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The effects of viscosity stratification and surface
tension on Rayleigh-Taylor (RT) instability in a fi-
nite thickness layer of an incompressible viscous
fluid bounded above by a denser fluid and below by
a rigid impermeable surface have been studied using
linear stability analysis. A relation for the RT-
instability growth rate is found by calculating the
eigenvalues of the stability equation. It is shown that
the shape of the dispersion curve is controlled by the
ratio of surface tension to the stress gradient, with
the layer thickness and the viscosity stratification
affecting the rate of growth of the instability. The
growth rate, infact, is shown to increase with in-
crease in viscosity stratification and the thickness of
the fluid layer. The results are shown to revert to
those of the case of a viscous fluid layer in the ab-
sence of viscosity stratification.

THE study of instability of the interfaces is of great im-
portance in view of its fundamental role in understand-
ing of the control and exploitation of many of the basic
physical, chemical and biological process. The interface
in some of these instances occurs due to the superposi-
tion of two fluids of different densities. The instability
of the interface occurring under gravity when a heavier
fluid i1s supported by a lighter one or equivalently when
a lighter fluid i1s accelerated towards the heavier fluid 1s
widely known as the Rayleigh-Taylor (RT) instability'.
These instabilities have been the subject of considerable
interest in recent years mainly because of their frequent
encounter in nature and in many practical applica-
tions®>. They also occur in ocean tides, the accelerated
interstellar clouds driven by new born stars, supernova
events, sinking of slabs of tectonic plates, etc. The
analysis of motion induced by the instability of the
highly viscous layers in the earth’s interior indeed pro-
vide rational models for the prediction of continental
drifts and the volcanic activities. These instabilities are
further known to occur in thin aqueous layers of bio-
logical fluids which form an integral part of the various
organs and their stability plays an important role in the
organ functions. In technological contexts, the RT-
instabilities occur in the inertial confinement fusion
(ICF) which is based on the implosion of thin deuterium
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(D)-tritium (T) targets driven by laser or ion beams.
The target during the implosion process could be hydro-
dynamically unstable subject to these instabilities, which
destroy the symmetry of compression of the D-T fuel
preventing the high density and temperature required for
thermonuclear burning with high gain in energy. These
instabilities are considered responsible, in material
processing applications, for grain boundary failure in
metals and cracking of cross-linked polymers. The
polymer failure, infact, has been shown to occur often
by the formation and growth of planar defects known as
crazes; both craze tip advance and craze widening are
attributed to these instabilities. These instabilities are
responsible for development of non-uniformities that
lead to streaked and mottled layers in the growth of thin
films in a variety of device fabrication applications.
Thus there is evidently a considerable current interest
in studying the dynamics of fluid layers from both fun-
damental and technological perspectives. On the funda-
mental level the study of layer dynamics concerns a
more general problem of evolution of active and passive
interfaces; the issues of interest being the formation of
ordered interfacial structures and the long time asymp-
totic behaviour of the deformed interfaces. The under-
standing and controlling of the deformation of viscous
layers, tfrom the technological point of view, provides
useful information for suppressing or eliminating these
hydrodynamic instabilities. It is well known that various
physical factors such as surface tension, viscosity, den-
sity gradients and shear rates in flowing films greatly
influence the development of RT-instability. Brown® has
recently investigated the linear instability of a highly
viscous fluid layer of finite thickness and shown that
such a film if stagnant would rupture as a consequence
of this instability. Further, Newhouse and Pozrikidis’
have studied the nonlinear viscous instability of a liquid
layer as a function of surface tension and the ratio of
viscosities of the two fluids and have shown that for
moderate surface tension, the instability of the layer
leads to the formation of periodic array of viscous
plumes which penetrate into the overlaying fluid layers.
However, the combined effect of surface tension and
viscosity variation on RT-instability has not been given
much attention in spite of 1ts importance in many practi-
cal situations,

The motivation of the present study is to extend the
work of Brown® to include the effect of viscosity strati-
fication to know its influence on the RT-instability In a
thin layer of an incompressible viscous fluid confined
above by an interface with a denser fluid and below by a
rigid impermeable boundary by using linear perturbation
analysis. The formalism developed in the present work
is primarily to clucidate the influence of the combined
effects of stress gradient, surface tension, viscosity
stratification and the layer thickness on the RT-
instability. We found that the viscosity stratification
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Figure 1. Physical configuration.

affects only the nature of the growth of the inst-
ability and does not change the shape of the dispersion

curve.
We consider the case of two incompressible fluids

with equal viscosities ug = g, = ¢ and densities pr and
pr, where suffixes F and L refer to lower fluid (film) and
upper denser fluid respectively as shown in Figure 1.
The interface is characterized by surface tension ¥ and is
governed by the layer thickness A and the interface ele-
vation n. The flow within the viscous layer and the
overlying fluid in the absence of any external force is
governed by the following equations.

pou/dt + pui(du/dx;) =~ dp/ox; + 9/9dx;
{u(oui/ox; + aujlaxi)} (1)
and
du/dx; = 0, (2)

where p is fluid density, i;, u; are velocity components,
p the pressure and w the coefficient of viscosity. The
following assumptions® enabled us to use the creeping
flow approximation:

(1) The film thickness £, 1s much smaller than the
thickness H, of the denser fluid above the film.
That 1s

h<<H. (3)

(ii) The Strouhal number &, which is a measure of the
local acceleration to inertial acceleration in equa-
tion (1) 1s small. That is

L
E=——< 1 4
7 (4)

Here U = v/L is the characteristic velocity, v = u/ps
is the kinematic viscosity, L = fy7d is the charac-

teristic length, 0 = g(pL — pf), ¥ is the surface ten-
sion, T =uy/h>6® is the characteristic time scale.
This assumption enabled us to neglect local accel-
eration term (du,;/dt) in eq. (2).
(ii1) We consider high viscous fluid so that inertial ac-
~ celeration term in eq. (2) can be neglected in com-
parison with viscous term,
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(tv) The interface elevation 7 is assumed to be small
compared with the film thickness A. That is,

n/h << 1. (3)

These assumptions enabled us to use the creeping flow
approximations which allow us to neglect certain terms
in the perturbation problem in order to arrive at closed
form asymptotic equation for the interface evolution. In
other words, we confine to the conditions of creeping
flow 1in two dimensions and hence ignore the inertial
terms. We superimpose on the bastc static state of con-
stant pressure a small symmetrical perturbation in both
the velocity and pressure fields to obtain after lineariz-
ing, the following equations for the perturbed fields.

: Pu Pu) Ja(o
2 - (—l’;—+§-%]+ *u[ ”+6U), (6)
dx ox° oy dy \ dy oOx

2 2
EE.: az.p.az +2 iﬁ_ _E:l’__ti . (7)
oy 0y~ ox oy J\ 0y
-a£+-a—v—=0, (8)
ox oy

where u and v are the velocity components in x and y
directions respectively and 7 is the mean viscosity
which is a function of y only. The problem of concern is
the growth rate of a small periodic perturbation of the
interface. We therefore assume a variation in the veloc-
ity components, pressure and the interface elevation
along x-axis to be of the form

[u, v, p, 1) =[u(y), v(3), p(>), n(y)] exp (iax + nt),
- ' (9)

where a is the wave number and n, the growth rate, The
eqs (3)-(9) in view of eq. (6) transform into the follow-
ing equations

iap = p(-a’u + D’u) + D@ (Du + iav), (10)
Dp = G (—a*v + Dv) + 2D Dy, (11)
iau + Dv =0, (12)

where D = d/dy. We further consider a realistic mean
viscosity stratification because it pertains to stable
stratification, to be given by

7 = po exp (- By), (13)

where u, is a constant characterizing uniform viscosity
and B the viscosity stratification factor. The elimination
of pressure from eqs (10) and (11) and subsequent use
of eqs (12) and (13) gives the following governing
equation

D* - 28D — (2a* - BH)D’v + 2a°ADv
+ (B + Yy =0. (14)
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The foregoing equations have to be solved subject to
the boundary and the interfacial conditions. The validity
of the no-slip condition at the rigid boundary requires
that not only normal component but also the horizontal
component of velocity vanish on the bounding surface.
This requirement in view of the mass conservation
equation is ensured by the following conditions

v = Dv = 0 on the rigid surface at y = 0. (15)

The requirement of vanishing of the tangential stress at
the free interface 1s

ULy,

dy 0dx

This, using eq. (9), becomes Du + iav = 0.
The required surface condition, from this using
= (i/a)Dv obtained from eq. (12), 1s

D’y + a’v = O on the interface aty = A. (16)

However, the normal stress at the interface i1s discon-
tinuous and it is compensated by the surface tension.
Therefore the normal stress 1s determined by the com-
bined effects of stress gradient, surtace tension and
shear on the interface and is given by

yo°
ax2

p=-0n- +7 Dvaty=h. (17)
Further the kinematic condition governing the Interface
1S given by

Ez+u§i+vD17=0 at y=A.

(18)
dat 0x

We consider the evolution of the interface which is de-
scribed by the following interface equation

The pressure balance eq. (17) in view of eq. (9) 1s given
by

p=-—01+ azyﬂ + 1 Dv. (20)

Further, the kinematic condition expressed by eq. (18)
in view of eq. (9) and the interface eq. (19) after line-
arizing yields

V= d—” aty = h.
ot
This using eq. (9) becomes
(21)

The elimination of pressure from eqs (10) and (20) and
subsequent use of egqs (10) and (18) lead to the follow-
ing dispersion relation

n = (@ ue)v exp (BRI — a’y)(2a’ Do - Do),

n=vln.

(22)
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The growth rate n in the absence of the viscosity
stratification (4 = 0) may be seen to yield the result of
that of the case of a fluid layer of constant viscosity
considered by Brown®. We see that the shape of the en-
tire dispersion curve is controlled by the ratio 8/y, with
the viscosity stratification factor 8 and the layer thick-
ness h affecting only the rate of growth of the instabil-
ity.

The roots 4; (i = 1 to 4) of the characteristic equation

AV =280 — 2@t - A + 2a%B%A + X B+ a®) = 0
(23)

of the differential equation (14) are

A= (BFAD 5 de =(BFAy)..., (24)
where A, = (8% + 4a(a + iD]'?2, A, = [B + da (a - B2,
We see that for the entire range of values of ¢ and
relevant to the present problem, eq. (24) provides a pair
of complex and distinct roots except at a = 0. The solu-
tion of eq. (14) in this context satisfying the boundary
conditions expressed in eqs (15) and (16) may be given

by

v = C[{cos (byy) + A sin(byy) }exp (aiy)

— {cos(byy) + B sin(b,y)} exp(a,y)], (25)

where A, B and C are constants and a;’s and b;’s are the
real and imaginary parts of the roots of eq. (24) and
we have further, A=A/A, and B =A(b)/b)-
(a; — az)/b,, where A, and A, are given by

Al = [{(2&2 —a)a; - bf + az}cos(bl h)

+{((a, - a))/ B)(af —b +a®)=2ab, |

sin(b;h)] exp(a h) + [{(b% —aj - a*)cosbyh

+2a,b, sin bzh]} exp(a,h) . (26)

Ay = [{bz (b —al —a*)/ b }Sin(b;h) ~-2a,b, cos(b]l:)]
exp(a h)+ [(::1'22 — b7 + a®)sin(b,h)+2a:b, cos(bgh)]

exp(azh). (27)

We employ the perturbation wavelength given by
A¥ = (w/8)Y*  and the growth rate given by
n* = nuy/(0y)'’* as characteristic scales associated with
the problem to render the equations dimensionless for
stability analysis. In view of these parameters and the
¢q. (25), the dimensionless dispersion relation atter
omitting the asterisks for simplicity is given by

n=[(1 - aal{a®Q/Qa’R - )| expBh), (28)

AR



RESEARCH COMMUNICATIONS

1.5 i
.
7|
nX 107 |
0.5
0
15 — —
b ! $-00
------- 10.0 .
— i = :-_52:0 /’ ™~
—— - — 1000 ) \\
10 f ,
.r/ e T i‘
nX107 | ' s T\
5 t
0
x
c B -
600 _ HOE I‘/’/ \‘
Bee). O s \
------- 0.0
ke ) \
— o= Be1000 ;
/ \
400 ., \
nX107 | ,../ \
/ o
200 | ! - S
/T N
’ f 1
/. \
0

0 02 04 ;0.51 08 1

Figure 2g—c. A few typical ;;lots of the growth rate n against the
wave number a.

where

0 = C[{cos(b,h) + B sin(b,h)}
exp(a1h) — {cos(b:h) + A sin(b,h}} explash)]. (29)
R = C[[(dj + B:b1) GGS(blh) + (Bﬂ] -— bl) Slﬂ(b1h)’}
exp(a;h) ~ {(ay + Aby)cosh;h + (Aay — by)

sin(bah)} exp(azh)). (30)
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S = c[{(af‘ — Bb3 +3a,by(Ba, — b)) cos(byh)

+(Ba} + b - 3aby(ay + Bby)sin(byh) }explaih)

~{(a3 — A8 +3ab,(Aa, — by))cos(byh)
+Aas + b3 - 3a,b*(a, + Ab,))

sin(bah) fexp(ash)]. (31)

A few typical plots of the growth rate n against the
wave number a for a range of viscosity stratification
factor 8 and the layer thickness 4 of the film are given in
Figure 2.

It may be seen from Figure 2 that the whole dispersion
curve ts controlled by the ratio of stress gradient to sur-
face tension, d/y, with the viscosity stratification factor
B and the layer thickness A just affecting the nature of
the growth of the instability. Eq. (28) reveals that the
characteristic length L is of the order of critical wave-
length and the maximum growth rate occurs at a wave-
length of the same order as L. We note that our results
on the growth rate in the absence of viscosity stratifica-
tton (B = 0) revert to the case of Brown'. When 8 # 0,
the frequency of oscillations of RT instability tend to
amplify with increasing 8 in proportion to exp (§h),
where the viscosity stratification 8 = (~1/ @) (d#/dy) is
the reciprocal of the film thickness A. This variation can
readily be interpreted physically in terms of energy flux
of oscillations, since 1t just compensates for the upward
decrease of viscosity of thin film 1n proportion to
exp (—8y) tn maintaining the flux constant. It may be
observed from the plots given in Figure 2 that for given
viscosity stratification factor 8§ the RT-instability in-
creases with increase 1n the layer thickness 4. This be-
haviour of the instability growth rate may be because at
higher values of the stratification factor 8, the fluid vis-
cosity exp(—8y) is very small at the interface and hence
due to the reduced damping of the disturbance the sur-
face becomes increasingly unstable. Initially for a < 0.7,
buoyancy dominates and every point of the interface
moves faster with a velocity proportional to the eleva-
tion 5 of that point and elevation grows. For a > 0.7 the
surface tension action which was negligible imtially be-
comes enhanced and elevations are reduced, the steepen-
ing process is slowed down. We note that though the
values of 8 and & help in affecting the nature of the RT-
instability growth rate, no complete change in nature of
instability is possible. It is evident that although the pre-
sent work is limited to the linear analysis, it throws
much light on the size scale and behaviour of RT-
instabilities in thin viscous layers relevant in numerous

problems of natural and practical applications discussed
earlier.
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