
_ 30Dy (arc tan D)? — (arc tan (Dy/h))?
= (arc tan D)3 h? - D2y2 (337
o _ 3pD4

oy R (arctan D)®

[y {(arc tan (Dy/h))* — (arc tan D)%} — (h/D) arc tan (Dy/h)
(h2 + _DZyZ)Z ]

..(3.58)
o 30D3
dx = R(arctan D)3

% [# {(arc tan (Dy[h))* — (arc tan D)2 — }} — yD arc tan (Dy/h}]
(h2 + D2y2)2

...(3.59)

_ 3Q [arc tan (Dy/h)) _ (arc tan (Dy/h))*7]
b= 4 arctanD 3 (arc tan D)? ] -++(3.60)

If the above results are expanded in power series of D, the wall slope, then the
expressions for the velocity components and pressure gradients are given by

Uy = 2,? {1 ;’:} {1 — %5—2}’2} (3.61)

T (%_) ( - i_:) . (3.62)

o = 32 {1 _ 2Dy + Dz} ...(3.63)
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30D
% =— EQ,F (y/h) -(3.64)

v=Lom[1+0{3 - F Z1] . (369)
Comparison of Three Methods
The average pressure gradient across the channel is
h(x)
Ax = — }%x) [ L a. ..(3.66)
0

Ax is calculated in the neighbourhood of a given value of x with each of the methods
and the weight functions are compared. Ax is found to be

3Qa R
Ax — 2_%,135(13), when i =1,2,3, when M £ 2, o (2.67)

where Fi(D), i = 1, 2, 3 depends upon the method used. For M £ 2

M3 cosh M

3a (M cosh M — sinh M) | ...(3.68)

FI(D) =

1 [ 4a°D3 M:D?
FD) = & 3(1"+ o5t 6oy HP =1 tau—ID}]
..(3.69)
FyD) = [az(l — 3oy + 200, (3.70)

Three weight functions are numerically evaluated for values of M equal to 0 and 1
and are represented Figs. 3 and 4.
4, Frow THROUGH A CHANNEL WITH A SMOOTH CONSTRICTION

The above theory is applied to the problem of flow through a channel with
smooth, axi-symmetric constriction (Fig. 5) defined in non-dimensional variables, by

81,. TX
h(_x) = Ho —_ “2— (1 -+ cos —x—o') (41)
where 8, is the maximum projection of the constriction and Hj is the half width of
the channel,
The third approximation method is valid, when the condition (3.42) is
satisfied, viz,
| Dr =W |<K1

for some positive integer n.
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Fie. 4. Comparison of weight functions.

The expression for D, from (4.1), is

D = K (x)

ﬂ'8m .

=5

2x,

X

Xo

...(42)

We note that the condition | D | € 1 will be satisfied if the following non-

dimensional quantities take the values
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L =40
=10

Sm = 0.32H,

Hy = 10.

For these values | D | has a maximum value of 0.5 at x = x,/2 and satisfies the condi-
tion (3.42) for all positive values of n.

J

L] ’ b
hix) T
___ o
&m

l—xo — |

L —=

[

Fig. 5. Idealized geometry for stenosis.

To determine the effect of the magnetic field on the flow characteristics of the
stenosis, it is essential to determine the resistance to flow and the shear stress at the
wall, The resistance to flow denoted by R.F is defined as :

average pressure drop across the channel 4.3)

RF. = flux i in the direction of flow

To determine R.F. the average pressure drop across the channel and the flux in the
direction of flow are to be known. The non-dimensional average pressure drop across
the channel is calculated from the expression

+h(x) L 9P
1 :
(44
P, P'—ZhL I Iax dx dy. 4.4)
—h(x)0

Using (3.48) and integrating over the interval —h to +-h (4.4) takes the form

2431 — 3D%) + %mw]
P= I - o dx. (4.5
1]
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Equation (4.5) can be written in the form

2
P= }31-% d, + 1) .(4.6)

where

x

j [2a(1 — §D2) + 30

The non-dimensional momentum flux in the horizontal direction has the form
h
M= Ih u dy ..(4.7)

and after performing the indicated integration, simplifies to,

9 Ofk
== th— .(4.8)
where
4,

LN

@
N

'S
N

o
—

2 2

4=(1+%r)
2 12
A=-2(1 -Dz) 1 ——D2)
2 T3 ( + 8 . (4.9)
|

A3=(1+352~D2)2+4m(1+%02)
A4=—4D2(I+%D2)
Ay = 4D1, J

The expression for Resistance to Flow, using (4.6) and (4.8), now becomes

KL ...(4.10)

Analytical evaluation of the integral I, is complicated and hence it is evaluated
numerically on a computer. The R.F. was calculated for different values of Hartmann
number, M, and the behaviour of R.F. with M is presented in Fig. 6. From this it
is clear that the R.F. decreases with the increase in the values of M and the decrease
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3-0r

2.0~

-~ Q2RF

0 | N 1 N 1 . J
0 0-5 1.0 1.5 0

— M

F1c. 6. Resistance force versus Hartmann number

is significant (nearly 50 per cent for M = 1.75). This is in conformity with our
discussion in section 1.

The resistance given by (4.10) is computed using momentum flux. However in
bio-mechanical problems, for example, in the study of blood rheology in arterial
flows, the resistance to flow is normally defined (Lightfoot 1974) as

____pressure drop _3al, + 1)
RF. = SClumetric flow rate — Ohl ~(411)
The resistance to flow given by (4.11) is numerically computed for different values of
M and the results are compared with those of (4.10). We observe that the overall
nature of the resistance to flow with the magnetic field is the same, whether we use
(4.10) or (4.11) except for a slight change in the magnitude.

The non-dimensional shear stress at the wall is next calculated using the
expression

_ 1 (ou  du
('ny),,_;. = R (ay + ax )v—h

3ad

= g1 —310) ..(4.12)

for different values of M and the results are presented in Tables I and H. It is seen
that the shear stress also exibits a decreasing tendency with increase in M but the
decrease is not as significant as R.F,
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TABLE I
D=0,x=0
3a
M a h T = 2?
0.5 0.9375 0.68 3.0412
075 0.9270 0.68 3.0070
1.0 0.8660 0.68 2.8092
1.5 0.6614 0.68 2.1455
TasLE I
= = Yo
D =05 x= D)
M h 3a .
0.5 0.9375 0.84 0.44842
0.75 0.9270 0.84 0.44349
1.0 0.8660 0.84 0.41220
1.5 0.6614 0.84 0.31560

5. CONCLUSIONS

Three approximate methods have been presented for solving the problem of flow
through a channel of varying gap in the presence of a magnetic field. These methods
provide an alternate approach to the conventional method of solving a two dimen-
sional problem by conformal mapping. The weight functions are calculated with
each of the methods for two values of M(M = 0 and 1) and are shown in Figs. 3
and 4. It is seen that the weight functions Fo(D) and Fy(D) are influenced by the
magnetic field and have values smaller than those in the absence of a magnetic field.
To study the impact of magnetic field on stenosis an idealized stenosis geometry is
considered and the flow characteristics such as resistance to flow and shear stress
are determined. The overall effect of magnetic field as seen from Fig. 6 and
Tables I and II is to decrease the resistance to flow and shear stress at the wall and
thus reduce the abnormalities due to irregular boundaries.
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