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Abstract

The effect of Coriolis force on the stability of two superposed fluids is
examined under the assumption of ideal (incompressible, non-viscous and zero
thermal conductivity) flow. The analysis reveals only one type of instability
in contrast to two types of instabilities observed by SONTOWSKI, SEIDEL, and
AMES (1969), in the absence of Coriolis force. Thus the effect of Coriolis
force on the superposed flow is to make the flow more stable. In particular,
the special case of upper stratified fluid rotating and the lower non-rotating
is examined in detail and we find two separate and different types of insta-
bilities. As the velocity of the rotating fluid relative to the non-rotating one
increases from zero, there first appears an instability of a selective and rela-
tively weak nature referred to as the initial instability. This is followed, at
higher velocities, by a stronger type of instability called the gross instability.
We found that the effect of Coriolis force is to suppress the region of initial
instability in the sense that the instability occurs for large velocity differences.
We also found that the Coriolis force has no effect on the critical wavenumber.
These general stability results are applied to a particular problem of the
Kelvin-Helmholtz instability with rotation and we find that the results are in
agreement with those of CHANDRASEKHAR (1961). We determine the rate of
growth of initial instabilities, which depends on the density stratification and
the angular velocity of the rotating gas. This growth rate, in the case of
rotation, is greater than that in the absence of rotation, which is in agree-
ment with observations of MUNK (1947).
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1. Introduction

This paper deals with the stability of the motion at the interface between
two superposed fluids having different densities and velocities with Coriolis force.
This problem has an application to planetary atmospheres, to aid in understanding
the limitations on the propagation of internal-inertial-gravitational waves and
transfer of momentum from the troposphere to the ionosphere. By internal-
inertial-gravitational wave, we mean a wave under the influence of Coriolis force
in which the group velocity propagates almost vertically upwards while the phase
velocity is downward and the particle motions are nearly horizontal. In the study
of these waves, GERBIER and GERENGER (1961) have experimentally observed that
there should be little disturbance above the critical level (which may be taken as
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the interface between the fluids, in the present paper) but large amplitude pertur-
bations of the horizontal velocity should build up near there and turbulent break-
down seems probable. In that situation, the study of the stability of superposed
fluids will help to understand turbulent breakdown. Another important application
of the present problem is towards an understanding of the reversals of the wind
in the planetary atmosphere. For a long time these reversals were a rather
mysterious occurrence, since it did not seem conceivable that the thermal strueture
of the planetary atmosphere could produce such patterns in the gradient or
geostropic wind (RUDRAIAH, NARASIMHAMURTHY, and MARIYAPPA 1972). The
most important development during the last decade concerning the motion of
planetary atmospheres has been the recognition that the wind reversals in the
atmosphere are due to internal gravity waves (HINES 1960). These internal gravity
waves with and without the Coriolis force have been extensively investigated by
HiNES (1960), BOOKER and BRETHERTON (1967), JONES (1967), and BRETHERTON
(1969). Recently, these waves have been extended to MHD by RUDRAIAH and
VENKATACHALAPPA (1972a, b, ¢), ACHESON (1972), ACHESON and HIDE (1973), and
RUDRAIAH and VENKATACHALAPPA (1974a, b). The question of internal-inertial-
gravitational waves in two superposed fluids with an interface is inseparable from
the question of their stability. With this motivation in mind, we investigate here
the stability of the flow of a stratified rotating gas over a rotating fluid.

In the study of such problems, one usually makes an approximation that the
effect of density stratification is small compared with the potential energy of the
system, i.e., the Boussinesq fluids (see CHANDRASEKHAR [1961, p. 16]). Conditions
under which superposed fluids are important in the planetary atmosphere are
usually far removed from the idealization of Boussinesq fluids. Since the dimen-
sions involved are very large, variations of ¢ and p in the planetary atmosphere
can scarcely be regarded as small, and an additional complication is the source of
energy provided by condensation of vapour giving rise to states called “condition-
ally unstable” (KAUuO 1961). Also, in the planetary atmosphere pressure, density,
and temperature vary by several orders of magnitude and transmission of heat
by radiation is important (see UNNO 1957 ; KATO and UNNO 1960; UNNO, KATO,
and MAKITA 1960; SPIEGEL and UNNO 1962). Therefore, in the study of the
stability of superposed fluids, we have to consider the general density stratifica-
tion without the Boussinesq approximation, and this is done in this paper.

The stability of superposed flow of two different fluids, each having uniform
density and velocity distribution and flowing parallel to each other in a horizontal
direction with an interface of arbitrary surface tensions was studied by KELVIN
(1910), and he obtained a stability eriterion in terms of the relative velocity between
the two fluids. Application of this result to the special case of gas blowing over
incompressible fluid yields a eritical velocity of 24 km hr~! at which instability first
occurs. This result has met with general dissatisfaction since disturbances actually
arise on large bodies of gas at much lower values of the wind velocity. However,
MUNK (1947) expresses the belief that although not coincident with the onset of
instability, the value obtained by KELVIN (1910) is indeed a critical value as it
marks the occurrence of several other phenomena such as sudden increases in
evaporation, convection, and the number of breaking waves. Whether true or not,
this does not explain instabilities observed at velocities below KELVIN’s (1910)
critical value. Recently, SONTOWSKI et al. (1969) predicted such type of instabilities
considering the density stratification in the upper fluid flowing over an incompres-
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sible fluid. They found two separate and different types of instabilities, namely,
the initial and gross instabilities. The study of SONTOWSKI et al. (1969) revealed
that as the velocity of the gas relative to the fluid increases from zero, there
first appears an instability of a selective and weak nature referred to as the initial
instability. This is followed, at higher velocities, by a stronger type of instability
called the gross instability. The initial instability takes the form of two distinet
waves of different lengths, one superposed upon the other. This superposition of
two waves at low velocities is in accord with the experimental observation of
MUNK (1947). SONTOWSKI et al. (1969) have considered only the effect of density
stratification in the upper fluid but not the Coriolis force. But the effect of
Coriolis force and density stratification is of fundamental importance in planetary
atmospheres because of the rotation of planets. This is discussed in this paper.

The flow configuration and assumption of SONTOWSKI et al. (1969) are re-
examined here with the additional consideration of Coriolis force. In particular,
the case of the upper fluid rotating and the lower non-rotating is discussed in
detail. We found that, in general, the effect of rotation is to remove the initial
instabilities. However, when the upper fluid is rotating and the lower one is non-
rotating, there exist two types of instabilities, namely, initial and gross insta-
bilities, as observed by SONTOWSKI et al. '(1969). Finally, we note that the
assumption of incompressible fluid is reasonable, for the fluid velocities to be
considered are low. Viscosity can be neglected by reasoning in terms of the types
of instabilities expected in the bounded flow of a gas over a fluid (see SONTOWSKI
et al. [1969]). '

2. Formulation of Problem

2.1. Mathematical Formulation

We consider a single-fluid model of a heterogeneous, incompressible, non-
viscous rotating fluid. The basic equations of motion of this model are (see
CHANDRASEKHAR [1961, ch. XI]);

.g=0, 2.1)
Do _
Dt =0, 2.2
Dq
p—=+22xq=—Fp+pg , (2.3)
Dt
where
D @
Dt = 5 +(g-7),

q, p, p are velocity, density, and pressure of the fluid, respectively, and £ is the
angular velocity about the z-axis. Equation (2.2) physically represents the fact
that the density disecontinuities are allowable in the solutions.

2.2. Basic State

Figure 1 illustrates the problem. The fluids in the regions 2=0 are assumed
to be of infinite extent below and above the common boundary. The basic state
considered is of the form
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+e0  GRAVITY Uia
z I
z U=Uq
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X \INTERFACE U=Up
P=f>5
Fig. 1. Basic configuration,
q:(U(z)! 07 0)7 p:po, Io:AOO’ ‘Q:(Oy O) 'Q) . (2-4)
For geostrophic balance
9y 2000, 2.5)
oy
and for hydrostatic balance
0
—32"— =—gpo . (2.6)
z

From equations (2.5) and (2.6), we get

1 9py _ 20 dU 20U (_1_ apo>. @.7)

0o 0Y g dz g \p, 02
2.3. The Perturbed State

On the basic state discussed above we superimpose a small symmetrical dis-
turbance of the form

U+0, v, W), pot+e, po+p", (2.9)

where the primed quantities denote the perturbed quantities and are assumed to
be small compared with the basic quantities. Linearizing equations (2.1) to (2.3)
by using expressions (2.8) and seeking solutions of the form

(Some function of 2)exp {i(kx+1ly+ot)}, 2.9)

it is possible to obtain, by a process of elimination, the equation governing vertical
velocity W in the form
4_92

D{p[)d <1— ——2)DW—p<k+
24

2101
24

)(DU)W} — o202, W = ga*(Dp) gi . (@.10)
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where 2,=(¢+kU) is the Doppler-shifted frequency, a=(k?*-+1?)*? and for simplicity
primes on p and W are neglected.

At the interface between the two fluids, we require that W/Q, is continuous
and

Ao{p.Qd (1— @>DW—p(k+

2101
24

2T,

Yoo a2 (2

2.

>0 (@11

where

Ao(f): 133 [.f =z0+s_fz=zo—s]

is the jump, a quantity f experiences at 2=z,, and 2,(=0) represents the undisturbed
interface position. (It is necessary to observe that W/(e+-kU) must be continuous
at an interface. If U is continuous at an interface, this condition simply reduces
to a condition requiring the continuity of W'; but if U is discontinuous at z=z,,
then we must require, instead, the uniqueness of the normal displacement at any
point on the interface, i.e., the normal displacement at any point on the interface
0z {=W,li(c+kU,)} is to be continuous.)

Now, we consider equation (2.10) for regions z>0 and 2<0. The region z>0
is occupied by a stratified gas and the region z<0 is occupied by an incompressi-
ble homogeneous fluid. In these regions, equation (2.10), assuming U=constant,
takes the form :

aw
dz?

—3 dd‘j —a2(1— gzﬂ_—%%;)wzo, for 20, 2.12)
da™

and

W _az( 2

1 e >W=O, for 2<0 . (2.19)

The solutions for the above equations are given by

W=C,e™a+*+D,e™a~*, 2>0, (2.14)
W=C,e™ +*+Dye™ -, 2<0, (2.15)
where
_B B\’ gp—42* \\*
mai———z-i{(—z—) +a2(1- m)} ’ (216)
o} 1/2
My = Fa (——3 YT > , (2.17)

and C,, D,, C,, D, are arbitrary constants.
Boundary conditions disallow disturbances which increase exponentially as the
outer bounds of the layers are approached. Thus

W=D,ema—*, 2>0, 2.18)
‘ W=Cpem™+, 2<0, (2.19)
with the requirement that
£>2 2( . g‘B_492 )]1/2>—@_ 0
R{(Z +a(1- ) | 25 (2.20)
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Continuity of W/2, and the interfacial boundary condition (2.11) yields the
eigenvalue equation, which in dimensionless form may be written as

O*Bulv+ I+ U +1—p*+ 0, —4p*5,0%

_ = 40% 4% 12
= E*U,) {1— —— 2
av+k*0) ‘{1 o+ kT HH W+ E* T, — 40 }
—- 49*2 2ﬂ _4&2‘9*2 1/2
* ok 2 )1 e — E__ .
oD 1 D) H ety 0 @
where
y= {(5/2)2;?2}”_" o, Q%= {(5/2)2;/32}”1 Q, kr=kja, o*=p.p;,
a a
. B/2 _— a _ Tha®
Pu= (G2rtat T @R ray T T goy
0, = {(ﬁ/z)ﬂj/-zw}l"‘ U.. U= {(ﬁ/2)214/r2a2}”* U,
g g

and the requirement (2.20) now takes the form

28, —Aa> Qx> 1/2
Re|:1— - 9*2] >5, . (2.22)

3. Determination of the Instabilities

Recalling the form of the disturbance in equation (2.9), it follows that the
flow is unstable if and only if any one or more of the eigenvalues v has a nega-
tive imaginary part. For a complete stability analysis the characteristic values
of v must be examined for all values of the wavenumber vector k=(k, l), which
is done in this section.

Equations (2.21) and (2.22), using the new variables

— — — X
e=v kO, n=vti Dy, po=1"CE0 3.1
become
2 _4&29*2 1/2 a 4‘9*2 1/2
a0 |(1- i) e e (1 Y e,
(8.2)
and
_ Am20%2 T1/2
Re[l— %] >, (3.3)

which, in conjunction with the auxiliary relationship
e—p=k¥U.—U), (3.4)
is equivalent to the eigenvalue problem.
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Equations (3.2), (8.3), and (3.4) define the eigenvalue problem and will be an
eighth degree equation in v, which is nonalgebraic because of the condition (3.3).
To restore the algebraic character to the problem, we construct a parent algebraic
system possessing the eigenvalue as a subsystem. We distinguish two branches
of the parent system, calling our eigenvalue problem the principal or P-branch
and the remainder of the system, where Re [1—(28,—4a20*?)/(£2—40%*)]/2 < B, as the
subsidiary or S-branch. In mathematical form these can be expressed as:

PAY"*+QBY*=R , (3.5)
P-branch {
Re [A]'2>5, , (3.6)
Al“—i—QB“z— 3.7
S;-branch {
0<Re[A]V:<8: , (8.8)
—PAY:4+QBY*=R , (3.9
S.-branch
Re[A]/2>0, (3.10)
PAYV*—QBY*=R , (3.11)
Ss-branch 4
Re[A]'*>8,, (3.12)
PAY:—QBY*=R , (3.13)
S,-branch I
O0<Re[A]'*<5, , (3.14)
—PAY?*—QBY?*=R , (8.15)
Ss-branch {
Re[A]'*>0, (3.16)
where
. 2B, —4a20*? . 40%2
A=1— 52_4{)*2 , B=1+ P—40%

P=(E—40%), Q=3 (F—40%),

=% o+ Bu(EE—402%%) |

The auxiliary equation (3.4) is to be satisfied simultaneously with each of the
above basic branch equations. In comparison with the four equations given by
CHANDRASEKHAR (1961, p. 503), we see that we have six equations in our case. This
is because of the conditions placed on the expression {1—(28, —4&2Q*?)/(£2 —40Q%2)}1/2,
Due to the presence of two square roots in the equations, analytical treatment as
in the case of SONTOWSKI et al. (1969) cannot be carried out completely in this
case. However, the eigenvalue equation is solved numerically and the results are
shown in the real (&,7) locus for particular values and is marked in figure 2.
Tangents to the curves are vertical at the point (£22%, 0) and horizontal at (0, %7,).
Except for the two significant points at (+&, 0) on the &-axis, there is no real
locus for 29*%<|&|<(2B+4B.22*)Y% and |5 <2Q2*. The principal branch and the
subsidiary branches (S;, S;, Ss, S,, S;) are shown in figure 2 for the real (¢, »)-locus.
It is of interest to note that, in the absence of Coriolis force SONTOWSKI et al.
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(1969) have shown that there exists one P-branch and two subsidiary branches S,
and S,, whereas in the problem discussed here we observe there exist one P-branch
and five subsidiary branches S;, S;, S;, S, and S;. Hence the effect of Coriolis
force is to introduce three subsidiary branches S;, S,, and S;. These additional
subsidiary branches remove the initial instabilities as explained below.

STABILITY ZONE

Fig. 2. Stability zones in the real (&, y)-plane (when both the fluids are rotating).

The intersections of the auxiliary line in the real (¢, n)-plane with the locus
of the basic branch equations represent the real roots of the parent algebraic
system. From the figure, we observe that there is only one possible stability zone
where the auxiliary line will have eight intersections. It is also of interest to
observe that this stability zone is confined to a very small region symmetrical
about £=%. So, there exists only gross instability, but not the initial instability.

We note that the “possible stability” zone lies between the auxiliary lines
passing through (—&;g¢, 22%) and (£,0s, 22%). Hence the principal result that can
be established in the case when both the fluids are rotating is that, for a system
partaking in rotation, the Kelvin-Helmholtz instability cannot occur so long as

|K¥(Uy— Up) | <pox—20% , 3.17)

where

2 2 2 4 1/27)11/2
Eogv = [29*2 + &Qg.:h_O) +|:4Q*4 _}_‘Bk(%){ﬁk( 1+727ao )_4‘9*2}_[_%:\ ] )

a

As pointed out earlier, since equation (2.21) is an eighth degree equation in v
and because of the curious restrictions on the signs of the square roots in equa-
tion (2.21), the analytical treatment of the stability problem is very difficult and
cumbersome. However, we note that when the upper fluid is rotating and the
lower fluid is nonrotating, analytical conditions for stability can be obtained and
this is done in the subsequent section.
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4. On Stability of a Stratified Rotating Gas over a Non-Rotating Gas

'~ 4.1. The Dispersion Relation

Of the two fluids that we are considering, we suppose that the upper stratified
fluid is rotating in the z-direction with a constant angular velocity £ and the
lower fluid is non-rotating. For this case equation (2.21) reduces to

O* B+ ¥ T+ (1—p*+0,—40*B, 2% =a v+ k* T,)?

bl 1o ALy Bdmen

> ) {1— - 4.1
o+ T,) o +k* 0, —40% @D

To examine the nature of v, we rewrite equation (4.1) using the new variables

E:U-l"k* l_]a. )
_ o8 o 4.2)
— ®7T k *( [T —
77 U‘l—k Ub (c—x—p*ﬁk) {k (Ua. Ub)} ’
in the form
2 __ﬁ_ 2__40%2)(1— W)m: 2 4
P gy €4 )(1 inw Too 4.3)
and
2B, —4arQ*2 /2
Rel:l— —gz—_—m';;—il 2.‘91; ’ (4.4)
where
2 ap*B; XU, — U,)2-+ 1—p*4-0,—4p*B,2* (4.5)
77:10 (C—U-—‘O*‘Bk)z{ ( a b)} (52——10*,3;‘) .
Also, the auxiliary equation, from equation (4.2) is
& — .
§—n=——7— kU~ U} . (4.6)

a._

0*By

4.2. The Eigenvalue Problem

Equations (4.3) and (4.4) together with the auxiliary equation (4.6) defines the
eigenvalue problem. This problem is non-algebraic because of the condition (4.4).
However, we can restore the algebraic character by constructing a parent algebraic
system possessing the eigenvalue problem as a subsystem. Equation (4.8), along
with the auxiliary equation (4.6), is equivalent to a fourth-degree polynomial in
v and this is taken as a parent system. The parent system is distinguished into
two branches. The eigenvalue problem is referred to as the principal or P-branch
and the remainder of the system as the subsidiary or S-branch. In mathematical
form, we have

* 98 __AF2O*? \1/2
7%+ (52+P*,3k) (62 —4.0%?) <1_ _W) . @
P-branch
2}97,—4&2[2*2 1/2
Re[l_ W} = 4.8)
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2 o* 2 4O%e <1__ 28, —4a* Q% >1/2: 2
S b h 7 + (&_P*,Bk) (E ) 52_49*2 Nao s
~branc
928, — AZ20Q*2 /2
0<Re [:1—— %T] <.8k ’
2 _ p* 2 __ 4 O%ke (1_ 28, —4@* >1/2 —?
S b . Ch Y (&—P*ﬁk) (E ) 52—49*2 a0 s
2”7 ran

—4&Z20*
Re[l_ MT’}O

£ 40

[Vol. 26,

4.9)

(4.10)

(4.11)

(4.12)

The auxiliary equation (4.6) must be satisfied simultaneously, with each of the
above basic branch equations and conditions.

(-20", )
\(:' ZPR+4"{ ;;27-'10

~So

-~
-~
~

n

(2a®,n,.)

—

-
$2, 2 e
/cﬁgk+4n§ak,:'laol %,

——
-
-—
-

(=/ 2Pk+4‘{2pk2’ Nao)

(V 25"'*'4“'2 pkz:_rlao)

The
the case

Fig. 3. The real locus of the basic branch equations.

real loci of the basic branch equations are plotted in the (&, )-plane for

a>p*B; (see figure 3), where
— 218k 2—an?2
§= "5 T T Z— oG,

_ 0B (%_4‘9*2> ,

&2

s°2=5k+29*2(1+ﬂ,,2)+{(ﬁk—zazgﬂ)?ﬂzo(C—“_T”*ﬂ"f}m :

2.
0 —
7 @

p*

vy

4% (14 2P, AT 47
k

Tangents to the curve are vertical at the points (&, 0), ([28.+48:202%*%]*/2, ,0),

and (202*

’ 7]0.0)-

We see that there is no real locus for

2% |E] < (28, 4B )2

In the non-rotating case, discussed by SONTOWSKI et al. (1969), there exist
two significant points on the 7-axis, whereas, in the present problem, we observe
that instegd of these two significant points, there will be a loop form which is

© Astronomical Society of Japan ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1974PASJ...26..221R

FO72PAS). 2. 267 T2Z20R!

No. 2] Stability of Superposed Fluids 231

STABILITY ZONE1 STABILITY ZONE 2

1 1,2 2

Fig. 4. Stability zones in the real (&, »)-plane (£2*2=0.25, 8;=0.5).

symmetrical about both axes.

The real locus of the auxiliary equation is a straight line having a slope of
1, as shown in figure 4. The locations of the intersections of the real (£, 7)-plane
of the auxiliary line with the locus of the basic branch equation indicate the
particular branch to which each real part belongs. For situations where there are
four real intersections, the eigenvalue problem represented by the P-branch can
have no complex roots and the system is stable. Referring to figure 4, the
auxiliary lines falling between 1 and 1’ and 2 and 2’ will always have four real
intersections and hence the system is always stable.

Under the influence of a particular disturbance as the velocity U=k*(T,— U,)
alone increases, the fluid system experiences consecutively conditions of definite
stability (stability zone 1), possible instability (between stability zones 1 and 2),
definite stability (stability zone 2), and finally possible instability (see figure 4).

However, for larger values of Q% (say 2**=1.0) we observe that the fluid
system first experiences definite stability, possible instability, definite stability,
possible instability, definite stability, and finally possible instability. So, for larger
values of ©* the “possible instability zones” increase and hence the system may
lead to an almost unstable situation.

4.3. Discussion of Initial and Gross Instabilities
The analytical examination of the loci, using Sturm’s theorem, reveals that
under the conditions

sk
£ 1, 3p’p’p*+75,(1—p%) > p(L—p*)[Be+ 21+ ,

— <
a—p*p,
(312 —8a00) (A2 — 2050 —4a0a,) > (60005 —a;a,)® , - (4.13)
b, > bics®+bsci®
2 €16,

where
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(4%
a—p*g, ’
ae=1—p%, a,=4p,p, ,

@y =6p,"P,*+28,0*— 277, +42*¥*p*(1+5,7) ,

— — p*
P = pzzk*( Ua._ Ub) ’ D=

a—p*p, ’

2
@ =4P:D:(P*D"—7%,) 0'42%8—; — 8B (1+26,02%) ,

1
bi=(3a,*—8a,a,)/16a, , b,=(6a,%;—a,a,)/8a,, by=(a,a,—a,)/164a,,

Ci1= “;— {4aobs—2a,b;, — by (3a, +4aeby/by)},
1
_ bs
Co=Q3— b_(3a1b1+4aob2) ’
1

auxiliary lines falling between 1 and 1’ of figure 4 and lines falling between 2
and 2’ will have four real intersections. Thus there exist two possible stability
zones as in the case of SONTOWSKI et al. (1969). Hence in the present problem
we have both initial and gross instabilities as observed by SONTOWSKI et al. (1969).

For a given system, in a particular stationary state, the sufficient conditions
(4.13) become a requirement on the range of & In the case of normal gases, p*
and B, are extremely small, and the above conditions are satisfied consecutively
for all disturbances except those of extremely long wavelength.

The nature of the real part of [1—(28,—4&2Q*?)/(&2—402%%)]'/? gives information
as to the branch to which a particular root belongs. Hence, according to the
branch equations (4.7) to (4.12) it follows that a root belongs to the S,-branch,
if Rel[(y%,—7%/(6*—402*)]<0, to the §;-branch if O0<Re[(n:,—7%)/(£*—42*?)]<
o*B./(@—p*B;) and to the P-branch if

ot ],
Re| e |2 7 -

Along the real locus of the combined S; and P-branches in the fourth quadrant,
we note that (p%,—7%)/(6*—402*) is real and positive. Now, let U, be that value
of U for which the system enters stability zone 2 with the corresponding real
root of multiplicity two being (&7, —7;). Let &:=¢&,+a, where a is some positive
real number, with the point (&,, —7,) consecutively being on the P-branch. There-
fore, it follows that

Nao—(—7r)®  pxb
ST IT — G %E, +b, (4.14)

where b is a positive number. For U<U, the auxiliary line is in the region
between stability zones with a corresponding conjugate pai_r o{ complex roots that
are destined to become a multiple root (&7, —%r) when U=U;. In conjunction
with these complex roots

=7 Tap— (=)’ P .

52_49*2 o ETL“LQ*Z &= &_P*‘Bk +(b E)

and according to equation (3.14) the roots are zeros of the P-equation if

Re []<b .
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Now, according to the theory on the geometry of the zeros (see MARDEN
1949), the pair of complex roots are always zeros of the parent algebraic system
and hence they must be continuous functions of the coefficients of the parent
equation. Hence, there must exist a region, immediately before stability zone 2,
where ¢<by, and the pair of complex roots belongs to the P-branch which must
be the zone of unstable flow. Similarly, there exists another unstable region just
after stability zone 2. The degree to which the imaginary part of the complex
roots may become large is influenced by the width of the region between stability
zones 1 and 2. Therefore, this width or the &-coordinate value (28,148.22%?)1/2
is an indication of the rate of growth of the corresponding instabilities. Com-
paring this &-coordinate value to that of the non-rotating case, we see that the
value of £ is increased by an amount 402*8,%, which means that the width of the
unstable region increases as 2* increases and hence the effect of Coriolis force is
to increase the growth rate of instabilities.

The conditions that the continuity of the roots requires the coefficient of the
highest degree term of the parent polynomial be different from zero, is satisfied
for all disturbances except those nearly-infinite-length disturbances having the
specific wavenumber a=p*8/(1—p*?).

Now, we shall determine the conditions such that dyp/dé>1 at the end point
of the P-branch in the fourth quadrant, i.e., at (£,, —7,), for the velocity U=U,
locating the auxiliary line through (&, —7%.). U, is given by

= G (Logrbe )

a &

(4.15)

which is the same as that of SONTOWSKI et al. (1969). For the velocity given in
equation (4.15), the condition that dyp/d&é>1 at (&, —7,) is given by

4% " 2 2_ap 4 86" 2y _Zﬁ 2
- {oea+ape—ap + 2 1 purrpn - 2 (Hﬁ»}]

>| B a—prroy + DA LRy AE @ompy ) 016)
p* a B

This is a sufficient condition for instability prior to stability zone 2 and these
instabilities are referred to as the initial instabilities. However, failure of the
condition (4.16) in this range does not necessarily disallow initial instabilities. We
note that in the absence of rotation, condition (4.16) reduces to that of SONTOWSKI
et al. (1969).

Now, it is important to determine the value of U, marking the occurrence of
the initial instabilities. A readily accessible and acecurate approximation for this
- velocity U is the value of U, which locates the auxiliary line through the point
(2%, —7,,) as shown in figure 4. From the equations for 7,, and the auxiliary line

it follows that
ﬁ¢:29*+(l——"” ;J“’" )m ,

[4—3a2+

which in dimension form is

les(Uu— U= 22 +{ gi—p%) | Toa }1/2. (4.17)
a a Oy

For the non-rotating system we have
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— pk¥ 1/2
s (U — U»)L:{gaa” ) 4 ::;’“ } : (4.18)
b

Comparing equations (4.17) and (4.18), we see that the effect of Coriolis force is
to delay the initial instabilities in the sense that the initial instabilities will occur
for large velocity differences.

Further, we may expect that instabilities also occur after the stability zone
2. This instability is followed at higher U by an unlimited region of unknown
stability conditions, which are assumed to be unstable. The above assumption
may be justified on the basis of the nature of the results usually obtained in an
analytic stability analysis and as well as in the results obtained in experimental
investigations. The instabilities following the stability zone 2 will be referred to
as the gross instability.

Now, we shall find the value U= U, which gives most of the gross intstability.
U, may be determined approximately by two methods. It may be approximated
excellently by KELVIN’s (1910) solution, or another good approximation is that
value of U which makes the auxiliary line pass through the point (&, 0). In view
of the mathematical simplicity we follow the latter ease. From the equations of
&, and the auxiliary line, we have, for KELVIN’s (1910) solution

(4T T, = [29*2+ [agws - (1—” ey )2}1/2]1/2 ,
14 a

or in dimensional form

(U= U= L [292 +{4“Q4 +<(1_”*)g + T )2}1/2]”2. (4.19)

1/2 2 4
o) a a a O

UNSTABLE

Vg,m

Vi, m

UNSTABLE

di,m

Fig. 5. Typical instabilities for superposition of rotating fluids.

We shall now consider the behaviour of a given fluid system under the influence
of a general disturbancg. In figure 5, the regions of stability and instability are
plotted in a plane of velocity difference V=[k*(U,—U,)] versus wavenumber a.
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The curve with dashes represents the non-rotating case. The minimum value of
[k*(U,—U,)] for the initial instability is given by

[R¥(Uu— Ul =—22- + [ 2 {g—(’%’j—f‘)&}m]uz (4.20)

i,m

and the corresponding wavenumber a;,, is

Uiy = {Q(—‘Zb—:'p—;”—“) }m . (4.21)

We note that the minimum wavenumber at which the instabilities occur is the
same as that of the non-rotating system. For velocities just above the value given
by equation (4.21) the system is unstable. At such a point the instabilities are
of a weak, selective nature. An additional instability is initiated at a velocity
[k*(U,— Uy)ls.»- This instability is of a much stronger nature. As the disturbance
direction rotates toward that of the stationary state velocity, we observe that the
tendency to become unstable increases. ,

Now, we shall find the velocity of propagation y for the initial waves. For
the initial instabilities, from the (¢, 7)-graph it follows that n=-—7,,. By the
definition of 7 and 7,, and letting 7=—o0/a, the velocity of propagation 7 is given
by

r =l U,— —2P e, — Uy

a—p*p,
X*By  prxipr —roypy IA—0Fter)  4e*B, Q)7 4
+{ (@—p*B8y)° U~ T+ a—p*Bl2  a—p*B, az} 4

which reduces to that of SONTOWSKI et al. (1969) in the non-rotating case. From
equation (4.22) it follows that the effect of rotation is to reduce the velocity of
propagation. For p*, 8, and 2 small, it follows that

/
ot (LY w2
2r A0s

which is the classical result for the propagation speed of surface waves on a fluid
of infinite depth. It is also of interest to note the relationship of this propagation
speed with that of the accompanying wind velocity. From the definition of & and
for initial instabilities £=202/a it follows that

r=Mm+mwm—mm—%§. (4.24)

Thus, the effect of rotation is such that the wind velocity is larger than the
wave velocity, whereas for the non-rotating system wind and wave travel together.

Since the degree to which the imaginary part of the complex roots may be-
come large is influenced by the width of the region between the possible stability
zones, it is of interest to study the (&, 7) locus for different values of 8; and £2*.
The stability zones are marked in the (&, n)-plane for B,=0.5, 2*%*=0.25, and B;,=
0.5, 2**=0.00 in figures 4 and 6 respectively. Comparing the two figures, we
observe that in the non-rotating system, the possible stability zone-1 is confined
to a very small region, thereby the width of the initial instability is more. Hence,
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=

STABILITY ZONE 1 ESTABILITY ZONE 2

Fig. 6. Stability zones in the real (&, 7)-plane for 2%2=0.0 (8.=0.5).

B
=

STABILITY STABILITY ZONE 3

N
. NE S 77 STABILITY ZONE 2
11 2 233

f

Fig. 7. Stability zones in the real (¢, n)-plane for 8,=0.5, 2*2=1.0.

the effect of rotation is to reduce the initial instability zone. In figure 7, the
stability zones are marked for 5;,=0.5 and £2**=1.0. As U alone increases, in this
case, the fluid system experiences consecutively conditions of definite stability
(stability zone 1), possible instability-1, definite stability (stability zone 2), possible
instability-2, definite stability (stability zone 3), and finally possible instability (to
the right of stability zone 3).

5. KELVIN’s (1910) Solution in the Rotating System

The above general theory is applied to the particular problem of 8=0. From
the real (&, 7)-locus of the basic branch equations, when 8=0, we have
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502:0 ’ 7]32:'77%10 ’ 77?10"—‘1—P*+0k .

The most significant of these results is the location of the point ([28,448.22%%]'/2, 7,,)
on the 7n-axis. The stability zones for this case are shown in figure 8. Compar-
ing figures 4 and 8, we observe that the stability zone-1 is reduced when §,=0.0,
and thereby the initial instability is inereased. On the basis of the (&, »)-locus
plotted in figures 4, 6, and 8, we can also conclude that the combined effect of
density stratification and rotation is to reduce the initial instabilities and hence to
increase the stability zone. When both B; and £2* are zero, the stability zones
are plotted in figure 9 and we see that there are no initial instabilities.

Further, when B=0 the branch equations are independent of basic steady state
velocities. The stability bound is obtained by determining the point along the P-
branch where dz/dé=1, passing the auxiliary line through the point, and then
solving the resulting equation for the velocity differences. This velocity is given by

2 __p¥k 2
(U~ U= o) 2 [0 4 (A0 Ty, (5.1)
0.l a a a 05

STABILITY ZONE 1 A STABILITY ZONE 2

Fig. 8. Stability zones in the real (&, )-plane for §5,=0.0 (2¥2=0.25).

ZONE OF

P——— e T

INSTABILITY

e ZONEOF

~———ZONE OF STABILITY INSTABILITY

Fig. 9. Stability zones in the real (&, )-plane for 8,=0.0, 2%¥2=0.0.
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which is the critical velocity for the case when the upper fluid is rotating and the
lower one is non-rotating. This is similar to the critical velocity obtained by
CHANDRASEKHAR (1961, p. 507).

We note that some indication of the rate of growth of initial instabilities is
given by the value of (28,)'/2(14-202**8,%)*/2. Therefore, for the initial instability
it is expected that

Im o~ (ag)*/? Im § ~(ag)/%(28,) /2 (1422 B,)1/* ,

and as the imaginary part of ¢ characterizes the growth rate, it is indicated that
for rotating gas blowing over a fluid the growth rate increases by an amount of
(2B8,)/*2*, This is in agreement with the experimental observations of MUNK
(1947).

6. Conclustons

The effect of Coriolis force on the stability of two superposed fluids is in-
vestigated. It is found that the effect of rotation is to stabilize the flow in the
sense that there is no initial instability, but there exists only gross instability.
In particular, in the case of stratified rotating gas flowing over non-rotating fluid
there exist two types of instabilities, one relatively weak instability called the
initial instability and other, the stronger classical instability of KELVIN (1910)
called gross instability as observed by SONTOWSKI et al. (1969) in the absence of
rotation. However, the analysis indicates that the effect of Coriolis foree is to
delay the onset of initial instabilities in the sense that the initial instabilities will
occur for large velocity differences. Comparing our results with those of SONTOWSKI
et al. (1969), we conclude that the effect of rotation is to reduce the velocity of
propagation. We also found that the combined effect of density stratification and
rotation is to reduce the initial instabilities and hence to increase the stability
zone.

It is also of interest to compare our analysis with that of CHANDRASEKHAR
(1961, p. 498) who investigated the Kelvin-Helmholtz instability in a rotating fluid
in the absence of stratification. CHANDRASEKHAR’s (1961, p. 503) solution to the
eigenvalue equation is based on the exchange of roots between the branches which
necessitates determining the singular points of the eigenvalue equation. Later on,
HUPPERT (1968) has shown that CHANDRASEKHAR’s (1961) solution is incorrect and
HUPPERT (1968) has enumerated the unstable modes correctly with the aid of Cauchy’s
principle of the argument. However, in the present analysis, although we use
CHANDRASEKHAR’s (1961, p. 501) graphical analysis, the method of finding the
roots of the eigenvalue equation is quite different from that of CHANDRASEKHAR
(1961, p. 501). Instead of using the concept of exchange of roots, we determine
the number of real roots of the eigenvalue equation based on the number of in-
tersections of the auxiliary line with the basic branch equations. This method
does not involve the process of determining the singular points and hence gives
the correct instability modes.

Regarding the nature of the initial instability, the following physical mechanism
is suggested.

In the absence of Coriolis force, the density stratification gives rise to internal
waves (see BOOKER and BRETHERTON 1967) whereas, in the absence of density
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stratification, the Coriolis force gives rise to the inertial waves (see JONES 1967 ;
BRETHERTON 1969). However, the combined effect of density stratification and
Coriolis force is to give rise to inertial-internal waves (see RUDRAIAH and
VENKATACHALAPPA 1972a). Hence an interaction occurs between the internal-
inertial waves in the rotating, stratified upper fluid and capillary-gravity waves in
the lower one. The wave length and phase speed of the two waves are such that
they are less than those in the absence of Coriolis force, and the waves are slowly
amplified. This behaviour is indicated by the eigenvalue calculation which shows
the propagation speed and wave length to be related as in the classical form of
capillary-gravity waves. Since the Coriolis force and density stratification are
weak and the inertial-internal wave travels very slowly relative to the upper fluid,
and because the rotating gas and waves travel together, the inertial-internal wave
can match up and resonate with the capillary-gravity wave. This resonance leads
to an enhanced instability.

One of the authors (M.S.) is grateful to the Bangalore University for provid-
ing a Research Assistantship. We are indebted to the referee for many valuable
suggestions.
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