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Abstract

The effect of non-uniform temperature gradient and a uniform magnetic
field on the onset of magneto-convection driven by surface tension and
buoyancy force in a horizonaal layer of Boussinesq fluid is studied by
means of linear stability analysis. The upper boundary is assumed to be
free and adiabatic and the lower boundary is rigid and adiabatic.‘fA
Galerkin method is used to obtain the eigenvalues. A mechanism for
suppressing or augmenting convection is discussed in detail. ’It is found
that as the magnetic field increases the coupling between the two agencies
causing instability becomes weaker even in the preéence of non~uniform
temperature gradient and a discontinuous change in cell size occurs at
a certain value of the Rayleigh number as a result of sudden change over
from convection dominated by one of the two agencies to that dominated
by the other. The results obtained here are compared with the existing
ones and found that even a single term CGalerkin expansion gives reasonable

results with minimum of mathematics.
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1. INTRODUCTION

The mechanism of controlling convection in a fluid, generated
either by buoyancy force or by the variation in suface tension with
temperature or by both, has recently assumed importance in material
Processing in space bacause of its application to the possibility of
producing‘various new materials. The range of possibilities extends
from producing large crystals of uniform properties to manufacturing
materials with unique properties. The Lorentz force due to electro-
magnetic field, coriolis force dur to rotation and non-uniform temperature
gradient due to the transient heating or cooling at the boundaries, which
are ineffective at the terrestrial environment, become effective in the
mirogravity environment. Such forces may be used to suppress or augment

v

the convection (see Rudraiah and Chandna [1D.

The effect of non-uniform temperature gradient on the convection
driven by surface-tension alone in the presence of rotation hasrbeen
investigated by Rudraiah [2] and Friedrich and Rudraiah [3]. They have
shown that suitable non-uniform temperature gradient arising due to
sudden heating or cooling at the boundaries and the coriolis force
suppress Marangoni convection. Recently Rudraiah, Rumachandramurthy and
Chandna [4] have shown that the external constraint of magnetic field
suppresses Marangoni convection driven by surface-tension. For material
processing in the laboratory the convection induced by buoyancy force
in addition to surface-tension is important. It may also be usceful in
the design of liquid containing systems, such as the coolant circulation
systems and the heat pipes. Nield [5] has examined the effect of magnetic

field on convection induced by buoyancy and surface-tension under the



assumption of uniform temperature gradient. However, the non~-uniform
temperature gradient caused by rapid heating (see Sutton [6]) and a
suitable strength of magnetic field may be important in inhibiting or

augmenting convection in the applications cited above.

The object of this paper is to show that a suitable non-uniform
temperature gradient and a transverse magnetic field suppress convection
driven by buoyancy and surface-tension by considering infinitesimal
perturbations. The non-uniform temperature gradient caused by transient
heating or cooling at the boundaries is a function of position and time.
In the present analysis, we introduce a simplification in the form of a
quasi-static approximation (see Currie [ 7]) which consists of freezing
the temperature distribution at a given instant of time. This hypothesis
is sufficient as we are interested only in ‘finding the conditions for the
marginal stability. It is known that, depending upon the strength of
the magnetic field (Chandrasekhar [8]) and the ratio of diffusivities
(Rudraiah and Shivakumar [9]) both marginal and overstable convéctions
are possible. 1In the present paper, however, we consider only the marginal
state. In the absence of magnetic field, Lebon and Cloot [10] have
considered the effect of non-uniform temperature gradient on convection
using a quasi-variational technique with the help of Rayleigh-Ritz's method.,
This method requires elaborate numerical computations. Our aim here {is
to find the eigenvalues analytically by a method which simplifies the
numerical computations considerably while retaining the essential feature
of a non-uniform temperature gradient. For this purpose the Galerkin
method (see Finlayson [11]) appears to be particularly well suited.
Comparison of our results with those of Lebon and Cloot in the absence of

Magnetic field and those of Nield [5] for uniform temperature gradient in



the presence of magnetic field reveals that a single-term Galerkin
expansion procedure used here gives reasonable results with minimum

of mathematics.

2. FORMULATION OF THE PROBLEM

We consider the infinite horizontal layer of an electrically
conducting Boussinesq fluid of depth d permeated by a uniform vertical
magnetic field. It is bounded below by a rigid electrically and thermally
perfect conducting wall and bounded above by a free surface. This free
surface is adjacent to an electrically non-conducting medium and subject
to a constant heat flux (ie. adiabatic). We assume a temperature drop
AT acting between the upper and lower boundaries. The interface has a
surface-tension 0 which, following Pearson [12],can be assumed to vary

linearly with temperature according to the formulaec

g=20 -UlAT. (n

0
The applied uniform magnetic field HO is in the vertical diréction.
Using the cartesian coordinate system (x,y,z) with the origin in the
lower boundary, Ox and Oy in it while Oz normal to it, the

governing equations are
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where E is the velocity, p 1is the density, Pg 1s the density
at reference temperature TO » P 1s the pressure, v 1is the kinematic
viscosity, H is the magnetic field, Y 4is the magnetic permeability,

Vo= 1 is the magnetic viscosity, § dis the electrical conductivity,

m s
T 1is the temperature, g is the acceleration due to gravity, k is
the thermal diffusivity and o is the coefficient of thermal expansion,

In the quiescent state

N 5 ~ d dTO
q=0, H= Hok and f(z) = - — . —
AT  dr

~

where k 1is the unit vector in the z-direction and f(z) is a non-

dimensional temperature gradient satisfying

1

/f(z)dz =1 .

0

Suppose that the initial state is slightly disturbed. The .
linearized equations of motion allow the solution for the perturbed
field quantities in the form

(a function of z) . Exp{i(Zxtmy) + wt}

where £ and m are the horizontal wave numbers, and w is the growth
rate. Using it in the linearized version of the equations (2)-(5) and
eliminating the x and vy components of the velocity and the induced

magnetic field and making the resulting equations dimensionless by the
2 ;

. , k

introduction of 4, §~5 -, HO and AT as the units of length, time,

v d

velocity, magnetic field and temperature scales respectively, we obtain
2.2

ot 25
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P it = (p%-a®)n + X pu (8)
m
AY
m
P T - (D°-a))T = £(2)W (9
where D E‘g~ s a2 = 22 + m2 , Pr =Y is the Prandtl number,
dz k
v a ’I‘d3
Pm = -— 1is the magnetic Prandtl number, R = is the Rayleigh
Y Vk
m

number, and W(z), H(z) and T(z) being the amplitudes of the
z-components of the velocity, magnetic field and of the temperature
distribution respectively. The marginal state, W = 0 , is assumed to
be valid for particular values of P. and a magnetic parameter. In

that case equations (7)-(9) are considerably simplified. From these

equations eliminating H , we obtain equations in W and T in the

form )
(Dz—az)zw = a’rr - QD2w N ¢ L0))
2
(*-aP)T = —£(z)w (11)
qudz
where Q = » 1s the Chandrasekhar number.
vaVm

In seeking the solution of these equations, we must specify certain
boundary conditions on velocity and temperature. We note that the
boundary conditions on the magnetic field do not affect the stability
condition. We assume that the lower boundary is rigid and isothermal

so that

W=Di=0, T=0 at z=0 . (12)



The upper boundary is assumed to be free and adiabatic, and Pearson | 12]
conditions are assumed to be valid here. This is true only when the
deflection of the free surface by the transverse magnetic field is

negligibly small. Under this assumption the required boundary conditions

are
W = D2W + aZMT =DI =0 at z =1, (13)
0.ATd 3
where M = is the Marangoni number and GT = [ ,
pO\)k oT T=T

0 being the surface-tension.

3. CONDITION FOR THE ONSET OF CONVECTION

Multiplication of equation (10) by W , of equation (11) by T ,
integration of the resulting equations with'respect to z from 0O ¢to

1 , using the boundary conditions(12) and (13) and writing W = Awl ,

T = BTl where A and B are constants and Wl and Tl are the trial

functions, finally yeilds the following eigenvalue equation

4
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' 2
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(14)

where the angle bracket <...> denotes the integration with respect to

z from 0 to 1.
We select the trail functions

2
W= 22(1-2%) , T =a2(1-% (15)
2



which satisfy all the boundary conditions except the one given by
D2W + azMT =0 at z =1, (16)
but the residual from this is included in a residual from the

differential equations. Substituting equation (15) into equation (14),

we get

M = {8x” + 264x + (5292+132Q) }(5+2x) _ _ 23

EAN

<4725x%<f(z)WT> 420

where x = a

. .. 2
For any given f(z), M attains its minimum value at X, = a_,

X, being the root of the cubic equation
3 2
x° + 17.75x" - (826.875+20.625Q) = 0 . (17)

The variation of X, with<vQ is computed'for different vlaues of Q
and the results are tabulated in the Table 1. From this it is clear
that, the critical wave number increases with increasing Q and hence
the effect of magnetic field is to contract the convection cells. When
the layer of conducting fluid is heated from below, the nomyuniform
temperature gradient f(z) is not only non—negati;e but also decrcases
monotonically. We are interested in the temperature profile which
gives the maximum MC subject to f(z) > 0 . Fro this purpose, we
consider different temperature profiles and obtain the condition for
the onset of convection using the single term Galerkin expansion. To
test the validity of this expansion we first apply this procedure for
the uniform temperature gradient because in this case exact solutions

are available.



3.1 Linear basic temperature distribution

For uniform temperature gradient f(z) = 1 , let us denote the

Marangoni number by Ml so that equation (16) takes the form

M. = (8x2+264x+5292+132Q)(5+2x) _a.23 (18)
l FAN
4725%23
30 420
My attains its minimum value denoted by (Mc)l at x = x_ . We note

that in the absence of magnetic field Q = 0 , equation (18) gives

(Mc)l = 78.44 attained at a, = 2.4313 and R =0 which is close to

the known exact value 79.6 attained at a, = 1.99 . Thus we conclude
that the single term Galerkin expansion used here gives reasonable

results. (M)

1 is computed for different values of Q and R and

tabulated in the Table 1. ]

3.2 Piecewise linear profile for heating from below

For a piecewise basic linear temperature profile due to sudden

heating from below, the temperature gradient [7] is

M=

for 0 <z <e¢g

f(x) = (19)
0 for € < z <1

where € 1is a quasi-time-dependent thermal depth parameter ranging
from O to 1 . Then equation (16) becomes

2 .
3 +2 -+ 24132 +2
_ 3360(8x +264x+5292+132Q) (5+2x%) .23

M .
4725X(84083—33664—56O€5+24086) 420

The corresponding critical Morangoni number (MC)Z is obtained from above

when x = X, and (84083—33684—56O€5+24O€6) is maximum. We see that as
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€ dncreases from 0 to 1 (MC)2 decreases from « to a minimum value,

for example in case when R = 0 s Q=0 (MC)2 = 75,9596 , attained
at € = 0.9323 and then increases to (Mc)l at € =1 . (MC)2 is

computed for different values of Q and R and tabulated in table 1.

3.3 Piecewise linear profile for cooling from above

For a liquid layer cooling suddenly from above, the non-uniform

temperature gradient f(z) 4is of the form

0 for 0<z<1-¢

f(z) = 1 . » (20)
— for 1 - <3z <1
€

On substituting (20) into (16), we get

M = (8x2+264x+5292+l32Q)(5+2x) _ 23 ¢
3 »
%%%% X (16808-2800€2+84O€3+1344€4-112085+24086) 420

The corresponding critical Marangoni number is obtained by taking

X=X and maximizing

(1680c-2800e2 + 8406 *+1344¢*-1120e7+240¢%)
As € dincreases from 0 to 1 , (MC)3 decreases from ® to a
minimum value 47.7178 1in the case R=0,Q=0 when € = 0.4275

and then increases to (Mc)l at € =1 . This is close to the known

exact value 48 (see[107]).

Values of (MC)3 for different values of Q and R are tabulated

in table 1.
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3.4 Superposed fluid layer

For a superposition of two layers at different temperatures in which
the basic temperature drops suddenly by an amount AT at z = € but is
otherwise uniform, the temperature gradient is (see |[3]):

£f(z) = 8(z-¢€) (21)

)
where 6 1is the Dirac delta function and € 1is a time dependent thermal

depth parameter ranging from O to 1. 1In this case cquation (16) becomes

_ 2(Bx+264x+52924132Q) (5+2x) _ - 23

4725(2e3-¢%-274¢%) 420

M

4

4 5 6
Again the critical value is given by x = x, and when (2€3~€ =20 400)

is maximum. It is given by
(MC)4 = 37.1935

in the case of Q = 0 and R = 0, attained at ¢ = 0.7394 , which is

close to the numerical value given in [10].

(Mc)4 is computed for different valueg of Q‘ and R and tabulated
in table 1. As in sections 3.2 and 3.3, as € incrcases from 0 to 1
(Mc)4 first decreases from ®© to a minimum value at € = 0.7394  and
then increases again. From the table 1 we see that the system is more
unstable in the case of the superposed two-fluid lavers model bevcause
the jump in temperature occurs nearer the free surface. We also notice
that the increase in Q increases (Mc)4 “and hence the magnetic field
inhibits the onset of Marangoni convection by balancing a part of the

potential energy produced by the buoyancy force,
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3.5 Inverted parabolic temperature profile

From an inverted parabolic temperature profile generated in a layer
of conducting liquid through the Joule heating with an alternating
current [13], the temperature gradient is given by

f(z) = 2(1-2) (23)

Using it in equation (16), we obtain the critical Marangoni number

(MC)5 = 116.3981 in the absence of magnetic field and buoyancy force
attained at a, = 2.4313, (Mc)5 is computed for different values of

Q and R and the results are tabulated in Table 1. We see that the
inverted parabolic basic temperature profile is less destabilizing
compared to the other profiles discussed eariier. ~We also Qbservé that
an external constraint such as magnetic field makes the system more
stable. As such, this situation is more éuitable for material processing

in a microgravity environment simulated in the laboratory.

4. DISCUSSION AND CONCLUSIONS

The purpose of this paper has been to study the effect of magnetic
field and non-uniform temperature gradient on thé linear stability of a
horizontal layer of a conducting liquid at rest with the object of
knowing which temperature profile gives the maximum critical Marangoni
number for different values of the Rayleigh number. The single term
Galerkin procedure provides a quick method for achieving the ahove

objective,.

A comparison of the critical Marangoni numbers in table 1 shows that
the system is more unstable in the case of superposed two {luid model

because the jump of temperature occurs nearer the less restrictive free
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surface. It is also true in the case when the layer 1s cooled from

above,

In all the cases we find that the critical Marangoni number and
the wave number increase with the Chandrggekhar number Q having the

asymptotic behaviour ac - 2.74Ql/3; M+ 1.02Q in the case of linear

profile, M -+ 0.99Q in the case of plecewise linear profile for heating
from below and M = 0.6Q in the case of delta function profile when
R =+ 0 . This reveals that the magnetic field inhibits the onset of

convection in all the cases.

The critical Marangoni number computed for different values of ¢
and Q for a fixed value of R are shown In figure 1. It is scen
that as € increases from 0 to 1, MC decreases from infinity to a

minimum value and then increases again.

The magnetic field and invested parabolic basic temperature profile
increase Mc considerably making the system more stable than in other
cases. Therefore, we conclude that a suitable strength of magnetic
field and inverted parabolic basic temperature profile is favourable for
material processing in the laboratory with simulated microgravity
environment. In all the cases discussed above we find that the critical

Marangoni number M. decreases with the increase in Rayleigh number.

Our results, in the case of uniform temperature gradient are
compared in table 2 with those of Nield [5] obtained through elaborate
numerical procedure using Fourier series method. We note that the results

obtained here agree well with those of Nield [5] for small valuecs of
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Q (<10.0) . This shows that a single term Galerkin procedure used here

gives reasonable results with minimum of mathematics.
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Q ac R Axovw Aznvw Aznvu Aznv» Avam Avam
0 2.4313 0.0 78.4421 75.9596 47.7178 37.1935 116.3981 59,1531
100.0 72.9658 70.4834 42.2416 31.7173 110.9219 53.6769
300.0 62.0134 59.5310 31.2892 20.7650 99.9695 42,7245
500.0 51.0611 48.5786 20.3368 9.8126 89.0171 31.7721
679.18689 41,2485 38.7660 10.5242 0.0 79.2045 21.9595
871.3670 30.7244 28.2419 0.0 68.6803 11.4354
1080.1847 19.2891 16.8066 57.2451 0.0
1387.0872 2.4834 0.0 40.4385
1432.4203 0.0 37.9561
2125.5266 0.0
Hom 3.1894 0.0 211.8912 205.18545 128.8973 100.4689 314.4192 159.7868
500.0 184.5102 177.8045 101.5163 73.0879 287.0382 132.4058
1200.0 146,.1769 139.4712 63.1830 34.7556 248.,7049 94.0725
1834.6503 114.4223 104.7165 39.6647 0.0 213.9501 59.3179
2353.775 82.9940 76.2882 0.0 185.5220 30.8896
2917.8464 52.1044 45,3986 154.6324 0.0
3746 .8652 6.7057 0.0 109.2337
3869.3182 0.0 A 102.5280
5741.5690
HO» 7.3347 0.0 11021.996 10673.184 6704.8917 5226.1158 16355.22 8311.6696
500.0 10994.616 10645.804 6677.5108 5198.7349 16327.87 8284.2887
1800.0 10923.425 10574.613 6606.3203 5127.5444 16256.649 8213.0982
" 57800.0 8036.759 7507.947 -3539.6539 2060.878 13189.983 5146.4318
95433,428 5795.881 5447,069 1478.7759 0.0 11129.105 3085.5538
122437.16 4317.105 3968.293 0.0 9650. 329 1606.7781
151778.33 2710.327 2361.515 8043.551 0.0
194901.65 348,812 0.0 5682.036
201271.25 0.0 5333.224
298660.57 0.0
TABLE 1. Critical wave number a

o

for m»mmmﬂmSn values of Chandrasekhar's number Q and

critical Marangoni number Axan i=1 to 6 ,mon'awmmmwmun values of R and @ .



TABLE 2

q Present Analysis Nield [5]
M. ac Me 8c
0 78.4421 2.4313 79.607 1.99
2.5 82.0570 2.4642 85.971 2.05
12.5 96.2639 2.5817 110.08 2.22
25.0 113.5765 2.7052 138.09 2.39
50.0 147.1794 2.9026 189.87 2.63

A

Table 2. Comparison of critical Marangoni numbers

with those of Nield [5] for f(z) =1 .
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