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The three dimensional magnetohydrodynamic laminar source flow between
two infinite rotating porous insulating disks is investigated including the
effect of induced radial electric field. The solution is obtained by perturb-
ing the source free flow solution using reduced source Reynolds number
R.* as the perturbation parameter. Asymptotic solutions are obtained
for velocity perturbation when R, << M? R, and M being injection or
suction Reynolds number and Hartmann number respectively. The inter-
action of source, injection, magnetic field and induced radial electric field
with the flow are discussed in detail. It is observed that increase in source
Reynolds number R,* decreases the magnitude of the angular velocity and
increases the magnitude of radial velocity. Further it is noted that due to
induced radial electric field there is & marked change in angular veloecity

profiles.

1. InTRODUCTION

The steady flow of an incompressible viscous fluid between two infinite
disks offers one of the few situations where exact solutions of Navier-Stokes
equations are possible and it has been the subject of investigation by many
authors. Stewartson (1953) has discussed both theoretically and experi-
mentally the flow between two co-axial disks. He finds experimentally
that when the disks are rotating in the same directions the main body of the
fluid rotates as well but if they rotate in opposite directions the main body
of the fluid is almost at rest. The numerical solution for the above problem
has been obtained by Lance and Rogers (1962) for various ratio of the angular
velocities and they have shown that at high Reynolds numbers the main
core of the fluid is in a state of solid body rotation for practically all ratios
of the angular velocities. Subsequent numerical analysis of Pearson (1965)
shows a marked asymmetry with an internal angular velocity of greater
magnitude than that of either plate. Meller, Chappel and Stokes (1968)
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have obtained numerical solutions for the flow between a rotating and a
stationary disk for arbitrary Reynolds number. They find that the main
body of the fluid rotates with a constant angular velocity and the boundary
layer develops on both disks as the Reynolds number increases. The above
investigations are confined to source free flows. However, the laminar source
flow between two non-porous disks has been investigated bv Puebe (1963)
and Savage (1964) for non-conducting flows and their theoretical results are
in agreement with Moller’s (1963) experimental results. The source flow
between two parallel non-porous disks rotating at the same velocity has been
examined by Breitner and Pohlhausen {1962), Kreith and Puebe (1965) and
Khan (1968). The same problem with disks rotating at different speeds has
been analysed by Kreith and Viviand (1967) and they have discussed the
flow pattern in terms of the single parameter K which is the ratio of Taylor

numbers.

Three dimensional MHD laminar source flow between non-porous disks
has been discussed by Khan (1970). In his analysis, Khan has not considered
the effect of induced radial électric field which completely modifies the angular
velocity profiles. The aim of the present analysis is to discuss the steady
laminar source flow of an incompressible conducting fluid between two porous
non-conducting disks with uniform injection or suction in the presence of a
uniform transverse magnetic field including the effect of radial electric field..
The solution is obtained by perturbing the creeping flow solution wusing
R,* the reduced Reynolds number as the perturbation parameter. The interac-
tion of source, injection and the magnetic field with the flow is discussed in
detail in terms of the parameters, the Hartman number (M), the injection
Reynolds number (&,), the reduced Reynolds number R,* and the ratio of
Taylor numbers (K). The results of the present problem are compared with
those of Khan (1970) to understand the part played by Radial electric field

on the velocity profiles.

2. FORMULATION OF THE PROBLEM

A homogeneous incompressible viscous electrically conducting flnid having
density p, kinematic viscosity v and electrical conductivity o is bounded by
two infinite non-conducting porous disks at Z = -k and rotate with angular
velocities Q, and . A source of strength @ is placed at the centre of the
channel formed by the disks. The fluid is injected or extracted through
the disks with uniform \?élocity V. A uniform magnetic field B is applied
in the z direction.



THREE DIMENSIONAL MHD LAMINAR SOURCE FLOW 227

The governing equations of steady axisymmetric flow, including the
contribution of the induced radial electric field —oBy(Q,+ Qp)r (see Stephen-
son 1969) and using the dimensionless variables

) z Y " Ph2
r::i, z::—z, u:uh, v:i—J—}f, w = wh and P:Ij&v—
h h v v v pve
are
ou v* oP w1 du u 0% .
e - T = R e (D)
ov ov wv 9% 1 dv 0%
Uu a ‘ a‘+ == a2 +7 6?‘ + a 5 —M {v_(RlT-R2 rx} (2)
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Equations (1) to (4) are solved using the boundary conditions

w(r, +1) = 0 1

v(r, +1) = Ryr

o, —1) = Ryr r e (8)
&

wir, +1) = +Ry = + ~

together with the mass conservation equation

2 :
M2 2R,
b} AY oo

(6)
where

(u, v, w) are the velocity components in the radial, azimuthal and axial
directions,

P is the pressure,

r and z are the radial and axial co-ordinates,

M = BhvV W is the Hartman number,

R, = h2Q,[v is the Taylor number for lower disk,
R, = h2Qy/v is the Taylor number for upper disk,
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Wy

= ——f%— is a dimensionless parameter,
X Qa+Qb P ’

wqy 15 the average angular velocity of the fluid,

N = Bhjpv is the interaction parameter,

R, = Vhfv is the injection or suction Reynolds number,
R, = Q[4mvh is the source Reynolds number.

We define the stream function 3 such that

7]

=

—
-

=

1
U = —
-

i

1y

w = —'7 W e (8)

The following expressions which are valid for small value of the reduced
Reynolds number R} (= R,/r?) and away from the source at » = 0 are assumed
for , P and v : '

2 r R R
=13 —%IT @) +R, | fil)+55 file)+0 (;;)2+] e (9)
2
P=1r ‘l{ hoal)+h()+Re | hofe) Tog r+% hy(z)+0 (%)24“.} .. (10)
2 R, R, Rg\2
v=4r o galk)h s {go(z)+72» 9,(z)+0 (ﬁ) +] ... (1)

Since flow has been assumed fully developed, the zeroth order function will
be independent of r.

The expressions for radial and axial velocities, from equation (9), are

we gt e R o (Re) ' ] o)
W= — %{; Fal2)+ {2 (%)2 fy2)+0 (%)3+ ] .. (13)

where the primes denote the differentiation with respect to z.
The boundary conditions on f, and g, are
fi(1) =0 for n > —1 .
folzl)=0for n > 1
fa(£)) = 1



THREE DIMENSIONAL MHD LAMINAR SOURCE FLOW 229

and

SoI)—fo(—1) = 2 ... (14)
choosing fy(—1) = —1, we have f(1)=1

ga(—1) = 2R\/R,,

g1(+1) = 2R,/R,,

g.(+1) =0 for n > 0.

These expressions (12) and (13) are inserted into the governing equations
and after the co-efficients of successive powers of r are equated to zero we
get an infinite set of system of simultaneous equations. The first three
systems are considered here.

System 1
P Fafatie 43 = b o £ 1)
9-1+ %2 (f191—f19-1) = M?q_—2M3*R,+R,)x ... (18)
h_, =0 or h_, = constant e (17)
h=— %{; (f'_ﬁ—% % ffl) -+ eonstant. ... (18)

where the constant in equation (18) is determined from a known pressure at
a point.

System 11 e ) ,
fo't 5 (Fafotg90) = ho+ M2, ... (19)
. M -
got — (f-a9o—fog-1) = M, .o (20)
hy = 0, h, = constant. .. (21)
System 111
. M? . . op . "
f'+ 5 Uahtfafi—faf)-Mh = —2h—fo'—gi—g.9: ... (22)

. M2 . . .
91+ N (fagr—9fitfag—ha-) = Mg, - (23)

hy =0, h, = constant. .. (24)
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3. AsvmprOoTIC ANALYSIS FOR R, <€ M?

The wunknown functions f,, ¢, h, and y are expanded in powers

1 . .1 M2 NP .
of e (we note that in the limit v 0, =y remains finite and is equal to
R,) as follows
& 1
fn = ﬁi‘() W_E fn,ﬂ
——E ! forn = —1,0,1,2
In P Nﬁ gn,ﬁ n = s Wy by &y e
b, = § ! ko (25)
n f—0 NB ‘n,B8
and B ;:o 1
" o NE Xo
where f, 4, 9,4 hng and y, are independent of N.
The boundary conditions to be satisfied by f,; and g, , are
Jap (£1) =0 forn =—1,0,1,2,... andall g
fop(£1) =10 forn=1,2, ... and all g
S (1) = 1 for n = —1, 0.
frp(£1)=0 forn = —1,0 and g > 1
2R
9o (+1) = —R—: . (26)
2R
g10(—1) = 1‘?';1
gas(£l)=0 B>1
Irp (L) =0 n=0,1,2,... and all 8

Solution of system 1

Equations (15) and (16) using equation (25) and equating the coefficients

of like powers of 1/N give the following set of linear ordinary differential

equations.
f'—”l.o = h~1,0+ sz‘—l,o
f~”1 ,1_*7‘[2‘)("—1,1 = h_y,— M¥ f—l,of:1,0+ %92—1,0" 3% .0

... (27a)
... (277b)
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9 10—M2g 4,0 = —2MAR, 4 Ry)x,
9-1,1’—M g 11 = Mz(f;1,0g~1,0_—f—1,og’—l,0)—2M2(R1+32)X1
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. (27¢)
. (27d)

The avalysis is confined to first and second orders since the higher order pertur
bations are algebraically complicated and also the effect of higher order terms

are negligible compared to second order terms.

Solutions of eqn. (27) using the boundary conditions (26) are

foro = fiM (Mz cosh M —sinh Mz) . (28)
where,
A = M/(M cosh M —sinh M)
also,
h_y o= M3/(tanh M — M) . (29)
"1, = B, cosh Mz+D, sinh Mz—h“ Ll o g.2-+a, sinh 24z
1,1 1 M2 3 4
+az cosh Mz-+agz? sinh Mz-1-a.z sinh Mz--a, cosh 2Mz+C, . (30)
where,
2
@y = -i- (a3—ai+2a3)— [; (3/2-+cosh® M)
1 2 21 2
ty = — 5oar (a5-Hai--A%)
1 42
@ = —— (2a4a,+ 5A2 cosh M), ag= M cosh M.
a,a —aya
a4y = = 5% %= Tour
B, = ﬁ—ﬁ—ﬁ (sinh M+ M cosh M)—4a, cosh M
D, = %_ (a,(2M cosh 2M —sinh 2M)+ a, M sinh M Lagsinh M-- M cosh M)]
C, = i S(j;lh 7 (2M -+sinh 2M)+ag(2-cosh 2M1)
kﬁ; — ay+(D,+ag)sinh M +a, sinh 2M - cosh M
A, 5 .
O = 5 dy = 2(By+ Ry)xe, k = sinh M—M cosh M

Ay = 2(By+R,y)[Ry, Ap = 2(Ry—R,)/ Ry
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The solution for angular velocity is

010 = oo it Sanar 2R R (V- T )
where
2o = _Ii 91002 = M+2(Rli\}i;€i;1(l‘zajrlllll M—I)
Similarly,
g1, = E, cosh Mz+F, sinh Mz-+b,2% cosh Mz+{-byz sinh Mz
-++bgz? sinh Mz-+byz cosh Mz-+2(Ry-+R,)y,+bs . (32)
where,
b, = ‘118” : (2a,—A,), b, = - M — 10a,),
by = % M2, coth M, by = — 3?; ,
by = A(ay—a, cosh M),
E, = —[b,+b, tanh M+{b,+2(R,-+ R,)x,} sech M|,
F, = [by coth M —by],
24, = E gaadz = M+2(R1+RZZ)(ta,nh M—M) lbz(é%;;ﬁh;m*
(M —tanh M) <b5_M2—(i)bslm>}
The differential equations governing the system II are
fo—M2fo0 = hoy (33a)
Jox—Mfo5 = oy —M*(f_1,0f4.09-1,090.0) (33b)
Goo— Mgee = 0 (33c)
Fon—MGo, = M*(fo,09 00— 1,090, (33d)
The differential equations governing the system III are
Jro—Mf1o= —2hy,0—fob—95.0— 91,0910 (34a)
Tio— U910 =0 (34b)
91”,1"'M291,1 = Mz(fl,ogi-l.o‘f-l,og;;o+g—1,ofi,o—f:-1,091,n) (34c)
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The solutions for systems II and III are obtained similarly as in the
previous case. Since the expressions are lengthy, they are not given. How-
ever, the expressions are numerically evaluated and the typical velocity
profiles are presented including the contributions from systems II and III.

4. VELOCITY DISTRIBUTION

The radial, azimuthal and axial velocity components «*, v* and w are
respectively given by

. U 1

Mo g * p *
W= =5 'y St BRI OE)

¥

" v 1 1W2 + * *
v =, =85 N 9—1+R¢[90+R¢91+0(R:)2]

M2
w == TN fa+2R*f+O(R7)3).

The velocity components are numerically computed for different values
of R}, R, M and K =1, 0, —1 and the results are plotted in figures (2) to
(7). Typical behaviour is observed for other values of these parameters.
In figure (2) the azimuthal velocity profiles are drawn for the case K = 1.
We find that for small values of M the velocity is parabolic and the angular
velocity is negative in almost the entire space between the disks except for
a small region near the disk. For a given value of R, R; and K the increase
in magnetic field flattens the velocity profiles and the velocity becomes uniform
in central region and the velocity gradients are confined to narrow region
near the disks. In figure (3), the angular velocity profiles for the case K = 0
are drawn. We observe that the angular velocity is always positive. The
boundary layer develops near the disks and a uniform rotation appears in

B 3
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Fig. 1. Physical model.
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Fig. 2, Azimuthal velocity profiles when both disks
are rotating in the same direction.
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Fig. 3. Azimuthal velocity profiles when one disk
is rotating and the other is stationary,
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Fig. 4. As muthal velocity profiles when the disks are rotating in opposite

directions.
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Fig. 5. Azimuthal velocity perturbation.



236 CHANDRASEKHARA, VENKATACHALAPPA AND RUDRAIAHR

I

2

u‘ —

Fig. 6. Radial velocity profiles.
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Fig. 7. Radial velocity perturbation.

the main body of the fluid. We find that the increase in magnetic field
decreases boundary laver thickness: In figure (4) the angular velocity pro-
files for the case K = —1 are shown. It is observed that the angular velocity
is antisymmetric about the z-axis and for large values of M, other parameters
remaining constant, the angular veloeity is zero in central region and has a
finite value near the disks. This is in agreement with Stewartson (1953).
In all these three cases the increase in injection Reynolds number R,, affects
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the angular velocity by increasing the magnitude. We also find that increase
in source Reynolds number R,* affects the magnitude of the angular velocity
slightly. If we compare the figures (5) and (7), with those of Khan we find
that these velocity perturbations are completely modified by the effect of
induced radial electric field and injection. In figure (6), the radial velocity
u* is shown for R = 2, R, = 1 and for different values of M. The typical
behaviour is observed for all the three cases, viz., K =1, 0 and —1. We
find that the radial velocity is parabolic for small value of M and as M in-
creases the radial velocity exhibits the characteristic flattening, Radial
velocity increases with increase in injection Reynolds number R,, and the
source Reynolds number R,* while other parameters remain constant, The
above analysis is also valid for suction Reynolds number R,, << 1.

5. PRESSURE DISTRIBUTION
The pressure drop at the disk is
P* — P(r, 1)—P(R, 1)
1 M2 1
= — i 2 g2
= =7y Pty b ) =)
=)

~Bo [ ( oot o ) o Zten, (1597 . 35)

\ —— —— INERTIAL S5

p* (GSH)——e

A A 1 4. N |
Q s [¢) 120 o360 M0 2@
P et

Fig. 8. Pressure drop in the radial direction.
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where we assume that P(R, 1) is a known pressure at the point (R, 1).

The inertialess or creeping flow pressure drop is obtained by neglecting
the contribution from inertia terms in equation (35) and is given by

1 M2

B
P — -5 7 h_y o(R2—7%)— Rehy o log - ... (36)

The pressure distribution is presented in figure (8) for
R,=3x10t, R=240, R,=2 K=0, M=4,8.

and we observe that the inertia terms cause a decrease in pressure in the
radial direction. The total pressure in the presence of magnetic field is higher
than the corresponding hydrodynamic case. Therefore our results may find
application in the design of magnetohydrodynamic porous bearing system
in the sense that the increase in pressure may be utilized to increase the load
carrying capacity of a bearing.

6. Skix Fricrion

The dimensionless shear stress at the upper disk is

(B = e (BB = (), e

2=h

Equation (37) using expression for u given by (12) becomes

T 1 M2<

To = ":‘2" f-—10+f_“) (foo+ f“ ” ... (38)

- 2=l

The inertialess shear stress at the upper disk which is obtained by neglecting
the inertia terms in equation (38) is

. 1 M2
(To)inertialess = — ["2“ A ~f o+ fon1

z=1

The shear stress ratio

T
Ty = et
(To)tnertiatess

is evaluated for R} = 0,1,2,3, By =1,2, M = 4,8, K= 0. The results
are presented in Table I. We observe that the shear stress ratio increases
with an increase in M for a given R} and R,. Further we observe that for
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a given M and K it decreases with increasing source Reynolds number R,*
and injection Reynolds number B,,. We note that the incipient flow reversal
(i.e., 7* = 0) occurs at very large value of Rj.

Table 1

Shear stress ratio 1%,

Rp=1 E=0
M2 =16 M2 = 64
R*, ™* R*, %,
0 0-9244 0 0-9505
1 0-8942 1 0-9415
2 0-8612 2 0-9319
3 0-8301 3 0-9222
By =2 E=0
M? = 16 M2 + 64
R*. T*O R*e 7—*0
0 0-8551 0 0-9028
1 0-8232 1 0-8934
2 0-7912 2 0-8837
3 0-7577 3 0-8740
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