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Possibility of Prediction of Avalanches in Power Law Systems
Rumi De and G. Ananthakrishna

Abstract—We consider a modified Burridge-Knopoff model with a view
to understand results of acoustic emission (AE) relevant toearthquakes by
adding a dissipative term which mimics bursts of acoustic signals. Interest-
ingly, we find a precursor effect in the cumulative energy dissipated which
allows identification of a large slip event. Further, the AE activity for sev-
eral large slip events follows a universal stretched exponential behavior with
corrections in terms of time-to-failure. We find that many features of the
statistics of AE signals such as their amplitudes, durations and the intervals
between successive AE bursts obey power laws consistent with recent exper-
imental results. Large magnitude events have different power law from that
of the small ones, the latter being sensitive to the pulling speed.
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Causes of failure of materials and the possibility of predicting
them is of interest in science and engineering (electrical break-
down, fracture of laboratory samples to engineering structures,
etc). This is particularly important in seismology due to the
enormous damage earthquakes can cause. Indeed, predicting
earthquakes has been of interest to geophysics for a long time.
At a practical level, this amounts to identifying useful precursors
at a statistically significant level. The absence of useful precur-
sors could possibly arise due to the inherent limitations set by
measurement processes [1]. Even so, there has been records
of individual earthquakes where precursor effects have been re-
ported [1]. Some insight into the dynamics of earthquakes has
been possible by mapping the problem to fracture processes.In
the case of fracture, the nucleation and propagation of cracks
culminates in the failure of the material. In such situations,
the nondestructive nature of acoustic emission (AE) is a very
convenient tool for studying the process as the emitted signals
are sensitive to the microstructural changes taking place inside
the system [2], [3]. Such studies have shown that it is possible
to follow the nucleation and growth of fracture by imaging the
fracture process (through an inversion process of arrival times)
[4]. In addition, the statistics of the AE signals exhibit a power
law [2], [4], [5] similar to the Gutenberg-Richters law for the
magnitudes of earthquakes. One aim of these studies has been
to look for precursor effects [1], [6]. Thus, most laboratory stud-
ies on AE relevant to earthquake dynamics are on rock samples
subjected slip with appropriate geometry [3].

Apart from the power laws observed in AE signals during
fracture, acoustic activity of unusually large number of situa-
tions exhibit power laws in systems as varied as volcanic activ-
ity [7], microfracturing process [8], [9], collective dislocation
motion [10] and martensitic transformation [11] to name a few.
Though the general mechanism attributed to AE is the release
of stored strain energy, the details are system specific. Thus,
the ubiquity of the power law statistics of AE signals suggests
that the details of the underlying processes are irrelevant. One
framework which unifies such varied situations is that of the
self-organized criticality (SOC) [12]. This approach has been
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successful in explaining the statistical self similarity of the seis-
mic process reflected in the Gutenberg-Richter’s law for earth-
quake magnitudes [13], as also the power laws in other systems
[7], [8], [9], [10], [11], [14]. However, given that earth isa
SOC state, at a conceptual level, doubts have been raised about
the possibility of predicting an earthquake. A recent debate on
this subject concluded that deterministic prediction of individual
earthquakes is unrealistic [15]. Clearly, the lack of predictability
is applicable to all power law systems. However, in the general
context of failure, time-to-failure models have been used for the
prediction of failure [16]. These models are thought to be appli-
cable to earthquake like situations also. There are some theoret-
ical efforts to look for precursor effects before the onset of large
avalanches in SOC type models as well [17], [18].

The power law statistics of the AE signals (on rock samples)
is believed to result from slip events. However, to the best of
knowledge there are no phenomenological models that mimic
AE bursts. This also helps us to identify a possible precursory
effect. One other interesting feature of earthquake magnitudes is
the change in the power law exponent for small and large mag-
nitudes [19], [20]. Laboratory studies on AE signals on rock
samples also appear to indicate such a change [21]. Finally,re-
cent studies on AE also show that the exponent value is sensitive
to the deformation rate [22]. To the best of our knowledge, there
has been no explanation of these observations. Here, we intro-
duce an additional dissipative term into the Burridge-Knopoff
(BK) model which captures the main features of AE signals.

It is known that slip events result due to deformation and /or
breaking of asperities resulting in an accelerated motion of the
local areas of slip. Since AE is due to the release of the built-in
strain energy as the system surmounts the threshold, we con-
sider this accelerated motion during a local slip as responsible
for acoustic emission. Such a rapid movement prevents the sys-
tem from attaining a quasi-static equilibrium. This also implies
that there are dissipative forces that resist this abrupt motion. We
introduce the Rayleigh dissipation functional which depends on
the gradient of the local strain rate [23] to account for the dissi-
pation arising from the rapidly moving blocks in the BK model
for earthquakes [24], [25]. Indeed, such a dissipative termhas
been successful in explaining the power law statistics of the AE
signals during martensitic transformation [14].

The Burridge-Knopoff model for earthquakes [24] and its
variants have been studied in detail by many authors [25]. It
consists of a chain of blocks of massm coupled to each other
by coil springs of strengthkc and attached to a fixed surface by
leaf springs of strengthkp (Fig. 1a). The blocks are in contact
with a rough surface moving at constant speedV . The velocity-
dependent friction force ‘f ’ operates between the blocks and
the surface. We use two forms of frictional force schematically
shown by the solid and dashed curves shown in Fig. 1b.

Here, we introduce an dissipation associated with the rapid
slip events represented by the Rayleigh dissipative functional
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Fig. 1

(A) THE BURRIDGE-KNOPOFF SPRING BLOCK MODEL. (B)FRICTION LAWS:

THE COULOMB FRICTION LAW AT ZERO VELOCITY BEYOND WHICH A

SMOOTH VELOCITY WEAKENING FRICTION LAW (SOLID LINE). DASHED

CURVE DESCRIBES A CREEP BRANCH WITH A SIMILAR

VELOCITY-WEAKENING BEHAVIOR.

[23] R = γc

2

∫
(∂u̇(x)

∂x
)2dx. Then, in the notation of Ref [25],

the equations of motion can be written as

Üj = l2(Uj+1 − 2Uj + Uj−1) − Uj − φ(2αν + 2αU̇j)

+ γc(U̇j+1 − 2U̇j + U̇j−1), (1)

whereUj is the dimensionless displacement of thejth block,
ν is the dimensionless pulling velocity, the ratio of the slipping
time to the loading time,l2=kc/kp represent the stiffness ratio
and the parameter describing the rate of velocity-weakening in
the friction isα, The last term arises fromR(t), the additional
dissipative term introduced to mimic the AE bursts andγc is the
scaled dissipation coefficient. ( The over dot refers to differenti-
ation with respect to dimensionless time variable.)

This model without the last term has been extensively studied
[24], [25]. Starting from random initial conditions, slip events
ranging from one-block event to those extending over the entire
fault (‘large events’, occurring roughly over one loading period
of τL ∼ 2/ν ) are seen in the steady state. These earthquake-like
events mimic the empirical Gutenberg-Richter law.

Simulations have been carried out using fourth-order Runge-
Kutta method with open boundary condition. Random initial
conditions are imposed. After discarding the initial transients,
long data sets are recorded when the system has reached a sta-
tionary state. The parameters used here arel = 10, α =
2.5, N = 100 for two sets of values ofν = 0.01 and 0.001
for range of values ofγc. The calculations have been carried out
for both the frictional laws shown in Fig. 1b. In the creep case,
the creep branch ends at a value ofν ∼ 10−7 beyond which
the velocity weakening law operates. The modified BK model
produces the same statistics of slip events as that without this
term as long as the value ofγc is small, typicallyγc < 0.5. The
results presented here are forγc = 0.02.

Since the rate of energy dissipated [23] due to local accel-
erating blocks is given bydEae/dt = −2R(t), we calculate
R(t) = (γc/2)

∑
j(U̇j − U̇j−1)

2. We find that the energy dissi-
pated occurs in bursts which is similar to the acoustic emission
signals. A plot ofR(t) is shown in the Fig. 2a for the case when
the frictional law has a creep branch.A gradual increase in the
activity of the energy dissipated can be seen to accelerate just
prior to the occurrence of a ’large’ slip event. This feature is
seen for all slip events of observable magnitude which we re-
fer as large. This suggests thatR(t) can be used as a precursor
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Fig. 2

(A) R(T) AS A FUNCTION OF T. (B) logEae AS A FUNCTION OF TIME T (◦)

ALONG WITH THE FIT (SOLID LINE) FOR THE FRICTION LAW WITH CREEP

BRANCH. DASHED LINE CORRESPONDS TO THE MEAN KINETIC ENERGY.

for the onset of a slip event observed in experiments on rock
samples [6]. As the energy dissipated is noisy, a better quan-
tity for the analysis is the cumulative energy dissipatedEae(t)

( ∝
∫ t

0
R(t′)dt′). This grows in a stepped manner and as we

approach a slip event,Eae, increases rapidly with the steps be-
coming increasingly visible. A plot oflogEae is shown in Fig.
2b along with a fit having the functional form (continuous line),

logEae(t) = −a1t
−α1 [1 − a2|(t − tc)/tc|

−α2 ]. (2)

Here, the crucial parametertc is the time of occurrence of the
event andt is time measured from some initial point after a slip
event. The constantsa1, a2, α1 andα2 are determined by a fit
to the data. It is clear that the fit is striking. Given a reasonable
stretch of the data, the initial increasing trend inlogEae is easily
fitted to a stretched exponential, ie.,−a1t

−α1 . The second term
is introduced to account for the observed rapid increase in the
activity as we approach the time of failure. As the mean kinetic
energy is a good indicator of the failure time, we have shown
this by a dashed line. It is clear that the estimatedtc agrees
quite well with that of the mean kinetic energy.

A proper estimate of the warning time requires that the values
of the four constantsa1, a2, α1 andα2 do not change in time
significantly. Indeed, we find that these constants change very
little given a dataEae(t) over a reasonable initial stretch of time.
Only tc changes. Still, we are left with the problem of obtaining
a best estimate oftc. This is done as follows. Consider the plot
of E−1

ae (t) shown in Fig. 3. Given the data tillt = t1 ( the first
arrow shown in Fig. 3 ), we find that the four parameters are al-
ready well determined (within a small error bar). A fit to Eq. (2)
also givest(1)c at t1. One such curve is shown by a dashed line
with the arrow shown att1. The value oft(1)c is only an estimate
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A PLOT OFlogE−1
ae VERSUS T. INSET SHOWS THE ENLARGED SECTION AT

TIME t1 (−), t2 (−·) AND t3 (SOLID LINE). DATA SHOWN (·) IS

INDISTINGUISHABLE FROM THE FIT TILL t3 .
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COLLAPSED DATA USINGa−1

1
log(E(0)/E(τ)) VERSUSτ FOR THREE

DIFFERENT EVENTS ALONG WITH THE FIT SHOWN BY(◦) FOR FRICTION

LAW WITH CREEP.

based on the data tillt1. However, as time progresses, the data
accumulated later usually deviates from the predicted curve be-
yondt1 if t

(1)
c is inaccurate. This is case for the fit tillt1 andt2

for instance shown in Fig. 3. If on the other hand, the deviation
of the predicted curve from the accumulated data decreases with
passage of time within the error bar, then, the value oftc is likely
to be accurate. Indeed, the extrapolated (continuous) curve
shown in Fig. 3 corresponding to data fit tillt = t3 with the cor-
responding predictedt(3)c is seen to follow the data very well.
(Usually, this is followed by a sudden decrease inE−1

ae which
is again an indication of a possible large event, but the general
trend soon follows the extrapolated curve.) Then, one can take
t3 to be the warning time of the impending large event. From
the data shown in Fig. 3, the actualtc is 110.4 where as the pre-
dictedtc is 111.6. Thus, the percentage error in the prediction
of the onset of the a large event∼ 1%. The power law nature of
Eae also suggests that the approach to different events is univer-
sal. We find that the data corresponding to different events col-
lapses into a single curve given bya−1

1 log[Eae(0)/Eae(τ)] =
τ−α1 [1− a2|(τ − 1)−α2 ]+ a−1

1 logEae(0) in terms ofτ = t/tc.
This is shown in Fig. 4 along with the fit for three different
events.

For the Coulomb friction law, we find thatR(t) is much more
noisy. A plot oflogEae for one large event is shown in Fig. 5.
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logEae AS A FUNCTION OF TIME T (◦) ALONG WITH A FIT (SOLID LINE)

FOR THE COULOMB FRICTION. DASHED LINE INDICATES THE MEAN

KINETIC ENERGY. THE INSET SHOWS THE COLLAPSED CURVE FOR THREE

DIFFERENT EVENTS ALONG WITH A FIT(◦).

Following the same procedure, we find that we can fix onlya1

andα1 reasonably well given an initial stretch of data. However,
the parametersa2 andα2 also converge within some error bar
which is more than the creep case. Although, the changes intc
with t is more than the previous case, thetc is fixed the same
way, but the error is larger than the previous case. The data
along with the fit (up to the point shown by arrow) is clearly seen
to mimic the rapid increase inlogEae. The data collapse for
several such curves (fora−1

1 log[Eae(0)/Eae(τ)] ) is also shown
in the inset along with the fit. (The scatter in the collapsed data
is reasonable except for the initial part of the data.) However, we
do find that this procedure does pose problems in a few specific
set of events for which approach to the large event is very noisy.

We now consider the statistics of the energy bursts. The dis-
tribution of the magnitudes ofR(t) shows a power lawD(A) ∼
A−m, whereD(A) is the number of events betweenA and
A + dA. Instead of a single power law anticipated, we find that
the distribution shows two regions, one for relatively smaller
amplitudes and another for large values shown by two distinct
plots in Fig. 6a. ( This is for the Coulomb frictional law for
ν = 0.01. Similar results are obtained when the frictional law
has a creep branch.) The value ofm for the small amplitudes re-
gion (< 10−4) is∼ 1.78, significantly smaller than that of large
amplitudes which is∼ 2.09. This qualitative feature is consis-
tent with the recent experimental results on rock samples [21].
Indeed, this is similar to the well known observation in the case
of seismic moments where a deviation from the power law for
lower magnitudes beyond a certain value (> 7.0 on the Richter
scale [19], [20]) is noted. Finally, one other quantity of interest
is the time interval between the events which we have calcu-
lated. This is shown in Fig. 6b forν = 0.01. There appears
to single power law with and exponent 2.6. However, there is
considerable scatter in the mid region corresponding crossover
in the power laws from small to large amplitude region. For
smaller pulling speeds, we see two different scaling regimes as
for the amplitude.

Recently Yabe et. al. [22] have noted that the exponent value
in the small amplitude region increases with decreasing defor-
mation rate in contrast to the large amplitude region. In order to
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Fig. 6

(A)DISTRIBUTION OF AMPLITUDE OFR(A), D(A) VERSUSA. (♦)

INDICATES SMALL AMPLITUDES AND (O) SHOWS LARGE AMPLITUDES FOR

ν = 0.01, (B) DISTRIBUTION OF TIME INTERVALS OFAE EVENTS AND (C)

D(A) VERSUSA FORν = 0.001, (•) CORRESPONDS TO THE SMALL

AMPLITUDES AND (O) THAT FOR LARGE.

check this, we have performed run forν = 0.001 for which the
data (for the Coulomb friction law ) is shown in Fig. 6c. While
the exponent for small amplitude regimes is 1.91 higher than
that forν = 0.01, the exponent for larger amplitudes is insen-
sitive. This result can be physically explained by analyzing the
influence of the pulling velocity on slip events of varying sizes.
We first note that Rayleigh dissipation function is the gradient of
local slipping rates. From the arguments presented in Ref. [25],
one knows that the velocity of one block event is proportional to
ν. Further, as the neighboring blocks are at rest, the number of
such events are fewer in proportion to the pulling speed, both of
which are evident from Fig. 6a and Fig. 6c. When we consider
the two block events, it clear that the difference in the veloc-
ities of the two blocks being of similar magnitude contributes
very little and only edges contribute. In a similar way, it can be
argued that for slip events of finite size, the extent of the con-
tribution to R(t) is decided by the ruggedness of the velocity
profile within the slipping region; it is lower if the velocity is

smoother. The ruggedness of the velocity profile, however, is
itself decided by how much time the system gets to ’relax’. At
lower pulling velocities, there is sufficient time for the blocks to
relax compared to higher pulling velocities. Thus, the velocity
profile within slip event of certain magnitude tends to be much
more smooth at lowν compared to at higher higherν as in the
latter case it does not allow for full relaxation (to attain near
quasi-stationary state).

In summary, within the scope of this model, we have shown
that acoustic emission could be used as a possible precursorfor
detecting an event during the process of failure. In the case
where the friction includes a creep branch, we find that the time
of failure can be predicted quite accurately. In the coulomb
case, the energy dissipated is quite noisy. Even then, the pre-
dicted failure time is quite reasonable. At the first sight, the pre-
dictability aspect appears to be surprising considering the fact
the statistics of the events exhibits a power law. However, the
data collapse for different events clearly suggests that the dy-
namics of approach to large events is itself universal and scale
invariant. This scale invariant form implies that all events of de-
tectable magnitude is describable by the same equation, theonly
limitation being the ability to detect. One limitation of Eq. (2)
is that the magnitude of the energy dissipated appears to bear no
correlation with the magnitude of the slip event as larger events
often show higherR(t). For instance, even when the ratio of
the kinetic energies between two events is four orders smaller,
the energy dissipatedR(t) in the two cases do not scale in pro-
portion. For the same reason, the model is unable to predict the
magnitude of the event. We stress that this precursor effectis
absent in the total kinetic energy or other variables. We also ex-
pect these results to be applicable at the laboratory level in fail-
ure of materials and structures. It is worth noting that the form
of approach to failure is different from that given by Huang et
al [16]. Apart from this, the model also predicts that there are
two exponent values one for small amplitudes and another for
large amplitudes consistent with experimental results [21]. We
also find that the exponent value corresponding to low ampli-
tudes to be much more sensitive to the pulling speed than that
at large amplitudes. This dependence on the pulling speed has
been be traced to the form ofR(t), namely, the gradient of the
local strain rate. Finally, our analysis shows that the exponent
values of the bursts of acoustic energy is not the same as thatof
the event size distribution (as used in Ref.[25]).

The authors wish to acknowledge the support from depart-
ment of science and technology.
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