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The problem of linear and nonlinear stability of a helical flow of a perfectly
conducting heterogeneous fluid between two coaxial cylinders in the presence
of an azimuthal magnetic field and a radial gravitational force is discussed.
In the case of linear stability the problem has been formulated by the normal
mode method and the analysis has been carried out by reducing the perturba-
tion equations to a Sturm-Liouville system,

It is found that a necessary condition for instabilityis that the algebraic
sum of hydrodynamic, magnetohydrodynamic and swirling Richardson
numbers must be less than one quarter somewhere in the fluid. A semi-circle
theorem similar to that of Howard is also obtained. 1In particular it is found
that when gravitational force balances the centrifugal force of the swirling
motion, the heterogeneous conducting fluid behaves as if it is homogeneous
as far as the condition for stability is concerned.

In the case of nonlinear stability the problem has been formulated by the
energy method and a universal stability estimate, pamely a stability limit for
motions subject to arbitrary nonlinear disturbances is obtained in terms of
Alfvén number and Richardson number, J, for the flow. In the case of
hydrodynamic flow by letting magnetic field tend to zero, it is found that the
motion is stable if J 2> 0,

1. INTRODUCTION

The investigation of heterogeneous conducting flows and their stability is of
imnortance in such varied fields as the study of sun spots, interstellar matter,
terrestrial magnetism and so on. A detailed survey of these applications has been
given by Elsasser (1955, 56). From a meteorological view point considerable interest
is attached to the study of stability of heterogeneous conducting fluid, to understand
the momentum transport by gravity waves (Rudraiah and Venkatachalappa
1972a, b, ¢, 1974).

The theory of momentum transport by gravity waves in a conducting fluid in
the presence of a magnetic field is an area of considerable interest in meteorologial,
oceanographic, geophysical and astrophysical problems. Additional interest in this
field stems from the attempt to simulate solar-wind geomagnetic interactions and
geo-hydromagnetic secular variations.. The momentum transport in a Boussinesq
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perfectly conducting fluid has been investigated by Rudraiah and Venkatachalappa
(1972a, b, ¢ and 1974) with velocity shear and by Acheson (1972) with magnetic
shear. Rudraiah and Venkatachalappa have shown that the waves are attenuated
by a factor exp {— 2x=(J — })} with J> }, where J is the algebraic sum of hydro-
dynamic and hydromagnetic Richardson numbers. This condition of J > } has to
be obtained by the stability analysis. Therefore in this paper we have attempted to
investigate the linear and non-linear stability of helical flow in a perfectly conducting
fluid; with the object that the results of such a study will be useful in the study of
momentum transport by gravity waves in geophysical and astrophysical problems.

The linear stability of heterogeneous conducting fluid without swirling has been
investigated recently by Rudraiah (1964, 1967, 1970) and Rudraiah et al. (1972).
It has been generalized, using Sturm-Liouville analysis, Synge’s proof of Rayleigh’s
point of inflexion and it has been shown that the circular magnetic field makes the
flow more stable. The linear stability of swirling flows in an incompressible
homogeneous perfectly conducting fluid with an axial current has been investigated
for axisymmetrical disturbances by Howard and Gupta (1972) and they found that
the circular magnetic field has an effect analogous to density stratification in a radial
gravitational field and the effective Richardson numbers of circular magnetic field and
swirl are additive. Swirling flows in channels as they relate to energy and mass separa-
tion devices, heat exchangers, and more recently to nuclear rocket engines have been
extensively studied. However, the same problem with heterogeneous fluids has not
been given much attention. The stability of heterogeneous swirling flows is of interest
in the design of gas turbines, blowers and other rotating machinery. Therefore,
in this paper we study the stability of heterogeneous perfectly conducting inviscid
swirling flows between concentric cylinders with a circular magnetic field and a radial
gravitational force. The analysis is divided into two parts,

The first is a development of normal mode technique which is the usual method
for the investigation of stability of many systems. It consists of solving the
linearized equations of motion for small symmetrical disturbances about the basic
flow. Using this linear stability analysis systematic proofs for the following theorems
are given :

(i) Extension of Miles (1961) proof of Taylor’s conjecture that Richardson
number must somewhere be less than one quarter if the flow is unstable to
magnetohydrodynamics.

(ii) A semi-circle theorem similar to that of Howard.

The second part deals with the discussion of non-linear stability of swirling
beterogeneous conducting fluids using the energy method which is a generalization
of the energy method used earlier by Serrin (1959) and Joseph (1966) for the case of
viscous incompressible thermo-convective flows. A universal stability estimate,
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namely a stability limit for motions subject to arbitrary nonlinear disturbances, is
obtained,

2. MATHEMATICAL FORMULATION OF THE LINEAR STABILITY ANALYSIS

Let (r, 08, z) be the cylindrical coordinates with z-axis as the common axis of
the cylinders. We assume axial symmetry, infinite conductivity and infinite length
of the cylinders. Under these approximations the basic equations to be solved in the
fluid are (in rationalized MKS units) :

Bq

at+(q V)Q~——VP+“—(VXH)><H—gr (D
V.qg=0 2)
a -

3‘;—+ @ -V)e= (3
V.H=0 (4)
81_1) - -

= V < (g x H) -(3)

where ;1) = u,r + ug + wz is the velocity, H= H,t + Heb + H.Zis the magnetic
field, p the pressure, p the density, » the magnetic permeability and g the gravitational
field, The applied magnetic field H, is in the azimuthal direction and is a function
of r only. The gravitational force acts in the radial direction and the acceleration due
to gravity g may be a function of r.

The differential equation which determines the stability to axisymmetric
disturbances of an heterogeneous inviscid conducting flow between the cylinders
r=a and r = b (b > a) with basic flow

g = Vb + Wy H= BB, o= o), p = polr), |
%?”_‘P"(ti_éri_g) mo=po+ L50, - (6)
A = H, ,\[ %, the Alfvén velocity, ]

is D [po(W — C¥ D,F] — [pokz(w C)® + wrD (ﬂr) — ooV — ®]F= 0

A7)
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where

d d 1
D=grDe=g +

the perturbation velocities are given by

u = ik(W — C) FeiKe—h o (8
y = — (D, V) Feilz—st) .(9)
w=— D, [(W — C) F]ei#tz—et) ...(10)
hg = — rD (I%L) F eik{z—ct) ..(11)

N = gB is the Brunt-Viissila frequency, @ = %D(pﬂﬂr?). The expression for u,

given by eqn. (8), can be obtained in the following way. The equation of continuity
(2) permits us to define the stream function ¢ for axisymmetrical flow in the form

Lo o

u=7 % w2 (12)

If % denotes the displacement of a line of constant density, then v is a function not
only of z and ¢ but also of r, and if higher order terms are neglected, we have

By U= e (13)
Since y = F(r) e'Hz=ot) ' ...(14)

we have
$=r(W—C)n, u=ik(W~ C)y

as stated in eqn. (8).

The general stability equation, from eqn. (7), using

F=ik UH,U=W—C | ,. ..(15)
is D[po U~ D, H] — [pokzuw-m + nUrD (PT"DW)
+ poUn {n(l —m @wy + £ p(fe ) - n - 3}]ﬂ 0.
Po r Po
.(16)

The boundary conditions on H are

H(a) = H(p) = 0. (7
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The stability equation in the form (16) is more useful than the form (7) in the sense
that the equation required for the three models namely those of Synge (1933), Miles
{1961) and Howard (1961) can easily be obtained taking n = 1, n =} and n =0
respectively in eqn. (15). The stability criteria will depend on the. eigenvalue C of
eqn. (16), If C is real, the steady motion is said to be neutrally stable, and if C is
complex the motion is stable or unstable according as C; < 0 or C; > 0 respectively.
Hence to discuss the stability of steady flow, we have to find the nature of C from
the stability eqn. (16). We try to discuss the linear stability using Miles’ and
Howard’s analysis.

3. LINEAR STABILITY ANALYSIS USING THE ENERGY EQUATION AND REYNOLD STRESS

We try to discuss the linear stability using energy and Reynolds stress
consideration following closely the analysis of Miles (1961). The required stability
equation may be obtained from the general stability eqn. (16) by settingn = }.
Before this, we obtain the energy balance equation from the following linearized
equations of motion,

Du vV | & 2uHhy  — on
o= 2] e (s -5 + T = (18
D
N uD*V:I — ph.D Hy = 0 | -(19)
Dw —
N uDW] — _agl’:' ...(20)
Dh, _
D o e
Dhe H, _ L).z
el u(DHo - —r-—) — ks (DV —)=0 (22)
Dk,
o — hDW =0 ...(23)
Dy + %‘; =0 | (24
Do - 25
Do 1 upgy =10 A +(25)

where the lowered-key letters denote the perturbation quantities over the basic flow.
The above eqns. (18) to (25) are obtained from eqns. (1) to (6) by the usual
process of perturbation and linearization. Equations (21) and (23) indicate that the
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magnetic lines of force which were originally circular remain circular. That is, there
is no distortion of the lines of force even after perturbing the field.

3.1. The Energy Equations

From eqns. (18) to (25), after making them dimensionless using the quantities :

t'=Ni, ¢ = qIU, & = nlo,U% 1" = r/d, po = pofpy -(26)
we obtain
b z,
I E _922 —.%l:u2 + 2 w? ;3n2(g— Z:i)—}—.S‘hi]raVrdz
az
b z,
- JI—T j J I:D*(n-u) + 9 (nw) + pouwDW] rdrdz ..(27)
a z
where

2
Ju = 1—%‘:— is the hydrodynamlc Richardson number, S = % is the Alfvén’s
P Do,

number, n = — ~——, § = — —¢
7 Dy, Po

Denoting the z-integrals in eqn. (27) by bar and assuming either that the
disturbance is periodic in z in which case the bar may be interpreted as implying an
average over the wave length or that r and u vanish at z = 4 oo in which case the

bar must be interpreted as implying integration from z = — oo to 2 = + oo, we
obtain
6E
— (R + ...(28
= &+ 28)
where
E = T + P + M, the total energy ...(29)
b - -
= % { po(#2 4 v* 4+ w?) r dr, the kinetic energy ...(30)
a
b
I Po ( 8 — ——) 2 r dr, the potential energy ...(3D)
a

S
It

3 [ uk® r dr, the magnetic energy ...(32)

B em o
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b
= — [ D(ru) rdr ...(33)
a
the rate at which work is done on the perturbation flow by the external pressure

(which is the algebraic sum of hydrodynamic pressure and magnetic pressure) at the
boundaries @ and b, and

R= {<DWradr : ...(34)

Rty

the rate at which energy is transferred from the mean flow to the perturbation flow
by the Reynolds stresses

T = — gy Uw, ...(35)

The above energy equation (28) says that the rate of gain of energy of a cylindrical
shell of fluid between r = 4 and r = b is equal to the flux of energy into the shell
across the two cylindrical surfaces. The other way of interpreting eqn, (28) is to
regard it as the gain of total energy under the action of pressure forces and Reynolds
stresses on the cylindrical surfaces.

3.2. Linear Stability Analysis Using Reynolds Stress Equation

Even though the energy relation (28) is true for any arbitrary linear disturbances,
in the subsequent part of this section we shall restrict ourselves to a specially periodic
disturbance of the form (8). Thus the stability equation, obtained from eqn. (16),
takingn = 1, is

42
‘7,\32’ + h(A) o =0 .(36)
where
,
o = ru, ) = j rdr .(37)
Po
a
1 O ()T
W) = ey [V 50— i (Fw )~ 7~ O
k(W — C)ZJ_
+ o -.(38)
The boundary conditions are
e(a) = ¢(b) = 0. .(39)

Equation (36) has a singularity at the critical point A = A, at which W =c¢. If
¢ is complex, then A, is a point in the complex r-plane. In a fluid of small viscosity,
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this point is replaced by a critical layer | A — X, | < & whose thickness 3 vanishes
with the viscosity.
The exponents of the singularity are

11+
where

v=(1 — 4L ...(40)
and J, is the total Richardson number evaluated at A = A. and is given by

Jo = Jm(As) + Ju(Ac) + Jr(A). ..(41)
In eqn. (41),

1 D(uH3/r®)

Jm = — o T(DWE the magnetic Richardson number
Jy = ———1!—, the hydrodynamic Richardson number
(OWy
Jp = — MSL——. the Swirling Richardson number.
po(DW)?

All are evaluated at A = A.. Assuming thatv is not an integer and that W(}) and
po(A) may be continued analytically into the complex neighbourhood of A = ., we
may apply the method of Frobenius to obtain two linearly independent solutions to
eqn. (36) in the form

9+(1) = (A — A)E2 @1 (D) (42)

where @, are analytic functions in the neighbourhood of A = A, having the form

D(p, D J.D? — Ac
@i =1+ [(1 + J2) ("l") W) _ "°]’\1 T ...(43)
The Wronskian of these solutions is
Wi, 9-) = 910_ — ‘P;. P-=—V ...(44)

If v is an integer, the solution _ degenerates and must be modified, except, in some
special conditions, to include a component proportional to ¢.(A) log (A ~ A;). The
only statically stable flow in this category is that for which J, = Jm(Ac) + Ja(Ac)
-+ Jr(As) = 0, (v = 1) and the solutions are essentially similar to that of axisymmetric
hydrodynamic flow. We note that the logarithmic component is proportional to the
discontinuity in Reynolds stress at A = ), as calculated in eqn. (58) below.
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Further, discussions of this section will be restricted to neutral wave motions
for which ¢; = 0. In this case we have the relations

oL () = ex(A) exp (in(l £ v) SA — A)), Jo < } ...(45)
= oz exp (=(1 £ ) SA —2)), Je > } ...(46)

li

where

v =iy

S=0forA> A

=4 1 fork(DW). 20, A < A
and the asterisks (*) denote the complex conjugate.
We remark that the singularity in ¢_ at the A = A, for 0 < J. < % (but not for

J. = 0) renders both the kinetic and potential energies of eqns. (30) and (31) infinite
whereas the magnetic energy of eqn. (32) remains finite for singular neutral modes.
Even though the magnetic energy is finite the energy E, which is the algebraic sum
of kinetic, potential and magnetic energy, will be infinite for singular neutral modes.
Here the energy becomes infinite mainly because of the non-dissipative nature of flow

and infinite energy could be removed by considering dissipative conducting flow
(Rudraiah and Venkatachalappa 1974).

Expressing 4 and w in terms of ¢ with the aid of eqns. (37), (8) and (10), and
substituting the resuits in eqn. (35) we obtain

k d:
=k (¢* E\‘E)‘ e2Cyt ..(47)
where
¢ = rUF

and the subscript / implies the imaginary part. From eqn. (47), using eqn. (37),
we have

0 kh hi -
a_} =—5 | ¢ |2 e2Cit — — _k_Povz ...(48)

where

d H?2
2w — ¢y (Ne— 4 (BH3
( C’(” da(ﬂ )“’) D(s,DW)

|W—C]J4 ———-————IW_Clz....(49)

hi = C;

The boundary conditions on « for spatially periodic wave motion is

Ty = 1y = 0. ) ...(50)
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If Ci; 0, then since Jt/9A cannot vanish identically, the Reynolds stress must have
an extremum and A; must change sign in (0, /) i.e., in (@, ). This result was proved
earlier by Rudraiah and Narayana (1967) and they used it to prove that complex
values of C must lie in one of the family of circles.

c ’.—Z(W ——§_~)c, WeLoaw—— & g
SR T DGowiny ) T 2 Dl bW

(51)

2
provided that D (@,lr)_lf) and £ = D ((”’TH") — N — 2) do not vanish simulta-

Po
neously, and hence that

C: < Max ...(52)

| |

Now the condition C; = 0 implies, using eqns. (48) and (49), that the Reynolds stress
must be constant except for the possible discontinuities at the critical point A = A..
No such discontinuities can exist for non-singular motion and hence the condition
(50) implies that + = 0. Only one such discontinuity is possible if W(2) is monotonic
in (0, /) and a necessary condition for singular neutral mode subject to condition (50)
is that this discontinuity vanish to yield - = 0. Thus we have the following theorem:

Theorem 1 — The Reynolds stress for any neutral oscillation vanishes identically
for monotonic W(a) if J. > 0.

If W(A) is not monotonic, then more than one critical layer may exist, but
the discontinuity in = may cancel to satisfy the condition (50). Now the expressions
for v can be expressed in simple form using the general solution of eqn. (36) in
the form

$A) = 49,(2) + BY_(A). ...(53)
Equation (47), using eqn. (53) and C; = 0, becomes

fi

T

K LVA G4 1 1 BIT W - BN, U+ ABY L .(5)

The first two terms in parenthesis of eqn. (54), because of eqns. (42), (45) and (46),
are real J, < }(v real), whereas the last two terms are complex conjugates for
Jo > } (v = Iy imaginary). In the former case we have

¢, g2 = (Y, §-)* emrtus

— (v + ¢+¢‘_)* e—im(1+v)S
= ve TS 4 ¢t

...(35)
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Equation (54) using eqn. (55), becomes

o= B ppremainsy, g, < 3, .(56)

Similarly we obtain

— I%Y_[ | 4| 2em14NS | B[ 2em(1-N8) ], > 1. . (57)

In hydrodynamic case J, = 0 when (p;), = 0 and ® =0 or g =0 and ® =0 or
N2 4@ =0.
However, in magnetohydrodynamic case J. = 0 when N> + N2 4 ® = 0. In this case

integrating eqn. (48), between A7 and AT we obtain

- D(p,DW) v?
(A7) — (]) = 7’2‘ Wl . ..(58)

We know that when W(X) is monotonic (DW £ 0) in (0, A) only a single critical layer
can exist and eqns. (53) to (57) remain valid throughout (0, /) for fixed 4 and B.
Now, from eqns, (56), using the condition (50), we obtain (4B*); = 0 and
AB* sin (nv) = 0, which imply, since v cannot be an integer, that either 4 = 0 or
B = 0. Hence we have the following theorem :

Theorem 2 — A singular neutral mode ¢ for which 0 < J, < 1 must be simply
proportional to either ¢, or ¢_. Similarly, from eqn. (57), using the condition (50)
we obtain 4 = 0, B = 0 and hence we have the following theorem :

Theorem 3 — Singular neutral modes cannot exist for monotonic W(a) if
JQ) > % in (0, I).

Applying Liouville’s method to eqn. (37), we obtain the asymptotic solutions
K12
oy ~ K12 (W — Cpr/2 exp[ + i s (W-—C—)dA]’ Yy = oo ...(59)
0

where
2
K=N+®—D (’Lf-’z—ﬂ)

KZ2
Y= T’

{ is the characteristic length, C, the characteristic velocity, N, the characteristic
value of K. Equation (59), using the conditions (50) becomes
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A

sin U (-g,l—'i% — 0, (y - o). ..(60)
0

If W(}) is monotonic in (0, /) we see that eqn. (60) can be satisfied only if C is real

and not in (w,, w,), corresponding to a non-singular neutral mode. If we regard, C

as a function of y and y, is the minimum value of y for which J(y) > % in (0, /),

then it follows that Ci(y) = 0 for y > y,. Hene we have the following theorem :

Theorem 4 — Necessary condition for instability of a heterogeneous conducting
flow between two rigid cylinders are DW £ 0 and

Julr) + Ju(r) + Jr(r) < § in (a, b).

3.3. The Eigenvalue Problem

In Section 3.1, we discussed the linear stability analysis using Reynolds stress
concept. In this section we try to discuss the same problem by regarding C as an
eigenvalue of equation :

D [pU2D H} + [K — p,U%?H = 0 ...(61)
where
U=W-C
(11 pr
K=N:+ — — £ pH, jry. ...(62)
Po Po

Equation (61), is obtained from eqn. (16) by setting n = 0.

If / is the characteristic length, C, is a characteristic velocity, and K, is a
characteristic measure of K, then from eqn. (61), using the boundary conditions (17),
we have the secular equation for an eigenvalue problem of the form :

A (—-CC » %5 Y, x) =0 | ...(63)
*
where

K,I?

o=kl y= i sJ,,,x=—£
*

K,

are dimensionless real parameters but C = C, + iC; may be complex. The wave
number is usually assumed to be positive. As in hydrodynamics, we define in magneto-
hydrodynamics also a neutral surface as a locus of eigenvalues for which C; = 0
in a (C;, «, y, x)-space. Such a surface will be a stability boundary if and only if
there exist continnous eigenvalues for which C; > 0.

- In the discussion of the stability boundary we assume following Miles (1961)
that W(r) and p,(r) are regular functions of r in (a, b) so that these functions may
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be continued analytically into a neighbourhood of (@, b) which includes the singular
point A = A, and that DW £ 0 and K(r) 4 0in this neighbourhood. This means
that even the end points (a, b) are included as possible singularities of the differential
eqn. (61). Even though these restrictions exclude some interesting problems but
they guarantee that C; is a continuous function of the remaining parameters of
eqn. (63) and hence that the trajectory of a complex eigenvalue must terminate on a
stability boundary.
From eqn. (42), it follows that

Fop e (W—C)loy ...{69)
is consequence of which the boundary conditions (39) imply that :

Theorem 5 — The phase velocity C cannot be equal to W, or W,.

Multiplying eqn. (61) by H*, the complex conjugate of H, integrating between
a and b and assuming ¢; > 0, we obtain
pr”Hl%dr:fpo] Ul2[|D,H|2+ k2| H|2rdr ...(65)
The real part of (65) is
jKPo | H | 2fd’=jpo [(W — C) — C]1[(DyH? + k* | H | ¥ r dr.

...(66)
From this we infer that ‘‘non-singular neutral modes cannot exist if K(r) < 0 in
(a, b)".

In hydrodynamics (Miles 1961) this result is valid only when B < 0, i.e, the
flow is basically unstable. However, in our analysis we note that even if § > 0, i.e.
the flow is basically stable, the above result is still valid as long as K < 0. This is
possible only when

)
N+l % D(H,/r):. ..(67)

Thus we have the following theorem :

Theorem 6 — Non-singular neutral modes cannot exist if
N+ 2 B ey
o Po
The imaginary part of (65) is
b
CGfW-—C)[|DH|*+ k2| H|%rdr=0 ...(68)
a

from which we infer that :
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Theorem 7 — The phase velocity C;, for any unstable modes (C; > 0), must lie
between the maximum and minimum value of W(r) in [a, b]. This implies

W, <C < W, if DW 30 in (a, b).
A direct corollary of Theorems 5 and 7, together with the restrictions guaranteeing
the continuity of Cj, is :
Theorem 8 — A stability boundary consists of singular neutral modes i.e,, modes
for which C; = 0 and W(r) = C, in (a, b).
4. GENERALIZATION OF HowaRrD’S MODEL TO MHD

The linear stability analysis discussed in section 3 is true only when DW £ 0
and that the velocity and the density profiles were analytic in a complex neighbour-
hood of the real flow domain. In this section, we try to give, following the analysis
of Howard (1961), a simple proof for instability and it does not require the above
assumptions. A semi-circle theorem similar to that of Howard and the growth rate are
also obtained.

4.1. Stability Analysis

The required stability equation, taking #» = } in egn. (16), is

2 __
D [p,UD, H] — p.,[kzv + W]H — %rD(fr"— DW )H =0
...(69)
where
2
Keneo—pn (2.
Multiplying eqn. (69) by the complex conjugate H* and integrating between a
and b, we obtain

EPOU[ID*H12+k2|H]2]rdr+ jbpoU*[?lI—(DW)Z—K]

b
,le Po 9
Xm“;’d"'*‘%J’D(TDW)lHI rdr = 0. ...(70)
a

The imaginary part of this equation C; > 0 is

ljpo[lD*H|2+ ke | H | rdr+ fpo[x._ (%’_V)z]:_g.%;,dmo,

«(71)
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This is impossible if K — (D_ZPI_/)Z is non-negative throughout so that a necessary
condition for instability is that

k- (2%) <o e
or J = Ju(r) + Jm(r) + Jo(r) < %- ...(73)

Note that in obtaining an instability condition in the form (73), rather than (72),
we have to becautious about the fact that W is not strictly monotonic (i.e., WD = 0).
Therefore, if one prefers the condition (73) rather than (72), we. should allow J to
approach oo when DW = 0.

4.2. Restrictions on the Complex Wave Velocity

The real and imaginary part of eqn. (65), that lead to the Theorems 6 and 7,
also place restrictions on the wave speed C, and the amplification factor. Defining
Q=|DH|®+ k*| H|* and assuming C; > 0, eqns. (66) and (68) can be written
respectively in the form :

b b b

S eoW2Qrdr =(C; + C%) §peQrdr+§ p,K|H|*rdr ...(74)
a a a

b b

JeoWQrdr = C, [ p,Qr dr. -.(75)
a a .

Suppose now that W, < W(r) < W,. Then from eqns. (74) and (75) we have
b
0> [ ar — myw — wy ordr = ¢t + C = (W, + W),
a
b b
W) Iperdr + j oK | H |2 rdr
a

a

b
174 w,)2 — 2
:[{Cr __1__21_._2} + C? ___ {W1 - Wz} :] [ 0,0 dr

a
b

+jpoK|H{2rdr.
a

If K > 0, this implies
Wy 4+ W, \? W, — W, \2
(C,—ﬁ——f) + CK(—%—‘ 5 ) : ..(76)

Thus we have the following theorem :
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Semi-circle theorem — The complex wave velocity ¢ for K> 0 and C; > 0
must lie inside the semi-circle in the upper-half plane which has the range of W for

diameter.

In the case of rigid body rotation ¥ = Qr and if the applied circular magnetic
field H, is due to the line current 7 in the axial direction such that H, = I/r, the
expression for K is
4ult

ré

K =pg — Q) + 4Q* + L)

0

The semi-circle theorem is valid in this case if g 3> Q2r, so that K > 0. However,
for g < Q2r; K > 0 provided
402 41*

g — Q¥ < — 4

5+ o ..(78)

In general in the case of rigid body rotation and with an axial current the semi-
circle theorem is valid only when eqn. (78) is satisfied.

4.3. The Growth Rate

The stability analysis discussed in section 3 limits the value of the total
Richardson number J. The semi-circle theorem discussed in section 4.2, restricts
the complex wave velocity which is accessible to unstable modes. It is of interest to
have a similar bound on the growth rate kc; possible for an unstable wave. A bound
of this type can be obtained from eqn, (71), by observing that

\Ult=|W—c|2>C. ..(79)

Thus, from eqn. (71), using eqn. (79), we have

b b
d 2
ksza | H;zrdrgz,l-z Max[(l—);z) —K:” oo | H|2rdr
a ! a
and so
k2CE K Max [ — (Ju + Ju + JR)] (DW)R. ...(80)

5. UNIVERSAL STABILITY OF HETEROGENEOUS CONDUCTING FLOWS

The linear stability of a heterogeneous conducting flow has been investigated,
using normal mode technique, in sections 3 and 4 of this paper. We found that the
necessary condition for instability is that the total Richardson number J which is the
algebraic sum of hydrodynamic, hydromagnetic and swirling Richardson numbers must
be less than one-quarter somewhere in the fluid. We observe that linear theory can only
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predict instability and is unable to provide directly a stability criteria which can be
tested experimentally. The non-linear theory provides directly stability criteria which
can easily be tested experimentally for there is no linear approximation in this theory.
Therefore, it is of great laboratory, meteorological and astrophysical interest to apply
the non-linear theory to the present problem.

The method used is the generalization of Serrin (1959) and Joseph (1965) in the
discussion of the stability of viscous incompressible homogeneous thermoconvective
flows, We try to establish a universal stability estimate, which is a stability limit
for motions subject to arbitrary non-linear disturbances, for a heterogeneous conduct-
ing swirling flows between two rigid concentric cylinders with a circular magnetic
field and radial gravitational force.

5.1. Mathematical Formulation

The basic eqns. (1) to (5) are rewritten in the form :

D» -5 — -
e == V m - WH. V) H — ogr ..(81)
DH > _. .~
pr = H.V)a ...(82)
V-QZO,V.I;=0 ...(83)
Dp
D = 0 ...(84)
where
D -
Dr = ﬁt_ +q.V
and

We assume the Boussinesq approximation, which implies that ¢ can be replaced
by a constant p, except in the buoyancy term g in eqn. (81). We consider basic flow
occupying a bounded domain V = F(t) with preassigned normal components of
velocity distribution and magnetic field on the rigid surface S of V. To analyse the
universal stability we consider the basic motion with the magnetic field at time t = 0
is altered and we wish to determine whether the subsequent flow, consistent with the
original basic boundary conditions, approaches the basic flow asymptotically as
t > oo,
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If q, , po and =, are respectively the velocity, magnetrc field, densrty and the
pressure of the basic flow, then the corresponding quantities in the altered flow are
defined by

Z*=;+Z,1}>*=ﬁ+/—;,p*=po+p,n*=no+n. ...(85)
We define
2 2
k=T k=[S ...86)

kinetic and magnetic energies respectively and we say that the basic flow is asymp-
totically stable in the mean if both X, and K, tend to zero as r— oo. We see that

- -
the difference motion represented by « and k& must satisfy the boundary conditions

-> . —

u.n=0 h.n=20 ...(87)

on S, where n is the unit outward normal vector to S. Since both the basic and
altered equations must satisfy equs. (1) to (4), we find on subtraction and using the
Boussinesq approximation, that

> - > 1 -
F@ .V at @V g=— - Vp— g
P1 f1

8[

+ ;‘T[(ﬁ*.V)l7+ *.v) H . (88)
3” F @+ G H = D a+ GV 7 (89
v.u=o,v.i{=o ...(90)
DP + @ . V)p=0. .. 91)

Multiplying eqns. (88) and (89) scalarly by u and -I; respectively and using eqn. (90),
we obtain

a * ______ > —-> ""—-p— a >
or ( )+( V)5 = [(u.V)gq]. u oo 8T
+L(ﬁ*.VZ.Z+Z.V§.Z)—V(Eﬁ) . (92)
pl N
h2 -> 2 > > > > N
567(7)+(‘1*'V)h7=[(h.V)q].h+H.vu.h

- - > —>h2
—~u.VH.h — V.(u ~2—) ...(93)
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We integrate eqns. (92) and (93) over V to obtain the rate of change of X; and K, in
the form

- . - - - - -
P I[Z.D.;—{- pLgr.zT— LGV H.u + k. H* wldv
v 1 1
...(94)
DK - - = -~ - > -> —> —>
~D—12=I[h.D.h+h.VH.u+u.vH*.h]dV .(95)
where D is the strain rate tensor of the basic flow.
Equations (94) and (95) are made dimensionless using the quantities
= k.d )
K, = T U, is the characteristic velocity
> kod
K, = Y H, is the characteristic magnetic field
—_ e d
> r
r=—, d is the characteristic length L ...(96)
U,> u = d=23 kK
- - u - > >
=i e Do A=
- -
H=1~{?H=E’p=plpl- j

Substituting eqn. (96), Into eqns. (94) and (95) and for simplicity neglecting the bars
(—), we get

DT’?:_ H:Z D Z+%7 “—Sh.VH.u+h vH*.;I)]dV
| 4
)

%’%:jfffﬁ-f; VH. u+u.v H* . hav (98)

12

where
F'Ho Ly ?

S = U , the Alfvén’s number

2
F = Yo the Froude number.

d H)
5.2.  Universal Stability Estimate

Let a=max[v1_;l*|,B=maxlv—q)],y=maxlvﬁl
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— m be the least eigenvalue of D and n be the largest number such that | p?.Zd«: >2nK

where the relation between ¢ and :can be obtained from eqn. (91). The integrals
in egn. (97) and (98) have no definite signs and therefore can potentially destabilize
the flow for critical values of the parameters F and N. Therefore, in the following
theorem we establish a condition for which the motion is certainly stable.

Theorem 9 — Let V' = V(t) be a bounded region of space of ¢, H the velocity
and magnetic field vectors respectively, satisfying the prescribed conditions on S.

Then K, and K, satisfy
@+ mKY (- DKV G+ m) KNP (v + d) KL exp &

where K,, and K,, are the initial values of K; and K, due to the initial disturbance

and

B —d WAL — mhm — S( o+ )l (99)

J = N = Richardson number,

F
Proor : We note that

-

[u.D.udV>—mfudV —— 2mK,
' 14

A

Z. B.ZdV > —m [ hdV = — 2mK,.
14

e

By the Schwarz inequality we have

fh VH udV \[h[ |;[dV<2Y(K1K2)1/2

[u.VH.EdV<a|u| | h]dV < 2K LK)
4 : .

Thus we may write eqns. (97) and (98) in the form

%’f} 2T — my Ky < 2y + ) S(KKp)12 | ...(100)
b K2 + 2mK, < 20y + a) (KK 2. ...(101)

Equations (99) and (100), using K* = K;, and M? = K, become

i DK J —
e —— 0 ...{102
SGran TS rmk M (102
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(—Y—i_—“) %ﬁf ?—’Ji’_—a M—K<O. ..(103)
We can easily see that
x=(8+ m)exp(— ot) > 0
y={( +a)exp(—d)>0

where & is given by eqn. (99), are the solutions of the differential equations :

— __l_ 2’_‘ : J‘_’" X -7y =20 104
Stv + @) Dt T Sy + «) = - (104)
1 Dy m .
Ty F¥eD Ty T LY T E= 0. ...(105)
Combining these equations, we get,
Dy —Jy+[(J—mm— S(x —ap]ly=0 ...(106)

One of the possible characteristic roots of eqn. (106) is given by eqn. (99).

Multiplying eqn. (102) by x and eqn. (104) by K, and then subtracting,
we obtain

1 D(Kx)
So+w pi TIK-M<O .(107)

Similarly from eqns. (104) and (105) we get

1L D(My)
(v + o) Dt

Adding eqns. (107) and (108), we have

+ xM — yK < 0. ...(108)

D e +m K+ +w) Mlexp(— 5 <0. .(109)

The Theorem 9 follows by integrating eqn. (109) from t = 0 to the current value
of t. From eqn. (99), it is clear that

2

¢rm=(m-3)+[(m-5) +sc+ar] >0

From Theorem 9 we conclude that if 8 is negative X, and K, tend asymptoti-
cally to zero as ¢ - oo. 3§ is negative if

0SSy +a2 < —mym ..(110)

and hence the condition for universal stability is eqn. (110).
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For hydrodynamic heterogeneous flow (S = 0), eqn. (99) takes the form

/
8=———'§~+[(m——'21—)2]12=m—J

and the condition for universal stability is

J2m>20. . (111)

From eqn. (111) it follows that the motion is universally stable if J > 0. Inthe
case of linear stability theory Miles (1961) proved that the motion is stable if J > %
which follows from eqn. (111) when m = 1.

6. CONCLUSION

The linear and nonlinear stability of a heterogeneous conducting swirling flow
between two rigid concentric cylinders is investigated. In the case of linear theory
the stability is discussed using the normal mode technique and systematic proof of
the following theorems are given :

(i) Extension of Miles> proof of Taylor’s conjecture, that the Richardson
number must somewhere be less than one-quarter if the flow is unstable
to magnetohydrodynamics.

(i) A semi-circle theorem similar to that of Howard (1961). This theorem
restricts the value of the phase velocity C, for an unstable motion. A
growth rate £C; is also obtained.

In the case of nonlinear arbitrary disturbances, the stability criterion is derived
using the energy method and we found that the bound on the stability is

0< Sty + af € (J — m) m.

In particular, we see that the bound for stability for hydrodynamic flow (S = 0)
is J > m > 0, whereas the bound for stability obtained (Miles 1961) by a small
perturbation analysis is J > 1.

Finally, we conclude that the linear and nonlinear theories are complimentary
to each other in a sense that the linear theory can predict only instability whereas
the nonlinear theory predicts the criterion for stability which can be tested
experimentally.
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