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Abstract

Ž .Ground-state electronic densities and properties of noble gas atoms He, Ne, Ar, Kr and Xe have been calculated
through a single time-dependent quantum fluid dynamical equation of motion. The equation has been transformed through
imaginary time into a diffusion equation which is then numerically solved in order to reach a global minimum. The present
results compare favourably with other available values. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Within the broad domain of density functional
Ž w x.theory see, e.g., Ref. 1 , the interesting problem of

Ž .directly calculating the time-independent TI and
Ž .time-dependent TD electron densities of atoms,

molecules, clusters and solids from a single equation
w x2 has so far remained unsolved. A successful
methodology for calculating the ab initio electron
densities of such many-electron systems would con-
siderably reduce the conceptual and computational
labour in understanding the static and dynamic prop-
erties of extended systems, even though this would
obscure the orbital structure of the density. Over the
years, several efforts have been made to address this
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Advanced Scientific Research, Banglore-560 064, India.

problem in the case of atoms and molecules. For TI
densities, beginning with the Thomas–Fermi method
Ž w x.see, e.g., Ref. 3 , subsequent works included a

Ž .second-order differential equation Milne equation
w xfor atoms 4 , a second-order differential equation for

w x Ž .noble gas atoms 5–9 , an algebraic quadratic equa-
w xtion for atoms and ions 10 , etc. However, these

equations do not yield the dynamical density.
In a parallel development, a single TD general-

Ž .ized nonlinear Schrodinger equation GNLSE of¨
motion has been derived for studying the time-evolu-
tion of atoms and molecules under small and large

w xperturbations 11 . The GNLSE has been based on
the hydrodynamical analogy to quantum mechanics
Ž w xsee Ref. 12 for a comprehensive review and other

.references therein . It regards the collective motion
of the electrons as akin to the motion of a ‘classical’
fluid, characterized by the quantum mechanical
charge density and current density. The equation has
been applied to study several TD processes, e.g., a
He atom under intense and superintense laser fields,
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H and HeHq molecules under an intense laser2

field, Hq–Ne and Hq–He collision dynamics, etc.
Ž w x.see Refs. 13–15 . Recently, this methodology has

Ž .been applied to obtain the static TI ground-state
electron density from a numerical solution of the TD
fluid dynamical equation, by using an imaginary-time
propagation technique coupled with the minimization

w xof an expectation value 15 . Initial results for atomic
Ž 2q . Ž q 2q.He, Be , Ne and molecular H , HeH , He2 2

w xsystems have been encouraging 15 . In this Letter,
the method is extended to calculate the ground-state

Ždensities and properties of noble gas atoms He, Ne,
.Ar, Kr and Xe , comparing the results with available

literature data. The He and Ne results are slightly
improved compared with the previous work.

In Section 2, a summary of the method is pre-
sented whereby the fluid dynamical GNLSE is trans-
formed through imaginary time into a diffusion equa-
tion. Section 3 briefly describes the numerical method
for solving the diffusion equation in real time. Sec-
tion 4 presents the results while Section 5 makes a
few concluding remarks.

2. Methodology

The methodology has been discussed elsewhere
w x15 in detail. Here, a summary is presented. TD

Ž .quantum fluid density functional theory QFDFT
regards all electrons in a system to be distributed
over 3D space like a continuous ‘classical’ fluid. The
two basic QF dynamical equations in terms of local

Ž .observables, electron density r r, t and current den-
Ž . Žsity j r, t are atomic units are employed through-

.out unless otherwise mentioned :

Ž .1 Continuity equation:

Er r , tŽ .
q=P j r , t s0 , 1Ž . Ž .

Et

Ž .2 Euler-type equation of motion:

w xEx r , t 1 dG rŽ . 2q =x qŽ .
Et 2 dr

dEel – el
q qy r , t s0 , 2Ž . Ž .

dr

Ž . Ž .where j r, t sr=x r, t , x being the velocity po-
Ž .tential. y r, t is the TD potential including elec-

tron–nuclear attraction and interaction with the ex-
ternal field. E is the interelectronic Couloumbel – el

w xrepulsion energy while G r is a universal density
functional consisting of kinetic and exchange–corre-
lation energy functionals,

< < 21 =r
w x w x w xG r s d rqT r qE r . 3Ž .H corr xc8 r

Ž .The first term on the right-hand side of Eq. 3 is the
Weizsacker kinetic energy which gives the exact¨
kinetic energy for one-electron systems and two-

Ž .electron Hartree–Fock HF systems. Therefore,
w xT r vanishes for such systems. However, forcorr

w xsystems with more than two electrons, T r has tocorr
Ž .be suitably approximated see later . This form of

kinetic energy functional, retaining the Weizsacker¨
Žterm as such plus a correction term usually a

.TF-like term , ensures proper global as well as local
w xbehaviour including atomic shell structure 5 .

The complex-valued hydrodynamical wave func-
tion for the entire time-evolving system is

1r2 i x Ž r , t .c r , t sr r , t e . 4Ž . Ž . Ž .
Now, one can obtain a diffusion-type equation simi-
lar to the random walk quantum Monte Carlo equa-

w xtion 16 as follows:
Ž . Ž .Writing Eqs. 1 and 2 in imaginary time t and

substituting t by yi t, t being the real time, one
obtains

1 Er
y q=P r=x s0 , 5Ž . Ž .

i Et
w x1 Ex 1 dG r dEel – el2s =x q q qy r , t .Ž . Ž .

i Et 2 dr dr

6Ž .
Ž .Writing Eq. 4 in t , differentiating both sides with

respect to t and substituting t by yi t, one obtains

1 Er 2 ER r Ex
s y2 r . 7Ž .

i Et i Et R Et
Ž .Note that c in Eq. 4 has been replaced by R since

they differ from each other due to the above time
transformation. Expressing =r and =

2r as

2=R
=rsr y2i=x , 8Ž .

R
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22 =RŽ . 22 2
= rsr y4 =x y2i= xŽ .2R

22= R 8i=RP=x
q y , 9Ž .

R R

w xdG r rdr can be written as

w x 2
dG r 1 = R i=RP=x 1 2sy q q =xŽ .

dr 2 R R 2

w x w xi dE r dT rxc corr2q = xq q .
2 dr dr

10Ž .
Ž . Ž .Substitution of Eq. 7 into Eq. 5 leads to

ER 1 1 Ex =
2x =RP=x 2q q q y =x s0 .Ž .

Et R i E t 2i i R
11Ž .

Ž . Ž . Ž .Finally, use of Eqs. 10 and 11 in Eq. 6 elimi-
nates x and yields the equation

1 ER r , tŽ .
2y = qy r ; r , t R r , t syŽ . Ž .eff2 Et

12Ž .

which closely resembles a diffusion-type equation.
Ž .R r, t is the diffusion function and the diffusion

Ž .process is governed by y r; r, t . A similar elimi-eff
Ž . Ž . Ž .nation of x r, t from Eqs. 1 and 2 leads to the

TD QFDFT equation of motion

1 Ec r , tŽ .
2y = qy r ; r , t c r , t s i .Ž . Ž .eff2 Et

12aŽ .
Ž .y r; r, t contains both classical and quantumeff

potentials,

dE dE dEel – el nu – el xcw xy r ; r , t s q qeff
dr dr dr

dT dEcorr ext
q q . 13Ž .

dr dr

Ž .The terms on the right-hand of Eq. 13 are as
follows: the first is the interelectronic repulsion term,
the second is the electron–nuclear attraction term,
the third is the exchange–correlation term, the fourth

arises from a non-classical correction term added to
the Weizsacker kinetic energy while the last term¨

Žarises from interaction with the external field in the
.present case, this interaction is zero .

1 r r , t r rX , tŽ . Ž .
XE s d r d r ,HH Xel – el < <2 ryr

dE r rX , tŽ .el – el Xs d r , 14Ž .H X< <dr ryr

Z dE Znu – el
E sy r r , t d r , sy .Ž .Hnu – el r dr r

15Ž .

Various exchange–correlation functionals are avail-
w xable in the literature 17–21 . We have employed the

exact exchange-energy expression for He, while for
other noble gas atoms a local exchange functional
w x22 has been used. Thus, for He,

1 r r , t r rX , tŽ . Ž .
XE sy d r d r ,HH Xx < <4 ryr

dE 1 r rX , tŽ .x Xsy d r . 16Ž .H X< <dr 2 ryr

w xFor other atoms 22 ,

r1r3
LDAE sE yb r d r ,Hx x 2 2r31qr r raŽ .x

ELDA syC r 4r3 d r , 17Ž .Hx x

1r33 3
C s , bsC , a s0.0244 ,x x xž /4 p

and

24 2 r r
1r3r qLDA

dE dE 3 3 ax x xs yb ,22 2r3dr dr r r
1qž /ax

dELDA 4x 1r3sy C r . 18Ž .x
dr 3

Correlation effects have been included by using a
simple, local parametrized Wigner-type functional
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which yields good results even for atomic autoioniz-
w xing states 23 .

r
E sy d r ,Hc y1r3aqbr

dE aqcry1r3
c

sy , 19Ž .2y1r3dr aqbrŽ .
as9.81 , bs21.437 , cs28.582667 .

Section 4 shows that this somewhat unusual local
exchange–correlation functional can yield very good
results.

w xThe exact form of T r is unknown. However,corr

an approximate generalized form for atoms is given
by a modified Thomas–Fermi term, viz.,

w x 5r3T r sC f r r r d r ,Ž . Ž .Hcorr k

3 2r32C s 3p , 20Ž . Ž .k 10

Ž .where f r is so chosen that

w x w xtotal kinetic energy sT r qT r .Ž . w corr

Ž . Ž .f r satisfies the boundary conditions f r ™0 as
Ž .r™0 and f r ™1 as r™`. The functional deriva-

w xtive is given by 5

w xdT r 5corr 2r3s C r r g r , 21Ž . Ž . Ž .k
dr 3

where

3 2 y2r3 y1r3X Xg r s f r q r r r r r rŽ . Ž . Ž . Ž . Ž .˜H
5 5

=
dr rXŽ .˜ Xd r , 22Ž .
dr rŽ .

r r sr r f 3r2 r .Ž . Ž . Ž .˜
Ž . Ž .For noble gas atoms, f r and g r may be

expressed as sums of several gaussian functions,
viz.,

n
2f r s A exp ya ryR ,Ž . Ž .Ý i i i

is1
23Ž .n

2g r s A exp yb ryR .Ž . Ž .Ý i i i
is1

Table 1
Ž .a , b , A and R values a.u. for Ne, Ar, Kr and Xei i i i

Ne Ar Kr Xe

a 84.35 223.65 981.70 3014.01

a 1.0 35.81 114.25 193.02

a – 1.35 15.15 76.03

a – – 0.80 22.04

a – – – 1.05

b 49.18 175.365 935.6 2850.01

b 1.0 10.987 57.99 123.702

b – 0.6228 7.241 43.943

b – – 0.87 4.764

b – – – 0.55

A 2.405 1.78 1.541 1.461

A 1.0 3.188 1.711 1.402

A – 1.0 2.22 2.133

A – – 1.0 1.884

A – – – 1.05

R 0.30 0.14647 0.06495 0.04051

R 2.0508 0.7429 0.2700 0.16022

R – 3.016 1.020 0.473

R – – 3.42 1.354

R – – – 4.205

The a , b , A and R values for Ne, Ar, Kr and Xe,i i i i

given in Table 1, have been slightly modified from
w xthose of Ref. 5 for greater accuracy.

3. Numerical solution of the diffusion equation

Denoting the nonlinear operator within square
ˆ Ž .brackets by L, Eq. 12 can be written as

ER r , tŽ .
L̂R r , t sy , 24Ž . Ž .

Et

ˆ Ži.e., LsyErEt.The Taylor expansion of R r, tq
. Ž .D t around R r, t is given by

R r , tqD tŽ .
2E 1 E

2s 1qD t q D t q . . . R r , t ,Ž . Ž .2Et 2 Et

ˆD tErE t yD tLse R r , t se R r , t .Ž . Ž .
25Ž .
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ˆyD tLTherefore, e is the time-propagator; it is a non-
linear evolution operator propagating the diffusion

Ž .function R r, t from time t to an advanced level
ˆyD tLŽ .R r, tqD t . Note that e is a real, non-unitary

Ž .operator. Therefore, normalization of R r, t at a
time does not guarantee normalization at an ad-
vanced time tqd t.

ŽThe variable r the radial part in spherical polar
.coordinates is discretized as

r sx 2 , xsdq jh , js1, 2, . . . , N . 26Ž .j j 1

We have chosen ds10y6 , hs0.0035 and N s1
Ž .5001. In this discretized grid, Eq. 25 can be written

as

ˆX nq1 yD tL njR se Rj j

or, in symmetric form,

ˆ ˆX nq1ŽD tr2.L yŽD tr2.L nj je R se R . 27Ž .j j

ˆNow, taking R to be a constant in u and f, L can
be written in spherical polar coordinates as

1 d2 1 d
L̂sy y qy r ; r , tŽ .eff22 r d rd r

saD2 qbDqy , 28Ž .eff

where

1 3 E
asy , bsy , Ds ,2 3 Ex8 x 8 x

E2
2D s .2Ex

Ž .Therefore, Eq. 27 can be written as

eŽD tr2.Ž a D 2qb Dqy eff .RX nq1 seyŽD tr2.Ž a D 2qb Dqy eff .Rn .j j

Finally, expanding the exponentials and truncating
after the second term, followed by approximation of
ErEx and E2rE x 2 by two- and three-point difference
formulas respectively, a set of N simultaneous1

equations are obtained, viz.,

a RX nq1 qb RX nq1 qg RX nq1 sj n , 29Ž .j jy1 j j j jq1 j

where

D t 3D t
a sy q ,j 2 2 316 x h 32 x hj j

D t D t
b s1q q y , 30Ž .j eff2 2 28 x hj

D t 3D t
g sy y ,j 2 2 316 x h 32 x hj j

D t 3D t
n nj s y Rj jy12 2 3ž /16 x h 32 x hj j

D t D t
nq 1y y y Reff j2 2ž /28 x hj

D t 3D t
nq q R . 31Ž .jq12 2 3ž /16 x h 32 x hj j

Ž .Eq. 29 can be written in the following tridiagonal
matrix form:

X nq1b g1 1 R1
w xa b g 0 X nq12 2 2 R2

P P P
. . .

P P P
X nq1RN y1w x 10 P P gN y11
X nq1Ra b NN N 11 1

nj 1
nj 2

. . .s . 32Ž .
njN y11

njN1

Ž . � X nq14Eq. 32 can be solved for R by using aj
w xmodified Thomas algorithm 24 . After solving Eq.

Ž .25 , the following steps are followed:
Ž . X nq1 nq1 Ž1 The normalization of R to R prime

.denotes the unnormalized function .
ˆŽ .2 The calculation of expectation value of L as

ˆ nq1 nq1 ˆ nq1² : ² < < :L s R L R ,
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Ž .3 The estimation of difference in expectation
values between two successive time steps, i.e.,

ˆ nq1 ˆ n² : ² :D´s L y L .

Ž .4 Until D´ is less than a prescribed tolerance
Ž y7 .limit here, 10 , one proceeds with the calculation

of Rnq2, Rnq3, . . . , iteratively.
All the integrations are performed by a 6-point

Newton–Cotes formula. D t for He, Ne and Ar is
0.005, while for Kr and Xe, it is 0.002 and 0.0005,
respectively.

3.1. The initial guess

In order to achieve faster convergence, the initial
guess should satisfy the following conditions:

Ž . < < 2 Ž . Ž1 H R d rsHr r d rs total number of elec-
.trons .

Ž .2 The atomic shell structure is incorporated.
The combinations of Slater-type functions, chosen

to launch computations for various atoms, are pre-
sented in Table 2.

4. Results and discussion

The calculated nonrelativistic ground-state ener-
gies, along with various energy components for He,
Ne, Ar, Kr and Xe, are reported in Table 3. Results
have been compared with the corresponding HF
values and the best available results in the literature.
The calculated total energy values are much im-
proved over the HF values and compare quite
favourably with the corresponding accurate values.
For Kr and Xe, ‘exact’ nonrelativistic energy values
are not available and therefore we have cited the
values obtained by adding second-order many-body

Ž .perturbation theory MBPT correlation energy re-
w x w xsults 28 to the HF results 25 . For all atoms, the

agreement of present results with the best literature
data is quite satisfactory. The exchange energies

w xshow a satisfactory agreement with HF results 18 .
For He and Ne, the exchange energy is almost exact
while for Ar, Kr and Xe, it is underestimated by
2.3–2.9%. In other words, the simple local func-

w x w xtional 22 for E r suffers in comparison with thex

more elaborate nonlocal, gradient-corrected function-

Table 2
Ž .Initial functions a.u. used in the present computation

yrHe x sN e f sx1 1s 1

yr yrNe x sN e x sN r e f sx qx1 1 3 3 1s 1 2
y2 r y2 rx sN e x sN r e f sx qx sf2 2 4 4 2s 3 4 2p

yr 2 y3rAr x sN e x sN r e f sx qx1 1 4 4 1s 1 2
y2 r 3 y4 rx sN e x sN r e f sx qx2 2 5 5 2s 3 4

y3rx sN r e f sx qx qx3 3 3s 1 2 3

f sx qx qx sf2p 3 4 5 3p

yr y2 rKr x sN e x sN r e f sx qx qx qx qx sf1 1 6 6 1s 1 2 3 4 5 2s
yr 2 y2 rx sN r e x sN r e f sx qx qx qx sf2 2 7 7 3s 5 6 7 8 4s

2 yr 3 y2 rx sN r e x sN r e f sx qx qx3 3 8 8 2p 2 3 4
3 yrx sN r e f sx qx qx4 4 3p 6 7 8
y2 rx sN e f sx qx qx qx5 5 4p 5 6 7 8

f sx qx qx qx3d 5 6 7 8

yrXe x sN e f sf sf sf sf sx qx qx qx qx1 1 1s 2s 3s 4s 5s 1 2 3 4 5
yrx sN r e f sf sf sf sx qx qx qx2 2 2p 3p 4p 5p 5 6 7 8

2 yrx sN r e f sf sx qx3 3 3d 4d 3 4
3 yrx sN r e4 4
4 yrx sN r e ; x to x are those for Kr5 5 6 8

� 4 2The number of iterations required for convergence varies from atom to atom: N are normalization constants such that Hx dts1. fi i i
Ž . 2 w Ž .x1r2 < < 2 2 Ž .denotes the ith atomic orbital with occupation number n Pr r sÝ n f ; csN r r , where N is such that H c d rsN Hr r d ri i i i

sZ.
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Table 3
Ž .Comparison of calculated ground-state properties a.u. with literature data

He Ne Ar Kr Xe

yE PW 2.8973 128.9065 527.5486 2753.8809 7234.9742
aHF 2.8617 128.5470 526.8174 2752.0546 7232.1302

c ) f ) d ) e eothers 2.9037 128.938 527.604 2753.8896 7235.0512
c f128.939 527.540

² :y Zrr PW 6.7850 311.0597 1245.5699 6533.8352 17038.2385
bHF 6.7492 311.1333 1255.0504 6582.5412 17164.9821

² :1rr PW 2.0651 65.7129 220.6552 1119.3762 2744.764212
bHF 2.0516 66.1476 231.6093 1172.3372 2880.0352

yE PW 1.0325 12.1111 29.4850 91.5847 173.9435x
iexact 1.026 12.11 30.19 93.89 179.2

yE PW 0.0423 0.3561 0.7011 1.7529 2.8407c
g,c ) g,f ) g ) h hothers 0.042 0.390 0.787 1.835 2.921

² :T PW 2.8974 128.9074 527.5523 2753.9157 7235.2844
aHF 2.8617 128.5468 526.8138 2752.0481 7232.0470

T PW – 94.2068 322.0345 1377.5940 3226.9174w
bHF – 90.6140 308.4206 1276.7349 2932.0548

T PW – 34.7006 205.5177 1376.3217 4008.3670corr

HFb – 37.3886 214.4033 1465.2484 4298.9068

² : ² :y T r V PW 1.99996 1.99999 1.99999 1.99999 1.99996
aHF 1.99999 2.00000 2.00001 2.00000 2.00000

Cusp PW 3.995 19.68 35.55 71.42 107.30
bHF 4.009 20.04 35.98 71.98 107.91

w Ž .xw Ž . xPW, present work. Cusp, 2Zs 1rr 0 yd r r rd r instead of rs0, r is taken as 0.000049 for the cusp.rs0;
) Exact results.
a w xRef. 25 .
b w xCalculated using HF density 25 .
c w xRef. 26 .
d w xRef. 27 .
e w x w xAdding MBPT CI result for correlation energy 28 to HF energy 25 .
f w xRef. 29 .
g w xRef. 30 .
h w xRef. 28 , see j below.
i w x w xRef. 18 . Note that other DFT exchange energies for the five atoms are: Becke’s 3-parameter functional 18 , 1.026, 12.16, 30.18, 93.82,

w x178.9; Perdew and Yue’s generalized gradient approximation 17 , 1.033, 12.22, 30.29, 93.8, 178.6, respectively.
j w xPerdew’s 31 parameterized correlation energy functional involving the density gradient gave the following results: He, 0.044; Ne, 0.39;

w xAr, 0.80; Kr, 2.01; Xe, 3.31. See also Refs. 21,32 for more accurate DFT results.

w x w xals of Perdew–Yue 17 and Becke 18 which show
a closer agreement with HF exchange energies. The
‘exact’ correlation energies for He to Ar are cited

w xfrom Ref. 30 ; these are not available for Kr and Xe,
w xand therefore the best results 28 are cited. Except

He, where the correlation energy is nearly exact, it is
underestimated from Ne to Xe by 2.7–10.9%. Com-
pared with the Wigner-type local functional em-

w xployed here, Perdew’s 31 parameterized, gradient-
corrected correlation functional gives better results
for Ne and Ar but worse results for He, Kr and Xe.

w xHowever, the LYP 21 gradient-corrected, nonlocal
correlation energy functional gives better results.

The radial densities for all the atoms show the
expected shell structure and closely resemble the HF
densities. The results in Table 3 indicate that, except
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Table 4
Ž .Expectation values a.u. for He, Ne, Ar, Kr, and Xe
y2 y1 2² : ² : ² : ² :r r r r

He PW 6.0337 1.6962 0.9207 1.1664
aHF 5.9955 1.6873 0.9273 1.1848

Ne PW 42.6756 3.1106 0.7945 0.9620
aHF 41.4890 3.1113 0.7891 0.9372

Ar PW 84.0323 3.8443 0.9699 1.7323
aHF 81.3908 3.8736 0.8928 1.4464

Kr PW 185.3479 5.0415 0.7611 1.1722
aHF 175.8599 5.0792 0.7289 1.0981

Xe PW 293.0501 5.8430 0.7429 1.2311
aHF 274.4421 5.8866 0.7233 1.1602

PW, present work. The density has been normalized to unity.
a w xRef. 33 .

for He, the HF density concentrates more electron
density near the nucleus for Ne, Ar, Kr and Xe,
compared with the present density. Since this con-
centration leads to increased interelectronic repul-
sion, the net effect is that the HF energy goes up
compared with the present energy. For He, in the
present work, the gain from electron–nuclear attrac-
tion energy more than offsets the loss due to in-
creased electron–electron repulsion. Note that the
Weizsacker correction is 45–73% of the total energy¨
while T is 27–55% of the total energy. A greatercorr

concentration of electron density near the nucleus
leads to greater T which is always positive. Thecorr

virial theorem and the cusp condition are well satis-
fied for all the atoms.

In Table 4, results are presented for the expecta-
tion values of single-particle operators ry2 , ry1, r
and r 2. These expectation values determine the size
of the atom and are related to various atomic proper-

Ž² y2 :.ties such as diamagnetic susceptibility r , nu-
Ž² y1:.clear magnetic shielding r , etc. As a conse-

quence of the fact that the operator ry1 appears in
L̂, its expectation value as calculated from the diffu-
sion function is quite good. Literature results are

w xtaken from Fischer’s HF calculations 33 .
It may be noted that instead of choosing good

Ž .functions e.g., the HF function , we have also taken
wild guesses for initial functions in order to test the
efficiency of the method. In such cases, the number
of iterations taken to achieve the desired conver-

gence limit is larger than that required for better trial
functions.

5. Conclusions

By exploiting an imaginary-time evolution tech-
nique, electron densities, energies and other ground-
state electronic properties of noble gas atoms have
been calculated by directly solving a single, TD
hydrodynamical equation. The calculated results are
quite satisfactory. Such a single equation which can
directly offer both TI and TD electron densities of an
interacting many-electron system, may be of interest
for larger molecules, clusters, solids, etc., as a practi-
cal approximation to the TD Schrodinger equation.¨
The calculations demonstrate that the single TD QFD

Ž Ž ..equation of motion Eq. 12a , whose diffusion form
Ž .is Eq. 12 , is quite accurate. Future extension of the

present method would depend on the availability of
accurate kinetic and exchange–correlation energy
functionals. Once they are designed, the method
should work well for large systems. It may be men-
tioned that although the imaginary-time Schrodinger¨
equation for ground-state calculation has been em-

w xployed earlier 34–36 , viz., random walk or diffu-
sion quantum Monte Carlo method which involves
the transformation of TD Schrodinger equation into¨
the form of a diffusion-type equation in imaginary

Ž q 2 1 .time applied to CH , H , H P, Be S, etc. , the4 3

present method works in terms of the 3D density
rather than the wavefunction.

Acknowledgements

We thank the University Grants Commission, New
Delhi and the Jawaharlal Nehru Centre for Advanced
Scientific Research, Bangalore, for financial support.

References

w x1 R.G. Parr, W. Yang, Density Functional Theory of Atoms
and Molecules, Oxford University Press, New York, 1989.

w x Ž .2 A.S. Bamzai, B.M. Deb, Rev. Mod. Phys. 53 1981 593.



( )A.K. Roy et al.rChemical Physics Letters 308 1999 523–531 531

w x3 N.H. March, Electron Density Theory of Atoms and
Molecules, Academic Press, London, 1992.

w x Ž .4 G.P. Lawes, N. March, Phys. Scr. 21 1980 402.
w x Ž .5 B.M. Deb, S.K. Ghosh, Int. J. Quantum Chem. 23 1983 1.
w x Ž .6 M. Levy, J.P. Perdew, V. Sahni, Phys. Rev. A 30 1984

2745.
w x7 N.H. March, Int. J. Quantum Chem., Quantum Biol. Symp.

Ž .13 1986 3.
w x Ž .8 G. Hunter, in: R. Erdahl, V.H. Smith, Jr. Eds. , Density

Matrices and Density Functionals, D. Reidel, Dordrecht,
1987.

w x Ž .9 M. Levy, H. Ou-Yang, Phys. Rev. A 38 1988 625.
w x Ž .10 B.M. Deb, P.K. Chattaraj, Phys. Rev. A 45 1992 1412.
w x Ž .11 B.M. Deb, P.K. Chattaraj, S. Mishra, Phys. Rev. A 44 1991

1248.
w x Ž .12 B.M. Deb, S.K. Ghosh, in: N.H. March, B.M. Deb Eds. ,

The Single-Particle Density in Physics and Chemistry, Aca-
demic Press, London, 1987.

w x Ž .13 B.K. Dey, B.M. Deb, Int. J. Quantum Chem. 70 1998 441.
w x Ž .14 B.K. Dey, B.M. Deb, Chem. Phys. Lett. 276 1997 159.
w x Ž .15 B.K. Dey, B.M. Deb, J. Chem. Phys. 110 1999 6229, see

references therein.
w x Ž .16 D.R. Garmer, J.B. Anderson, J. Chem. Phys. 86 1987 4025.
w x Ž .17 J.P. Perdew, W. Yue, Phys. Rev. B 33 1986 8800.
w x Ž .18 A.D. Becke, J. Chem. Phys. 84 1986 4524.
w x19 Y. Wang, J.P. Perdew, J.A. Chevary, L.D. MacDonald, S.H.

Ž .Vosko, Phys. Rev. A 41 1990 78.

w x Ž .20 R. Van Leeuwen, E.J. Baerends, Phys. Rev. A 49 1994
2421.

w x Ž .21 C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 27 1988 785.
w x Ž .22 S.K. Ghosh, B.M. Deb, J. Phys. B 27 1994 381.
w x Ž .23 R. Singh, B.M. Deb, J. Chem. Phys. 104 1996 5892.
w x24 L. Lapidus, G.F. Pinder, Numerical Solution of Partial Dif-

ferential Equations in Science and Engineering, Wiley-Inter-
science, New York, 1982.

w x Ž .25 E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14 1974
174.

w x26 E.R. Davidson, S.A. Hagstrom, S.J. Chakravorty, V.M. Umar,
Ž .C.F. Fischer, Phys. Rev. A 44 1991 7071.

w x27 M.T. Carroll, R.F.W. Bader, S.H. Vosko, J. Phys. B 20
Ž .1987 3599.

w x Ž .28 Y. Ishikawa, K. Koc, Phys. Rev. A 50 1994 4733.
w x29 S.J. Chakravorty, S.R. Gwaltney, E.R. Davidson, F.A. Parpia,

Ž .C.F. Fischer, Phys. Rev. A 47 1993 3649.
w x Ž .30 A.D. Becke, J. Chem. Phys. 96 1992 2155.
w x Ž .31 J.P. Perdew, Phys. Rev. B 33 1986 8822.
w x32 S.K. Ghosh, A. Samanta, B.M. Deb, Int. J. Quantum Chem.

Ž .62 1997 461.
w x33 C.F. Fischer, The Hartree–Fock Method for Atoms, Wiley,

New York, 1977.
w x Ž .34 J.B. Anderson, J. Chem. Phys. 63 1975 1499.
w x Ž .35 J.B. Anderson, J. Chem. Phys. 65 1976 4121.
w x Ž .36 J.B. Anderson, Int. J. Quantum Chem. 15 1979 109.


