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We study the effect of coupling delay in a regular network with a ring topology and in a more
complex network with an all-to-all (global) topology in the presence of impurities (disorder). We find
that the coupling delay is capable of inducing phase coherent chaotic oscillations in both types of
networks thereby enhancing the spatiotemporal complexity even in the presence of 50% of symmetric
disorders of both fixed and random types. Further, the coupling delay increases the robustness of the
networks upto 70% of disorders, thereby preventing the network from acquiring periodic oscillations
to foster disorder-induced spatiotemporal order. We also confirm the enhancement of coherent
chaotic oscillations using snapshots of the phases and values of the associated Kuramoto order
parameter. We also explain a possible mechanism for the phenomenon of delay-induced coherent
chaotic oscillations despite the presence of large disorders and discuss its applications.

PACS numbers: 05.45.Xt,05.45.Pq,05.45.Jn,05.45.Gg

I. INTRODUCTION

In recent times, researchers have been interested in
studying networks of oscillators with time-delayed cou-
pling because of their wide applications in science [1–4],
engineering and technology [5–7]. Considering the fact
that in most realistic physical and biological systems [8–
10] the interaction signal propagates through media with
limited speed, its finite signal propagation time induces
a time-delay in the received signal [11–13]. For example,
in biological neural networks, it has been shown that the
neural connections are full of variable loops such that the
propagation of signal through the loops can result in a
large time-delay (synaptic delay), and it is also reported
that the axons can generate time-delay upto 300 ms [12].
A typical nonlinear time-delay system is a veritable black
box [13] and that the delay coupling itself gives rise to a
plethora of novel phenomena, such as delay-induced am-
plitude death [7], phase-flip bifurcation [15], synchroniza-
tions of different types [16], multistability [17], chimera
states [18, 19], etc. in coupled nonlinear oscillator sys-
tems.

In this paper, we consider a network of forced and
damped nonlinear pendula studied earlier by Braiman et
al.[20], commonly known as the forced Frenkal-Kontorova
model. It represents a straightforward physical realiza-
tion of an array of diffusively coupled Josephson junctions
[21, 22] in which the applied current in each junction is
modulated by a common frequency. The possibility of ob-
taining synchronized motion in one and two-dimensional
chaotic arrays of such systems has been investigated in
Refs. [23–26], where the complex chaotic behavior of
the collective systems was completely tamed when a cer-
tain amount of impurities (disorder) was introduced. To
be specific, disorder enhanced spatiotemporal regularity
[20, 27], disorder enhanced synchronization [28, 29] and
taming chaos with disorder [24–26] in such systems have
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FIG. 1: (Colour online) The schematic diagram of the array
of pendula with periodic boundary conditions.

received central importance in recent research on com-
plex systems and their applications.

In our present studies, we study a regular network with
a ring topology and a more complex network with an
all-to-all (global) topology with different densities (sizes)
of impurities (disorder) and examine the effect of time
delay in the coupling. In particular, the oscillations of
each pendulum affects the oscillations of the pendula to
which it is connected to, after some finite time-delay τ .
In such a configuration, we are interested in investigat-
ing the possibility of achieving coherent chaotic dynam-
ics in the network despite of the presence of a substan-
tial amount of disorder and, thereby, enhancing the spa-
tiotemporal complexity, a counter-intuitive result to the
expected (reported) outcome of taming chaos and en-
hancing spatiotemporal order with even a negligible size
of disorder in the network (in the absence of coupling de-
lay). Here by coherent chaotic dynamics, we mean the
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emergence of collective (phase-coherent or phase synchro-
nized) chaotic oscillations (but not complete synchroniza-
tion) in the entire network despite the presence of disor-
der [30]. The delay enhanced phase-coherent chaotic os-
cillations are characterized both qualitatively and quan-
titatively using snapshots of the phases of the pendula
in the networks and the Kuramoto order parameter [31].
Recently, similar coherent states have been observed in
Bose-Einstein condensates on tilted lattices for strong
field showing highly organized patterns, often denoted as
quantum carpets [32]. Enhancing spatiotemporal com-
plexity or at least preserving the original spatiotemporal
pattern in the midst of a noisy environment due to the
presence of disorder is crucial for applications, such as
spatiotemporal and/or secure communication [33] in spa-
tially extended systems, especially in biology and physiol-
ogy [34], in the state of art of modern computing, namely
liquid state machines (LSM), in which the degree of spa-
tiotemporal complexity of the network of dynamical sys-
tems determines the highest degree of computational per-
formance (i.e, mixing property) [35], etc.

In particular, we will show that time-delay in the cou-
pling induces coherent chaotic oscillations of the net-
work of coupled systems, in both diffusively coupled pen-
dula with periodic boundary conditions and in a globally
coupled network, thereby enhancing the spatiotemporal
complexity despite the presence of a large number of dis-
orders, even upto half the size of the network. Further,
coupling delay enhances the robustness of the network
against disorders of size greater than 50% of the network
thereby preserving the original dynamical states of the
network and preventing disorder-enhanced synchronous
periodic oscillations of the entire network leading to spa-
tiotemporal order. It is to be noted that in an array
without delay even the presence of a very small peri-
odic disorder itself is capable of suppressing the chaotic
oscillations of the entire network and thereby inducing
spatiotemporal regularity as demonstrated in Refs. [24–
26]. We will also explain an appropriate mechanism for
delay-induced coherent chaotic oscillations leading to en-
hanced spatiotemporal complexity based on a mechanism
for taming chaoticity (in the absence of delay), as re-
ported in [20]. A relevant study focusing on macroscopic
properties of the globally connected heterogeneous neu-
ral network has revealed similar irregular collective be-
havior [36].

The paper is organized as follows. In Sec. II, we will
briefly discuss the existing results on taming chaoticity
leading to spatiotemporal regularity without any delay
coupling for a linear array of nonlinear pendula with peri-
odic boundary conditions, which will be useful for a later
comparison. We will demonstrate our results on delay-
induced coherent chaotic oscillations despite the presence
of large disorders, even upto 70%, in Sec. III. Similar re-
sults are presented in a network of globally coupled pen-
dula both with and without delay coupling in Sec. IV.
Finally, in Sec. V, we discuss our results and conclusions.

II. LINEAR ARRAY OF PENDULA IN THE

ABSENCE OF COUPLING DELAY

We consider a chain ofN forced coupled nonlinear pen-
dula whose equation of motion can be written as [20, 24–
29]

ml2ẋi = yi, (1a)

ẏi = −γyi −mgl sin xi + f + f ′

isin(ωt) +

C[yi+1(t)− 2yi(t) + yi−1(t)], (1b)

where i = 1, 2, · · · , N . We choose the following periodic
boundary conditions: x0 = xN and xN+1 = x1. The
parameters are taken as follows: the mass of the bob
m = 1.0, the damping γ = 0.5, acceleration due to the
gravity g = 1.0, dc torque f = 0.5, angular frequency
ω = 0.67, pendulum length l = 1.0, f ′

i = f ′ is the ac
torque and C is the coupling strength. The schematic
diagram of the coupling configuration is shown in Fig. 1,
in which the first pendulum is connected with the second
and the N th pendulum so that each pendulum gets two
inputs, without any delay, from its nearest pendula. For
the coupling strength C = 0.0, the pendula are uncoupled
and evolve independently.
In earlier studies [20, 24–29], the authors have dealt

with an array of pendula with diffusive coupling but
without delay and have shown that the chaotic dynamics
of the array is controlled by the inclusion of impurities,
which are disorders in their natural frequencies and/or
distributed initial phases of the external forces. In par-
ticular, in Ref. [24–26], the authors have considered a
chain of diffusively coupled pendula without delay and
have shown that inclusion of even a single periodic im-
purity is enough to tame chaos in a long chain of length
with N = 512. However, we would like to point out
that we are not able obtain the results with a single im-
purity as reported by these authors. Nevertheless, tam-
ing chaos and achieving spatiotemporal regularity can
be obtained for 20% of impurities for appropriate cou-
pling strength for different sizes of the array as reported
by other authors [20, 27–29]. In the following, we will
briefly illustrate the results of taming chaos and achiev-
ing spatiotemporal regularity in an array of N = 50 cou-
pled pendula, Eq. (1), with ring configuration without
any coupling delay to appreciate the effect of delay cou-
pling in the following sections. The results have been
confirmed for the case of N = 512 too.
We introduce disorder in the network of chaotic pen-

dula by allowing one or more pendula to oscillate peri-
odically as in the earlier reports [20, 27–29]. In order
to fix the parameters (of the pendula) corresponding to
the chaotic and periodic regions, we start our analysis by
plotting the bifurcation diagram of a single pendulum as
a function of the ac torque in the range f ′ ∈ (0, 2) for
fixed values of the other parameters. The bifurcation dia-
gram and its corresponding largest Lyapunov exponent is
depicted in Fig. 2(a), which exhibit a typical bifurcation
scenario leading to chaotic behavior for appropriate val-
ues of the ac torque. To elucidate the dynamical behavior
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FIG. 2: (Color online) Bifurcation diagrams of a single pendulum in a ring of three coupled pendula and the largest Lyapunov
exponent (of a single pendulum for C = 0.0 and that of the entire network for C > 0.0) for different values of the coupling
strength C and the coupling delay τ . (a) C = 0.0 and τ = 0.0, (b) C = 0.5 and τ = 0.0, (c) C = 0.5 and τ = 1.5, and (d)
C = 0.6 and τ = 2.0 (inset shows that the pendulum exhibits chaotic oscillations for f ′

d = 1.6).Red (dark grey) line corresponds
to the largest Lyapunov exponent and light blue (light grey) dots correspond to the bifurcation diagram. Note that in all the
cases (b)-(d) the three pendula are in a completely synchronized state and, hence, the largest Lyapunov exponent corresponds
to the synchronization manifold.

of the ring ofN coupled pendula as a function of a param-
eter, we have explored an array of N = 3 pendula with
periodic boundary conditions in plotting the bifurcation
diagram, because each pendulum in an array of arbitrary
length N > 2 is coupled with its nearest neighbors and
so each of the pendula effectively gets two inputs from
its neighbors. Therefore the basic configuration of N = 3
pendula is sufficient to explain the bifurcation pattern of
N coupled pendula in a ring configuration for same val-
ues of the parameters. Indeed, we have confirmed that
the bifurcation diagram remains the same irrespective of
the value of N for the same set of parameter values as in
Fig. 2. The bifurcation diagram of a single pendulum in a
ring of N = 3 coupled pendula and the largest Lyapunov
exponent of the entire network for the value of the cou-
pling strength C = 0.5 in the same range of f ′ is depicted
in Fig. 2(b). The bifurcation scenario of each pendulum
in a ring of N = 3 coupled pendula is almost identical
to that of a single uncoupled pendulum (Fig. 2(a)) and
the network (ring of N = 3 coupled pendula) as a whole
exhibits a positive largest Lyapunov exponent as shown
in Fig. 2(b).

It is to be noted that the network of diffusively coupled
(N = 3) pendula is already in a synchronized state for
the chosen value of coupling strength, C = 0.5. Conse-

quently, following a reasoning similar to what reported in
Ref. [37] for a system of two coupled chaotic oscillators,
one gets that the synchronization manifold has only a sin-
gle positive Lyapunov exponent for appropriate values of
f ′. The synchronization manifold in this case is almost
similar to the phase space of a single system (Fig. 2(a))
as is evident from the bifurcation diagram (Fig. 2(b)).
Hence the network as a whole exhibits a single positive
Lyapunov exponent for C = 0.5. More details on syn-
chronization manifold and its relation to the transition
of Lyapunov exponents of diffusively coupled systems can
be found in Ref. [37].

Poincaré (surface of section) points corresponding to
the network of N = 50 pendula in a ring configuration,
(Eq. (1)), for the coupling strength C = 0.5 is depicted in
Fig. 3. The entire network of pendula exhibits coherent
chaotic oscillations in the absence of any periodically os-
cillating disorder as shown in Fig. 3(a) for the ac torque
f ′ = 1.5. The spatiotemporal representation of Fig. 3(a)
is illustrated in Fig. 4(a), where the horizontal axis cor-
responds to time t and the vertical axis to the oscillator
indexN , which is plotted for ten drive cycles after leaving
out sufficient transients (one thousand drive cycles). It is
to be noted that the network of N = 50 coupled pendula
does not exhibit synchronous chaotic oscillations as is ev-
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FIG. 3: Poincaré points corresponding to the network of pendula in a ring configuration with N = 50 for the coupling strength
C = 0.5 in the absence of coupling delay. (a) Chaotically oscillating pendula for f ′ = 1.5 when no disorder is present, (b)
Periodically oscillating pendula for 20% disorders with fixed f ′ = f ′

d = 0.5 and (c) Periodically oscillating pendula for 20%
disorders with random f ′

d ∈ (0.1, 0.5).
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FIG. 4: (Color online) Spatiotemporal representation of
Fig. 3. Here the horizontal axis corresponds to time t and
the vertical axis to the oscillator index N .

ident from Fig. 3(a). Otherwise it would show identical
color for all the oscillators as a function of time. The
colors code the angular velocities of the pendula; dark
red (dark gray) indicates negative velocities and green
(light gray) positive velocities. Narrow bands of red and
green colors represent sudden rapid motion of the pen-
dula in the array. The spatiotemporal plot (Fig. 4(a))
shows that the evolution is not only nonperiodic but is
in fact chaotic without any repetitive patterns or regular
structures.

Next, impurities (disorders) with periodic oscillations
are symmetrically distributed in the array to investigate
the effect of disorder as in the earlier studies [20, 27–
29]. It is to be noted that an asymmetric distribution of
disorder does not tame the array thereby fostering syn-
chronous evolution and spatiotemporal regularity as dis-

cussed in [20]. The density of the disorder is increased
from 1% along with the coupling strength C. We find
that for C = 0.5 the entire array gets locked to a syn-
chronous periodic evolution (Fig. 3(b)) for 20% impu-
rities with their corresponding f ′

d = 0.5 (so that the
impurities oscillate periodically), leading to spatiotem-
poral regularity (Fig. 4(b)). Hereafter, we denote the
ac torque corresponding to chaotic states as f ′ and that
corresponding to (disordered) periodic states as f ′

d. The
spatiotemporal plot indicates repetitive patterns for ev-
ery two drive cycles confirming the periodic evolution of
the array of pendula. To be precise, for 20% disorder in
the network ofN = 50 coupled pendula, ten disorders are
placed at every fifth site in the network. The disorder-
induced spatial synchronized states reported here are ex-
actly for the same value of C and the density of the dis-
orders but for different sizes of the array as reported in
Refs. [20, 27–29]. Further, we find that even for a ran-
dom distribution of f ′

d of the disorders taming can be
achieved in a wide range of ac torque. A periodically os-
cillating array of pendula for 20% of disorder is obtained
for a random distribution of f ′

d ∈ (0.1, 0.5) as shown in
Fig. 3(c) along with their spatiotemporal representation
in Fig. 4(c).

In the following, we will demonstrate that the intro-
duction of coupling delay can sustain and enhance coher-
ent chaotic oscillations in the linear array with periodic
boundary conditions with the density of disorder as large
as 50% for the same parameter values. For 50% disorder
in the network of N = 50 coupled pendula, 25 disorders
are placed at every alternate sites in the network. Fur-
thermore, the coupling delay increases the robustness of
the network by preserving the dynamical complexity of
the given network for further increase in the density of
disorder to as large as 70% of the size of the network. The
array attains synchronous periodic behavior for disorder
greater than 70%. For 70% disorders in the network of
N = 50 coupled pendula, after placing 25 disorders at
every alternate sites in the network, the remaining ten
disorders are placed anywhere either symmetrically or
asymmetrically.
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FIG. 5: Same as in Fig. 3 but now in the presence of coupling delay τ = 1.5 and for different densities of disorders. First row
is with fixed value of the disorders f ′

d = 0.5 and the second row with random values of f ′

d ∈ (0.2, 0.9). (a,d) 20%, (b,e) 50%
and (c,f) 70% of disorders.
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FIG. 6: (Color online) Spatiotemporal representation of Fig. 5. Color bar is the same as in Fig. 4.

III. LINEAR ARRAY WITH COUPLING DELAY

A. Effect of Time-delay

Now, we consider a chain ofN forced coupled nonlinear
pendula with periodic boundary conditions along with
the same parameter values as in Sec. II but with the
introduction of coupling delay. The dynamical equations

then become,

ml2ẋi = yi, (2a)

ẏi = −γyi −mgl sin xi + f + f ′

isin(ωt) +

C[yi+1(t− τ)− 2yi(t) + yi−1(t− τ)], (2b)

where i = 1, 2, · · · , N and τ is the coupling delay. Now,
the first pendulum (see Fig. 1) is connected with the sec-
ond and with the N th pendulum with a delay τ , so that
each pendulum gets two delayed inputs from its nearest
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pendula. Similar delayed couplings are effective for the
other pendula in the array. For C = 0.0, the pendula are
uncoupled and evolve according to their own dynamics
as before. As the coupling delay will change the bifur-
cation scenario of the coupled pendula as a function of
the ac torque, we have to look at the bifurcation dia-
grams to fix the values of the strength of the ac torque
f ′ in the periodic and chaotic regimes. The bifurcation
scenario of a single pendulum in a ring of N = 3 de-
lay coupled pendula and the largest Lyapunov exponent
of the entire network for the value of the coupling delay
τ = 1.5 and for C = 0.5 is depicted in Fig. 2(c). This
network exhibits only a single positive Lyapunov expo-
nent for the chosen value of delay τ = 1.5, as the net-
work of diffusively coupled subsystems are synchronized
to a common synchronization manifold as discussed in
Sec. II. Figure 2(d) shows the bifurcation diagram and
its corresponding largest Lyapunov exponent for τ = 2.0
and C = 0.6.

The bifurcation diagram (Fig. 2(c)) for τ = 1.5 and
C = 0.5 shares some common regimes of chaotic behavior
in f ′ with its corresponding undelayed case (Fig. 2(b)).
Therefore, we fix f ′ = 1.5 for the chaotic pendula and
f ′ = f ′

d = 0.5 for disorder characterized by periodic
behavior as in Sec. II. The Poincaré points as a func-
tion of the oscillator index (N) after leaving out a suf-
ficiently large number of (1000 drive cycles) transients
in the presence of the coupling delay, τ = 1.5, and for
C = 0.5 are shown in Fig. 5 for different values of den-
sity of disorder. The first row is plotted for disorders with
fixed f ′

d and the second one for a random distribution of
f ′

d ∈ (0.2, 0.9). The corresponding spatiotemporal plot
is depicted in Fig. 6 for 10 drive cycles. Disorder of size
20% are uniformly distributed in the array of N = 50
pendula, as in Fig. 3(b) (where the array acquired syn-
chronous periodic oscillations) with fixed and randomly
distributed f ′

d in the periodic regime. The evolution of
the array in this case is illustrated in Figs. 5(a) and 5(d),
respectively. The array self-organizes to exhibit complex
spatiotemporal patterns (Figs. 6(a) and 6(d)) without
any repetitive patterns thereby exhibiting delay-induced
phase-coherent chaotic oscillations (see Sec. III B be-
low for confirmation). It is to be noted that the net-
work of N = 50 delay coupled pendula does not exhibit
synchronous oscillations as confirmed by the Figs. 6(a)
and 6(d). We have increased the density of disorder upto
50% for the same values of the parameters and the sce-
nario is depicted in Figs. 5(b) and 5(e) for fixed and ran-
dom distributions of f ′

d, respectively, along with the spa-
tiotemporal representation in Figs. 6(b) and 6(e). These
figures show that the array of pendula originally with
50% of periodic disorder evolves to acquire collective co-
herent chaotic oscillations in the entire array induced by
the rather small coupling delay τ = 1.5 in a wide range
of f ′, which is indeed a surprising result of delay impact.

B. Delay enhanced phase coherence

Controlling of oscillator coherence by delayed feedback
has been observed both theoretically and experimentally
in Refs. [42, 43]. In our investigation, we find that in
addtion to the enrichment of the periodic disorder to
(chaotic) higher order oscillations, delay coupling also in-
creases the coherence of the collective chaotic oscillations
of the whole network. For a better understanding and
confirmation of the delay enhanced phase-coherent oscil-
lations of the entire network, we investigate both quali-
tatively and quantitatively the coherence property of the
network macroscopically. For each of the pendulum in
system (2), one can define the phase as

θi = tan−1(yi/xi). (3)

Here θi’s represent the phases of the individual pendula
in the system. In order to visualize the effect of coupling
delay on phase coherence of the system, we plot the snap-
shot of the phases of the pendula in Fig. 9. From Eq. (3),
one can write

Xi = cos θi =
xi

√

(x2
i + y2i )

, (4a)

Yi = sin θi =
yi

√

(x2
i + y2i )

. (4b)

The Kuramoto order parameter r which quanti-
fies the strength of phase coherence is given by

reiψ= 1

N

∑N

j=1
eiθj . When r = 0 phase coherence is ab-

sent in the system and when r ≈ 1 there is complete
phase coherence in the system. Thus r essentially quan-
tifies the strength of phase coherence. To be more quan-
titative one can use the time averaged order parame-

ter R = 1

T

∫ T

0
rdt so that its low value (near to zero)

corresponds to phase incoherence while a value near to
unity corresponds to phase coherence. Throughout the
manuscript, we have estimatedR for an average over 1200
time units.
Using Eqs. (4) (where the xi’s are wrapped to be be-

tween 0 and 2π) we have plotted the distribution of
phases associated with Eq. (2) in the (Xi, Yi) plane in
Fig. 9. We present the results for two specific values
of the coupling strength C for the same value of de-
lay parameter τ = 1.5, that is for a low value of cou-
pling C = 0.05 with 20% impurity (Fig. 9(a)) and for
C = 0.5 with 20%, 50% and 70% impurities in Figs. 9(b),
(c) and (d), respectively. The phases of the pendula are
distributed apart on the unit circle for C = 0.05, as illus-
trated in Fig. 9(a), indicating a poor or a very low coher-
ence of the pendula, which is also confirmed by the low
value of the time average of the Kuramoto order param-
eter R = 0.316. The time evolution of the corresponding
order parameter r itself is depicted in Fig. 10(a). The
phases of the pendula in the entire network correspond-
ing to Figs. 5(d)-(f), that is for C = 0.5 with 20%, 50%
and 70% impurities, are depicted in Figs. 9(d)-(f), respec-
tively. The phases are now confined to a much smaller
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FIG. 7: Poincaré points corresponding to the network of pendula, with f ′ = 1.6 for chaotic pendula, in a ring configuration
with N = 50 for the coupling strength C = 0.6 with coupling delay τ = 2.0 and for different values of density of disorders.
First row is with fixed value of the disorders f ′

d = 1.1 and the second row with random values of f ′

d ∈ (0.5, 1.2). (a,d) 20%,
(b,e) 50% and (c,f) 70% of disorders.
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FIG. 8: (Color online) Spatiotemporal representation of Fig. 7. Color bar is the same as in Fig. 4.

region on the unit circle for C = 0.5 in the presence of
the delay coupling confirming the delay enhanced phase-
coherent oscillations of the entire network. This is in-
deed confirmed by much higher values of the time aver-
aged order parameter R = 0.964, 0.973, and 0.982, for
Figs. 9(b)-(d), respectively. Also, the time evolution of
the order parameter corresponding to Fig. 9(b) is shown
in Fig. 10(b). Thus, we have confirmed the existence of

delay enhanced phase-coherent oscillations in the entire
network of delay coupled pendula for appropriate cou-
pling strength C.
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FIG. 9: Snapshots of the phase portraits on the (Xi, Yi) plane
of the ring network, with Xi = cos θi and Yi = sin θi. Here (a)
corresponds to C = 0.05 and (b)-(d) correspond to Figs. 5(d)-
(f) with C = 0.5 and the strength of the impurities being
20%, 50% and 70%, respectively.
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FIG. 10: Time evolution of the Kuramoto order parameter
r for (a) C = 0.05 (Fig. 9(a)) and (b) C = 0.5 with 20%
impurity (Fig. 9(b)).

C. Possible Mechanism

Two simple mechanism were suggested for taming of
chaos by disorder and fostering of periodic patterns in
the array without delay in Ref. [20]. Indeed, we find the
manifestations of both these mechanism in the delay cou-
pled networks as well under appropriate conditions. It is
essential to understand the first of these two mechanism
to understand the mechanism behind the delay induced
coherent chaotic oscillations. The first mechanism de-
pends on the topological features of the attractors. The
periodic disorder needed to stabilize a chaotic array de-
pends on both the distance and the direction in the pa-
rameter space to the nearest periodic attractor, which is
controlled by the magnitude and distribution of the disor-
der [20]. For this mechanism to work it is not essential to
introduce disorder since uncoupled chaotic oscillators can
become periodic when coupled. This phenomenon is ex-
plicitly observed from the bifurcation diagrams shown in
Fig. 2. The chaotic regimes in the range of f ′ ∈ (0.5, 0.97)
in Fig. 2(a) for the uncoupled system becomes periodic

1

2

34

5

y(t-τ)

FIG. 11: (Colour online) Schematic diagram of a network of 5
oscillators with all to all (global) coupling. In this figure each
oscillator gets 4 delayed input from the remaining oscillators
in the network, and also a delayed feedback from itself when
j = i.

for the same parameters when a coupling delay is intro-
duced (see Fig. 2(c) and 2(d)). The second mechanism
deals with the locking of the chaotic pendula by the peri-
odic ones to the external ac drive [20], which is observed
for disorder greater than 70% in our case.

In this paper, we are interested in delay-induced coher-
ent chaotic oscillations in the network, the mechanism of
them is a simple extension of the first, as will be explained
in the following. The presence of delay in the coupling ex-
tends the phase space dimension as a time-delay system
is essentially an infinite-dimensional system [13]. There-
fore, the dimension and the phase space (characterized
by multiple unstable directions corresponding to mul-
tiple positive Lyapunov exponents of the delay-coupled
network) of the chaotic attractors of the delay-coupled
network also increases. This in turn increases the ro-
bustness of the chaotic attractors against even nearby
periodic orbits (disorders) in the parameter space and
hence the presence of a large percentage of periodic disor-
der (which does not extend over multi-dimensional phase
space) is not capable of taming the chaoticity of the pen-
dula. Furthermore, delay being a source of instability,
by inducing chaotic oscillations [13, 14, 38–40], the pe-
riodic disorder acquires chaotic oscillations for suitable
values of the delay resulting in coherent chaotic oscilla-
tions of the entire array. It is to be noted that increasing
the delay alone gives rise to a rich variety of behavior,
such as periodic, higher order oscillations, chaotic and
hyperchaotic attractors with a large number of positive
Lyapunov exponents as observed in several bifurcation
diagrams presented earlier as a function of the delay even
in scalar time-delay systems [13, 41]. Further, periodic
orbits of very large periods are also created due to the
delay which are not present in the undelayed systems
and these higher order oscillation manifest in the array
in place of disorder when the size of disorder is larger
than 50%.
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FIG. 12: (Color online) The largest Lyapunov exponents of the network of N = 20 globally coupled pendula and the bifurcation
diagram of a single pendulum in the network for different values of the coupling strength C and the coupling delay τ . The inset
shows that the network exhibits chaotic oscillations for the specific values of f ′ chosen in the text. (a) C = 0.2 and τ = 0.0,
(b) C = 0.2 and τ = 1.5, and (c) C = 0.3 and τ = 2.0. Red and dark blue (dark grey) lines correspond to the largest Lyapunov
exponents and light blue (light grey) dots correspond to the bifurcation diagram.

D. Effect of Increased Disorder and Coupling Delay

We have also increased the amount of disorder to more
than half the size of the network to investigate the ef-
fect of delay coupling. Indeed this scenario may also
be considered as the one in which chaotic impurities co-
exist in a sea of a periodically oscillating network and
one may expect the suppression of chaotic oscillations to
achieve coherent periodic oscillations so as to enhance
spatiotemporal order of the network. Nevertheless, the
presence of delay in the coupling prohibits suppression
of any chaotic pendula upto 70% of disorder and in-
duces chaoticity in the periodic impurities adjacent to
a chaotic pendulum, while the impurities away from it
acquire higher order oscillations. Furthermore, it is to be
noted that for a density of disorder larger than 50%, the
distribution of disorder becomes nonuniform (asymmet-
ric). For instance, we have distributed 70% of disorders,
while retaining chaoticity only in the remaining 30% pen-
dula for the same values of τ and C. The dynamical or-
ganization of the array with 70% of disorder is shown in
Figs. 5(c) and 5(f), which again depicts the delay-induced
chaoticity in the periodic pendula adjacent to the chaotic
pendulum, while the other periodic pendula away from
the chaotic pendulum acquire higher order oscillations.
The corresponding self-organized complex spatiotempo-
ral behavior is shown in Figs. 6(c) and 6(f). We have
also confirmed the higher order oscillations of the pen-
dula from their corresponding phase space plots. We can
conclude that the complexity of the network as a whole
is increased in the presence of delay coupling even if the
impurities exceed half the size of the network thereby
confirming the robustness of the network against large
disorder-induced by the coupling delay.

Next, the value of the coupling delay is further in-
creased to examine whether the delay enhances the co-
herent chaotic oscillations and increases the robustness
of the array against more than 70% disorder. We find
that increase in the coupling delay also leads to the same

results for appropriate value of the coupling strength and
the network of pendula attains synchronous periodic os-
cillations leading to spatiotemporal order for disorder of
size more than 70%. To be specific, we fix the coupling
delay as τ = 2.0 and C = 0.6. For impurities of pe-
riodic type the ac torque is fixed as f ′

d = 1.1 and for
chaotic pendula it is chosen as f ′ = 1.6 using the bi-
furcation diagram shown in Fig. 2(d) (as seen in the in-
set). The first row in Fig. 7 is plotted for disorders with
fixed f ′

d and the second row for random distribution of
f ′

d ∈ (0.2, 0.9). Delay-induced coherent chaotic oscilla-
tions of the whole network in the presence of 20% disor-
der are shown in Figs. 7(a) and 7(d). The corresponding
spatiotemporal representation is illustrated in Figs. 8(a)
and 8(d). The network of N = 50 coupled pendula os-
cillates chaotically even in the presence of 50% disorder
as depicted in Figs. 7(b) and 7(e) along with their com-
plex spatiotemporal patterns in Figs. 8(b) and 8(e), re-
spectively. Further increase in the density of disorder to
70% continues to result in chaotic oscillations of disor-
ders adjacent to the chaotic pendula and higher order
oscillations in disorders further away from it, as shown
in Figs. 7(c) and 7(f). The corresponding dynamical or-
ganization of the network of pendula with 70% disorder
to self-organized complex spatiotemporal structures is il-
lustrated in Figs. 8(c) and 8(f).

E. Summmary

Thus we have shown that the infected sites are healed
or in other words the disorders in the ring network ac-
quires coherent chaotic oscillating behavior induced by
time-delay in the coupling thereby enhancing the spa-
tiotemporal complexity for a uniform (symmetric) distri-
bution of the impurities as large as 50% of the array. Note
that in the absence of delay in the coupling, the whole
network will become infected (ordered) even for 20% of
disorder. Further for the density of disorder larger than
50%, the distribution of disorder becomes nonuniform



10

(asymmetric). In this case, the impurities adjacent to
the chaotic element acquires chaoticity, while the impu-
rities located away from the chaotic ones acquire higher
order oscillations resulting in enhanced complexity of the
network. It is also to be appreciated that the delay in the
coupling not only enhances the coherent chaotic oscilla-
tions, but also increases the robustness of the network
against any infection (disorder) of even more than half
the size of the network.

In the next section, we will extend our investigation to
a network of globally coupled pendula and show that we
essentially obtain similar results. In particular, coupling
delay can enhance the dynamical complexity of disor-
dered pendula leading to delay-induced coherent chaotic
oscillations upto 50% of symmetric disorder. For asym-
metric disorder of size greater than 50%, the coupling
delay can induce chaotic oscillations in disordered pen-
dula adjacent to chaotic pendula and those away from
it will acquire higher order oscillations upto 65% disor-
der resulting in the enhanced complex behavior of the
existing network.

IV. GLOBAL DELAYED COUPLING

Most natural systems involve complicated coupling be-
tween them and that the individual oscillators are not
only coupled with their nearest neighbors but also with
all other elements in the network. Such a global coupling
plays an important role in a large number of dynami-
cal systems ranging from the physical [44], chemical [45]
and biological [46] to social and economic [47, 48] net-
works and electronic systems [49]. Global coupling is also
being studied in reaction-diffusion systems, for exam-
ple as a reaction-diffusion with global coupling (RDGC)
model, to understand the mechanism behind the elec-
tromechanic dynamics of the heart and generation of
successive ectopic beats [50] and also to understand the
mechanism behind the oscillatory regime in the Nash-
Panfilov model [51]. In addition, delayed global cou-
pling has been shown to induce in-phase synchroniza-
tion in an array of semiconductor lasers [3]. It has been
demonstrated that global coupling is more efficient than
local coupling to achieve non-stationary and stationary
in-phase operations with and without delay, respectively,
in Ref.[52, 53].

In this section, we will investigate the effect of delay
coupling in the presence of disorder in a globally coupled
network of pendula, where every pendulum is connected
to all the other (N − 1) pendula in the network with
a delay τ and it gets a self-delayed feedback only when
j = i. To explain the coupling configuration, a schematic
diagram of a network of 5 oscillators is shown in Fig. 11
(the doted lines show the self-delayed feedback only when

j = i). The model is represented as

ml2ẋi = yi, (5a)

ẏi = −γyi −mgl sin xi + f + f ′

isin(ωt) +

C

N

N
∑

j=1

[yj(t− τ) − yi(t)], (5b)

where i = 1, 2, · · · , N . All the parameters have been cho-
sen to be the same as in the previous section. We restrict
ourselves to N = 20 oscillators for computational conve-
nience; however similar results have also been obtained
for larger number of oscillators for appropriate coupling
delay and coupling strength.
Further, we wish to add that in order to fix the system

parameters pertaining to chaotic and periodic regimes,
unlike the case of linear coupling (Sec. II and III), it is
not meaningful to consider the bifurcation scenario with
low numbers of pendula, like N = 3 or 4, in the case of
global coupling as the bifurcation diagrams will change
appreciably when the value of N changes. So in our fol-
lowing study of the bifurcation scenario and the Lya-
punov spectrum, we analyse the full network itself and
present the first one or two largest Lyapunov exponents
of the entire network and the bifurcation diagram of a
single pendulum in the network.

A. Globally coupled pendula without delay

We will start our investigation by plotting the bifur-
cation diagrams and the Lyapunov exponents for delin-
eating the periodic and chaotic regimes in the case of
N = 20 globally coupled pendula. Enhancement of spa-
tiotemporal regularity and taming chaoticity in globally
coupled network has not yet been reported to the best of
our knowledge. Hence the comparison of delay-enhanced
coherent chaotic oscillations leading to spatiotemporal
complexity will be meaningful only when the globally
coupled chaotic network in the presence of a few peri-
odic disorder is tamed when there is no delay. Therefore,
in this section, we will show that the globally coupled
chaotic network is indeed tamed leading to spatiotempo-
ral order in the absence of coupling delay.
The largest Lyapunov exponent of the full network and

the bifurcation diagram of a pendulum in the network
of the globally coupled (N = 20) case are plotted in
Fig. 12(a) for C = 0.2 in the range of f ′ ∈ (0, 2) when
no delay is present. We find that all the pendula in this
network exhibit an almost similar bifurcation scenario,
and that the network as a whole exhibits multiple posi-
tive Lyapunov exponents. However, these values are close
to each other and so we present only the largest one in
Fig. 12(a). We fix f ′ = 1.4 for chaotic pendula (as con-
firmed from the positive Lyapunov exponent shown in
the inset of Fig. 12(a)) and f ′

d = 0.3 for periodic disor-
der from the bifurcation diagram. Chaotically oscillating
pendula in the globally coupled network without any dis-
order is depicted in Fig. 13(a) for C = 0.2 along with its
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FIG. 13: Poincaré points of globally coupled network of N = 20 pendula for the coupling strength C = 0.2 in the absence of
coupling delay τ = 0.0. (a) Chaotically oscillating pendula for f ′ = 1.4, (b) Periodically oscillating pendula for 20% of disorders
with fixed f ′

d = 0.3, and (c) Periodically oscillating pendula for 20% of disorders with random f ′

d ∈ (0, 0.3).
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FIG. 14: (Color online) Spatiotemporal representation of
Fig. 13. Color bar is the same as in Fig. 4.

spatiotemporal representation in Fig. 14(a) for 10 drive
cycles. As discussed in the case of diffusive coupling in
Sec. II, the globally coupled network is also tamed ex-
hibiting periodic oscillations for 20% periodic uniform
disorder with fixed f ′

d = 0.3, as illustrated in Fig. 13(b)
for the same value of C in the absence of delay. The
corresponding spatiotemporal plot shows spatiotemporal
regularity with repetitive patterns for every two drive cy-
cles as depicted in Fig. 14(b). We have obtained similar
results of taming chaoticity (Fig. 13(c)) from the network
leading to spatiotemporal order (Fig. 14(c)) for random
values of the ac torque f ′

d ∈ (0, 0.3). It is also to be noted
that we have also got similar results for random values
of f ′

d ∈ (1.7, 2.0).

In the next section, we will demonstrate the existence
of delay-induced coherent chaotic oscillations leading to
enhanced spatiotemporal complexity of the network for
disorder of size as large as 65%.

B. Globally coupled pendula with coupling delay

The largest two Lyapunov exponents of the network of
globally delay coupled pendula and the bifurcation dia-
gram of a single pendulum in the network are plotted in
Fig. 12(b) for the same value of coupling delay and cou-
pling strength as in the non-delay case reported in the
previous section (Sec. IVA) for comparison. Again the
system as a whole exhibits 20 positive Lyapunov expo-
nents and only the first two largest positive Lyapunov
exponents differ appreciably from the other almost iden-
tical positive Lyapunov exponents. Now, we fix f ′ = 0.92
for chaotic pendula (as confirmed from the positive Lya-
punov exponent shown in the inset of Fig. 12(b)) and
f ′

d = 1.5 for periodic disorder from the bifurcation di-
agram. Poincaré points representing the delay-induced
coherent chaotic oscillations of N = 20 pendula in the
network with 20% symmetric disorder with fixed f ′

d = 1.5
are illustrated in Fig. 15(a) with its complex spatiotem-
poral patterns in Fig. 16(a). A random distribution of
f ′

d ∈ (1.0, 1.7) corresponding to 20% disorder also results
in delay-induced coherent chaotic oscillations (Fig. 15(d))
and enhanced spatiotemporal complexity (Fig. 16(d)).
The density of disorder is increased further upto half the
size of the network with both fixed f ′

d = 1.5 and ran-
dom distribution of f ′

d ∈ (1.0, 1.7) as in Figs. 15(b) and
15(e), respectively, which shows increased complexity of
the entire network as depicted in their corresponding spa-
tiotemporal plots Figs. 16(b) and 16(e). The globally
delay-coupled network remains robust against disorder
of a size as large as 65%, as shown in Figs. 15(c) and
15(f) for both fixed and random values of ac torque, in
which case the period-1 disorder acquires higher order os-
cillations resulting in a self-organized complex spatiotem-
poral representation (Figs. 16(c) and 16(f)). For some
distributions of f ′

d, the network remains robust even upto
70% of disorder.

As in the case of the ring network, we further increased
the value of delay in the coupling to examine the change
in the robustness of the network against disorder and we
obtained the same results even for larger values of delay
and for appropriate values of coupling strength. For in-
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FIG. 15: Poincaré points of globally coupled network of N = 20 pendula, chaotic for f ′ = 0.92, for the coupling strength
C = 0.2 and the coupling delay τ = 1.5. First row with fixed value of the disorders f ′

d = 1.5 and the second row with random
values of f ′

d ∈ (1.0, 1.7). (a,d) 20%, (b,e) 50% and (c,f) 65% of disorders.
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FIG. 16: (Color online) Spatiotemporal representation of Fig. 15. Color bar is the same as in Fig. 4.

stance, we present our results for τ = 2.0 and C = 0.3 in
the following. The two largest Lyapunov exponents of the
network of globally coupled pendula and the bifurcation
diagram of a pendulum in the network are illustrated in
Fig. 12(c). We chose f ′ = 0.96 for a chaotic pendulum (as
confirmed from the positive Lyapunov exponent shown
in the inset of Fig. 12(c)) and f ′

d = 1.5 for disorders
from the bifurcation diagram. Poincaré points shown in
Figs. 17(a) and 17(d) indicate the chaotically oscillat-
ing pendula for 20% uniform disorder for both fixed and
random f ′

d ∈ (1.2, 2.0), respectively. Their spatiotempo-
ral representation is depicted in Figs. 18(a) and 18(d).
The evolution of the pendula in the network in the pres-
ence of 50% disorder for fixed f ′

d is shown in Fig. 17(b)
(with its spatiotemporal plot in Fig. 18(b)) and for ran-

dom f ′

d ∈ (1.2, 2.0) in Fig. 17(e) (with its spatiotemporal
plot in Fig. 18(e)). Figures 17(c) and 17(f) exemplify
the dynamical nature of the globally coupled network in
the presence of 65% disorder with both fixed and random
values of ac torque. The corresponding spatiotemporal
dynamics is depicted in Figs. 18(c) and 18(f), respec-
tively. The chaotic pendula remain unaltered, while the
period-1 disorders acquire higher order oscillations for
sizes larger than 50% resulting in increased spatiotem-
poral complexity of the original network, indicating the
robustness of the delay coupled network against disorder-
induced synchronous periodic oscillations.

Finally, as discussed in Sec. III B, we confirm the
existence of the delay enhanced phase-coherent oscil-
lations in the globally connected network of pendula
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FIG. 17: Poincaré points of globally coupled network of N = 20 pendula, chaotic for f ′ = 0.96, for the coupling strength
C = 0.3 and the coupling delay τ = 2.0. First row with fixed value of the disorders f ′

d = 1.5 and the second row with random
values of f ′

d ∈ (1.2, 2.0). (a,d) 20%, (b,e) 50% and (c,f) 65% of disorders.
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FIG. 18: (Color online) Spatiotemporal representation of Fig. 17. Color bar is the same as in Fig. 4.

by looking at the distribution of phases in the (Xi, Yi)

=
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xi√
x2

i
+y2

i

, yi√
x2

i
+y2

i

)

plane. This is indeed shown in

Fig. 19. For C = 0.05 (with 20% impurity) the phases are
distributed on a large part of the unit circle (Fig. 19(a))
and this reveals a poor coherence of the pendula as con-
firmed by the low value of the time averaged order pa-
rameter R = 0.267. The evolution of the correspond-
ing order parameter is depicted in Fig. 20(a). On the
other hand, for C = 0.20 with 20%, 50% and 65% im-
purities the phases are confined to a narrow region of
the unit circle as shown in Figs. 19(b)-(d), which is also
confirmed by the corresponding time averaged order pa-
rameters R = 0.986, 0.988 and 0.992, respectively. Also,
the evolution of the order parameter r corresponding to

Fig. 19(d) is shown in Fig. 20(b).

V. SUMMARY AND CONCLUSION

In this paper, we have analyzed the dynamics of a reg-
ular network with a ring topology, and a more complex
network with all-to-all (global) topology and studied the
effect of the size of disorder. We mainly find that the cou-
pling delay can induce phase-coherent chaotic oscillations
in the entire network thereby enhancing the spatiotem-
poral complexity even in the presence of large disorder of
a size as large as 50% in contrast to the undelayed case,
where even a 20% disorder can render the whole network
to be periodic and thereby taming chaos. Furthermore,
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FIG. 19: Snapshots of the phase portraits on the (Xi, Yi)
plane for a globally coupled network of pendula. Here (a) cor-
responds to C = 0.05, and (b)-(d) corresponds to Figs. 15(d)-
(f) with C = 0.2 and the strength of the impurities being
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FIG. 20: Time evolution of the Kuramoto order parameter r

for (a) C = 0.05 and (b) C = 0.2 with 20% impurity.

the delay coupling is also capable of increasing the ro-
bustness of the network against a large size of the disor-
der upto 70% of the size of the original network, thereby
increasing the dynamical complexity of the network for
suitable values of the coupling strength. We have also
discussed a mechanism for the delay-induced coherent
chaotic oscillations leading to spatiotemporal complexity
in the presence of large disorders. We have also con-
firmed the delay enhanced coherent chaotic oscillations
both qualitatively and quantitatively. We note here that
the results are also robust against the size of the network
and the size of the impurities (disorders) have to be fixed
proportional to the size of the network. We expect that
one can use the results of our analysis to more realis-
tic complex networks to increase the robustness of the
network against any disorder, for example, in examining
the cascading failures of complex networks, specifically in
power grids and in controlling disease spreading in epi-
demics, spatiotemporal and secure communication and
to increase the robustness and complexity of reservoir
computing or liquid state machines.
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[47] J. C. González-Avella, V. M. Eguiluz, M. G. Cosenza,
K. Klemm, J. L. Herrera, and M. San Miguel, Phys. Rev.
E 73, 046119 (2006).

[48] L. Matassini, and F. Franci, Physica A 289, 526 (2001).
[49] Visarath In, A. Kho, J. D. Neff, A. Palacios, P. Longhini,

and B. K. Meadows, Phys. Rev. Lett. 91, 244101 (2003).
[50] E. Alvarez-Lacalle, and B. Echebarria, Phys. Rev. E 79,

031921 (2009).
[51] M. P. Nash, and A. V. Panfilov, Prog. Biophys. Mol. Biol.

85, 501 (2004).
[52] R. Li, and T. Erneux, Opt. Commun. 99, 196

(1993); M. Silber, L. Fabiny, and K. Wiesenfeld, J. OPt.
Soc. Am. B 10, 1121 (1993).

[53] J. Garcia-Ojalvo, J. Casademont, M. C. Torrent, and
J. M. Sancho, Int. J. Bifurcation Chaos. Appl. Sci. Eng.
9, 2225 (1999).


