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Abstract. In the present study, the vorticity of melt motion in the keyhole and
weld pool has been evaluated in case of high power CO2 laser beam welding. The
circulation of vorticity is obtained as a function of Reynolds number for a given
keyhole volume which is linked to Mach number variation. The shear stress and ther-
mal fluxes present in the turbulent pool are linked to diffusivity and Prandtl number
variation. It was shown that below a critical value of Rayleigh number, the conduc-
tion mode of melt transfer signifying beam absorption becomes dominant. Above
this value, convective heat transfer indicates melting and evaporation occurring in
the weld pool during laser welding. The evaporative recoil pressure expels the liquid
while surface tension and hydrostatic pressure help to retain the melt in the keyhole
cavity in this high power laser beam welding. The understanding of several hydrody-
namic phenomena occuring in the weld pool is valuable not only for understanding
basic mechanistic aspects but also for process optimization involved in laser beam
welding.

Keywords. Keyhole; melt pool; vorticity; dimensionless numbers; liquid–vapour
phase.

1. Introduction

A keyhole laser spot welding often leads to appearance of porous defects in the weld seam. A
fundamental understanding behind evolution of such defects is essential to devise optimum con-
ditions for their ellimination. A simplified situation, offering several advantages, has been found
in case of laser melting of Zinc. High speed X-ray transmission imaging of an enlarged key-
hole has indicated violent melt motion. This observation has facilitated the development of a
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semi-analytical mathematical model described by Kaplan et al (2002). The formation and sta-
bility of stationary laser weld keyholes have been investigated using numerical simulation. The
effect of multiple reflections in the keyhole was estimated by Mi & Charles (2004) by using
a ray tracing method. The free surface profile, flow velocity and temperature distribution were
calculated numerically by He et al (2003). In laser and electron-beam welding, a deep cavity
called a keyhole or beam hole is formed in the weld pool due to the intense recoil pressure
exetrted by rapid evaporation. The formation of the keyhole leads to a deep penetration weld
with a high aspect ratio and this is the most advantageous feature of welding by high-energy-
density beams. Systematic studies on observation of keyhole as well as the weld pool dynamics
prevailing there and the related phenomena that reveal the mechanism of porosity formation
have enabled formation of suppression methods Dowden (2002). Marangoni convection and
viscous drag associated with vapour motion in the keyhole was identified as the two most prob-
able causes of turbulence in the weld pool described by Fabbro et al (2004). Axial fluid motion
inside the keyhole was explained by drawing mathematical linkages between viscous drag and
Marangoni convection in a turbulent flow field. Several bubbles were formed across the key-
hole by intense material evaporation process. As studied by Hu & Tsai (2003) it has also been
revealed that the geometry of the keyhole fluctuates frequently with respect to changes in size and
shape.

Numerical and experimental studies were conducted to investigate the heat transfer, fluid flow
and keyhole dynamics during pulsed laser welding. For this purpose, Kaplan (1994) has devel-
oped a comprehensive mathematical model. In this model, the continuum formulation was used
to handle solid phase, liquid phase and mushy zone encountered during melting and solidifi-
cation processes. The experiments based on twin or triple spot interaction geometry have also
indicated that the friction forces exercised by the metal vapour escaping from the keyhole have
an important role in the pool hydrodynamics worked out by Kaplan et al (2002). The objective
of several mathematical models and the associated numerical techniques was aimed to calculate
transient heat transfer and fluid flow in the melt pool. These studies profoundly influenced the
understanding of mechanisms leading to the oval shape of the melt pool during dual beam laser
welding. This was observed by Lee et al (2002). The deformation of the melt pool was ascribed
to non-uniform evaporation on the front wall of the keyhole. Both the keyhole and the weld pool
were strongly disturbed by the dynamic pressure of the metallic vapour jet. The characteristic
spherical and elongated pores were found to have a composition dominated by the metal vapour
entrained with shielding gas studied by Matsunawa (2001). The equations governing the process
of fluid flow has two distinct phase boundaries; one is between the keyhole and the molten metal
while the other one is between the liquid and the solid states of the metal. High-power lasers
evolved keyhole in a solid target is unstable with respect to collapse and can be maintained only
by achieving a balance between pressure terms ensuing from laser vaporization, surface ten-
sion and hydrostatic pressure. It was understood from the previous works that the vapour recoil
pressure is the main driving force for deep penetration keyhole formation studied by Zhou et al
(2006). However, the hydrodynamics of melt motion in keyhole and weld pool have not been
completely addressed.

A comprehensive plot of turbulent flow in the keyhole during laser beam welding is necessary
to understand the underlying physical process. This will lead to better quality welding. Hydrody-
namical analysis of melt motion in keyhole and weld pool is the subject matter of present study.
Such analysis is essential for rectification of laser welding process parameters. In this regard,
the momentum and turbulent dynamics concepts have been analytically applied to address the
melt pool vorticity, which is responsible for dimensional instabilities of the keyhole during high
power laser beam welding.
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2. Melt flow in weld pool

A keyhole in the shape of a conical cavity is formed due to high power (up to P = 2.5 kW)
continuous wave linearly polarized CO2 laser radiation impinging on the mild steel. The ray
tracing method is used to estimate the beam propagation into the material. The incident laser
beam is assumed to consist of rays and the power of the ray is computed from a circularly
symmetric Gaussian beam profile. The ray tracing procedure has following assumption. The
molten metal surfaces are specularly reflecting. The plume absorption into the material is neg-
ligible. The polarization direction in the beam is random. The laser beam with an intensity
I = 107 W cm−1 forms the keyhole channel in the material with a depth extending to 1.2 mm. In
table 1, the material parameters of mild steel are mentioned. These parameters were used in our
calculations.

Klein & Vicanek (1996) calculated the axi-symmetric keyhole profile and flow velocity
numerically using the Volume of Fluid (VOF) method. The governing equations for the VOF
method consist of continuity, momentum and volume of fraction relations. These governing
equations are listed below

∇ · −→v = 0, (1)

∂−→v
∂t

+ (−→v · ∇) −→v = − 1

ρ
∇ p + v∇2−→v + β

−→g �T, (2)

∂ F

∂t
+ (−→v · ∇)

F = 0, (3)

where −→v represents the velocity vector, p is the pressure, ρ is the mass density, v is the kinematic
viscosity, β is the thermal expansion coefficient, g is the acceleration due to gravity and F is
the volume fraction of the fluid in the grid cell used for calculations. The above volume fraction
equation allows computation of the position of a moving liquid surface within a fixed grid system
so that the keyhole shape can be obtained after each time step.

In figure 1, it is assumed that the free boundary curve is moving with the front and rear wall of
the keyhole along the axis of laser beam. Boundary of the weld pool is assumed to be the region
of free melt motion prevailing between the rear wall of keyhole and solid front. The movement
of the weld pool is proportional to the velocity, V of the specimen. In the numerical approach,
the keyhole is assumed to be cylindrical with a uniform temperature along its keyhole wall. This
temperature is set at a value slightly above the evaporation temperature of the material. The
laser power is supposed to be completely absorbed by the wall of the cylindrical keyhole. The
depth of the keyhole is then determined iteratively in such a way that the integral of the heat

Table 1. Material properties of mild steel and constants used in calculation (Fabbro et al 2004).

No. Physical parameters Typical values

1 Mass density, ρ 7860 kg m−3

2 Kinematic viscosity, μ 5.6 × 10−7 m2 s−1

3 Surface tension coefficient, σ 1.2 Nm−1

4 Surface tension gradient, dσ
dT 0.2 dyne cm−1 K−1

5 Thermal conductivity, k 30 W m K−1

6 Specific heat, Cp 795 J kg−1 K−1

7 Latent heat of vapourization, hl 6084 kJ kg−1

8 Evaporating temperature, Tev 3130 K
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Figure 1. Sketch of the keyhole model.

flux along the entire surface of the keyhole equals the total absorbed laser power. An analytical
description can also be used for this purpose where material properties remain constant. The
diameter of the keyhole is supposed to be equal to the diameter of the laser spot. The initial
temperature T0 is equal to 300 K. The material properties are temperature dependant and the
latent heat of fusion is also taken into account. The material is irradiated by the laser beam
perpendicular to the surface and moving at a velocity V0 along x-axis. The laser beam-welding
problem is assumed to be at a quasi-steady state. In this model, the hydrodynamics phenomena
are also taken into account which is described by Kamel et al (2008). The energy equation is
solved using a coordinate system moving with the heat source. The liquid metal is considered
as an incompressible Newtonian fluid. The equations of mass and momentum conservation are
supposed to govern the fluid flow equations (1–3). According to hydrodynamic approach, the
speed of sound increases in the keyhole as the temperature increases, the actual speed of melt
moving at Mach value depends on the melt temperature around it. As the Mach number increases,
so does the strength of the shock wave and the Mach angle becomes increasingly narrow. As the
melt flow crosses the shock wave, its speed is reduced and the associated temperature, pressure
and density increase. The stronger the shock, the greater the changes. At high enough Mach
numbers, the temperature increases so much over the shock that ionization of gas molecules
behind the shock wave commences.

The surface tension equation σ = σc
rkh

is based on a pressure balance, where σ c refers to
surface tension coefficient, rkh is the radius of the keyhole. The term rkh need to balance the sum
of vapour recoil pressure pab of particles ablated at the keyhole surface and the excess pressure
δpg due to the gas streaming out of the keyhole. Pressure at the surface is the sum total of
vapour recoil pressure and ablation pressure. Neglecting plasma effects, the ablation pressure is
determined by the solution of the kinetic knudsen layer equations as stated in pab = mngu2

g . m
is the mass of a metal atom. The density ng and the velocity ug of the particles at the end of the
knudsen layer may be expressed in terms of the keyhole surface temperature Ts and the average
gas pressure po + δpg within the keyhole (po is the atmospheric pressure). Taking into account
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the kinematic viscosity μg of the vapour, we may express the average excess pressure δpg within
the keyhole as (Kaplan 1994)

δpg = Cg (Re)

3

(
d

a

)2

· pab, (4)

Cg is a gas flow parameter, Cg (Re) in equation (4) depends on the Reynolds number Re = rkhvl
vg

for the gas flow, vl is the injection velocity of the ablated liquid particles at the keyhole surface,
vg is kinematic viscosity of the gas. The constant rate of gas flow Cg (Re) can be calculated for
solution of the Navier–Stokes equations within the keyhole.
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� is the average mass density of the melt, p is the acting pressure in the keyhole, um is the radial
velocity in the melt flow.
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p2–p1 denotes the pressure difference between r = rs and r = rm with in the melt phase that is
related to the external pressure difference. The Partial Differential Equation (PDE) form of above
NS equation can be integrated between actual radius of the weld pool rm and of the keyhole
radius rs to yield an Ordinary Differential Equation (ODE) for the calculation of temporal growth
of keyhole radius rs(t). The circulation of the molten phase of the metal in the keyhole � can be
defined as integral along a closed curve running over the keyhole as (Seto et al 2000; Matsunawa
2001)

� =
∫

C

−→w · d−→r , (7)

where d−→r is the tangent to C which points to the circulatory direction. The Stoke’s theorem
relates the circulation to the vorticity of the molten phase present inside the keyhole. We can
estimate the momentum of the molten phase circulating across the tangential force at certain
point inside the keyhole

� =
∫

C

−→w · d−→r =
∫

S

n̂ · (∇x · −→ω )
ds =

∫

S

n̂ · −→ω ds, (8)

where S is an open surface of the keyhole mouth that caps C , ∇x is the length of fluid which
represents length of melt phase along the laser beam axis. This relation can be differentiated to
yield following equation

d� = n̂ · −→ω ds, (9)

where d� equals the component of angular velocity −→ω that is normal to ds as curve C shrinks to
a point. This relation represents the circulation and momentum of vorticity of the molten metal
in the keyhole volume. To clarify the connection, consider a region of the liquid molten phase
in the keyhole in which −→ω = 0. Then at d� = 0, the circulation of the fluid flow becomes
constant. This need not be zero in the keyhole region. On the other hand, if the vorticity is
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non-zero then the magnitude of d� at each point of the keyhole region will depend on the orien-
tation of n̂. The kinematic expression for vorticity evaluated by obtaining curl of the acceleration
of the fluid flow is given as
⎧
⎪⎪⎨

⎪⎪⎩

∇x · −→a = ∇x
d−→w
dt

= ∇x

(
∂−→ω
∂t

+ −→ω x · −→w + ∇ w2

2

)
= ∂

∂t

(∇x · −→w ) + ∇x
(−→ω x · −→w ) =

= ∂−→ω
∂t

+ ∇x
(−→ω · x−→w )

.

(10)

Replacement of fluid acceleration −→a in momentum equation will cause the results being
not kinematic. We will consider Rayleigh flow if it is compressible. The kinematic viscosity v

remains non-zero. When the Rayleigh number is below a critical value for the fluid inside key-
hole, heat transfer primarily takes place in the form of conduction. Above the critical value, heat
transfer becomes convection dominated. The Rayleigh number is defined as the product of the
Grashof number that describes the relationship between buoyancy and viscosity within a fluid
and the Prandtl number describing the relationship between momentum and thermal diffusivi-
ties. Hence, the Rayleigh number itself may be viewed as the ratio of buoyancy forces and (the
product of) thermal and momentum diffusivities. For convection inside keyhole, we can estimate
the Rayleigh number as Ra = Gr · Pr = gβ

v·α (Tkh − T∞kh) V 2
kh . The Grashof number Gr defines

the heat transfer which approximates the ratio of the buoyancy to viscous forces acting on the

keyhole. This is Gr = gβ(Tkh−T∞kh)V 2
kh

v2 , where Pr = v
α

is Prandtl number. Vkh is the characteristic
volume of the keyhole. Tkh is the keyhole surface temperature. T∞kh is quiescent of temperature
(fluid temperature at the keyhole boundary surface), where v is the kinematic viscosity, α is the
thermal diffusivity, β is the thermal expansion coefficient. However, for an incompressible flow,
v= 0 which renders momentum and energy equations to be reduced to following terms:

∂u

∂t
= ∂

∂t

(
v

ρ

∂u

∂t

)
, (11)

∂

∂t

(
h − p

ρ

)
= ∂

∂y

(
k

ρ

∂T

∂y

)
+ v

ρ

(
∂u

∂y

)2

, (12)

where k is thermal conductivity and h is depth of the keyhole. In the equations (11) and (12)
all the variables are dimensional and the right hand side term in the energy equation (12) is the
viscous dissipation function divided by liquid phase density ρ at an elapsed time t ≥ 0, y = 0.
It is possible to establish the complete set of initial and boundary conditions in the following
manner

⎧
⎨

⎩

u (y, 0) = 0, u (0, t) = U, u (∞, t) = 0

T (y, 0) = T∞,
∂T

∂y
(0, t) = 0, T (∞, t) = T∞

. (13)

In the laser welding simulation, it is essentially the temperature change, translated into thermal
expansion in the mechanical analysis, which becomes external load in the model. The tempera-
ture is usually linearly ramped to the prescribed value and thereafter it is followed by a constant-
temperature stage. This method has been used quite frequently in the 2D analytical form pro-
posed by Lee et al (2002). The other method, prescribed heat input is the most commonly used
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method. It applies the heat input as a heat flux at integration points, which is then converted to the
nodes as temperature loads. The most commonly used heat source of this kind have a Gaussian
distribution. Numerical technique is used to set the geometry, the mesh and the boundary of a
3D computational domain. The fluent running allows one to obtain the numerical solution of the
flow equations by finite volume discretization. For all the treated cases, the calculation was car-
ried out with a uniform structured mesh composed of hexahedral cells. This grid was selected
among others, following the calculations carried out with finer grids composed of 15400 cells
and 75450 cells. The differences between the results obtained using these three grids are lower
than 5% for all the flow sizes. The choice of the grid was thus based on the lowest computing
time (Kamel et al 2008).

To eliminate the enthalpy in the keyhole boundary layer, we can write the following
expression. Here h = C pT , C = const., we get

∂T

∂t
= ∂

∂y

(
α

∂T

∂y

)
+ v

C p

(
∂u

∂y

)2

, (14)

where α = k
C p

is the thermal diffusivity and v = η
ρ

is the kinematic viscosity of the fluid
residing in the volume of the keyhole. Due to incompressiblity assumption, the similar solution
is valid provided the Eckert number E is small compared to unity. The Eckert number is a
dimensionless number used in heat dissipation of calculation associated with fluid flow. It is

based on relationship between a flow kinetic energy and enthalpy. It is defined as E = V 2

2·C p�T .

This is ratio of the kinetic energy and enthalpy. V = √
2 × E × C p × �T is characteristic

velocity of the liquid metal flow within the keyhole. C p = V 2

2×E×�T is the specific heat at

constant pressure of the flow. �T = V 2

2×E×C p
is the characteristic temperature difference in the

flow. The turbulent Prandtl number (Prt ) is a non-dimensional term defined as the ratio between
the momentum eddy diffusivity and the heat transfer eddy diffusivity. It is useful for solving the
heat transfer problems encountered in turbulent boundary layer flows. The simplest model for Prt

is the Reynolds analogy, which yields a turbulent Prandtl number close to 1. From experimental
data obtained by Fabbro et al (2005), Prt has an average value of 0.85, but it ranges from 0.7
to 0.9 depending on the Prandtl number of the given fluid. The introduction of eddy diffusivity
and subsequently the turbulent Prandtl number works as a way to define a simple relationship
between the excess shear stress and heat flux present in a turbulent flow. If the momentum and
thermal eddy diffusivities are zero (no apparent turbulent shear stress and heat flux) then the
turbulent flow equations reduce to laminar type of expressions. We can define the turbulent
Prandtl number through the eddy diffusivities and connect it to the momentum and thermal
equations.

u
∂T

∂x
+ υ

∂T

∂y
= ∂

∂y

[(
α + δM

Prt

)
∂T

∂y

]
, (15)

where u and υ are the turbulent shear stresses in the keyhole, δM is the momentum transfer in
the fluid. In a special case, where both Prandtl number and turbulent Prandtl number are equal
to one, the velocity and the temperature profiles become identical. This simplifies the solution to
the heat transfer problem. If the Prandtl and turbulent Prandtl numbers differ from one another
than the momentum and eddy diffusivities, solutions are found for momentum and thermal
equations.
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Vorticity and entropy production in terms of E are easily evaluated. For the circulation of
vorticity, we can write the governing expressions as defined by Hu & Tsai (2003)

∫

c

du

dt
· ds =

∫

A

∇ ×
(

− 1

ρ
∇ p + ∇

)
· nd S =

∫

A

1

ρ2 (∇ρ × ∇ p) · nd S = 0, (16)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d−→ω
dt

= d−→ω
∂t

+ −→
V ·

(−→∇ −→ω
)

=
(−→ω · −→∇

) −→
V − −→ω

(−→
V · −→

V
)

+ 1

ρ2

−→∇ ρ × −→∇ p + −→∇
(−→∇ · τ

ρ

)

+ −→∇ × −→
B

, (17)

Here
−→
V is the velocity vector, ∇ p is the pressure gradient, τ is the viscous stress tensor

and
−→
B is the liquid vapour force term, dS is an element along the closed contour, n is nor-

mal orientation of closed counter dS and  is the potential for the vapour pressure. The term
d−→ω
dt = ∂−→ω

∂t + −→
V ·

(−→∇ · −→ω
)

is the material derivative of the vorticity vector −→ω . It describes

the rate of change of vorticity of a fluid particle within the keyhole volume (or in other words
the angular acceleration of the liquid–vapour phase). This can change due to the unsteadiness
in the flow expressed by ∂−→ω

∂t (unsteady state term which indicates that the vorticity is not a lin-
ear function of time as it can be derived from the conservation of momentum). It can as well be

obtained from the motion of a fluid particle include keyhole channel.
−→
V ·

(−→
V · −→ω

)
is the con-

vection term for the liquid–vapour phase. The first term on the RHS of the vorticity equation

(17)
(−→ω · −→

V
) −→

V , describes the stretching or tilting of vorticity due to prevailing velocity gra-

dients. The next term −→ω
(−→

V · −→
V

)
describes stretching of vorticity due to flow compressibility.

The third term 1
ρ2

−→∇ ρ × −→∇ p is a baroclinic term. It accounts for the change in the vorticity
due to intersection of density and temperature surfaces inside the keyhole channel. The term−→∇ ×

(−→∇ ·τ
ρ

)
accounts for the dispersion of vorticity due to viscous effects.

−→∇ × −→
B term deals

with changes occurring due to prevailing liquid–vapour forces. The vorticity equation describes
the evolution of the vorticity

(−→ω )
of a fluid element as it revolves around. The vorticity equation

can be derived from the conservation of momentum equation. In its general vector form, it may
be expressed as follows

−→ω = ∇x · −→w = −∂u

∂y

∣
∣∣
∣=

U

(πv · t)0.5
exp−η2

∣
∣∣
∣ =

(
C pT∞
πv · t

)0.5

exp−η2
(18)

For entropy calculations, we need the temperature gradient in the volume of the keyhole. This
can be achieved by executing following mathematical steps:

∇T = ∂T

∂y

∣
∣∣
∣
∣
= −U 2 exp−η2er f η

C p (πv · t)0.5
, (19)

 = v

(
∂u

∂y

)2

= ρU 2

π t
exp−2η2

, (20)
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ρT = ρU 2

π t
exp−2η2 +kU 4 exp−2η2(er f c·η)2

C2
p · πvt (T )

, (21)

The expression for Cp can be described by

C p = E · exp−2η2

π
{
1 + E

2

[
1 − (er f c · η)2]}

(

1 + E (er f c · η)2

1 + E
2

[
1 − (er f c · η)2]

)

,

Pr = 1 ⇒ 1 − er f c · η ∼ 1
π0.5·η exp−η2

at, η → ∞. This rapid exponential decay is typical of
both steady and unsteady high Re number boundary layers encompassed by a viscous layer.

A transformation is described, which relates the Mach number of the flow to the vorticity.
These are expressed in terms of Reynolds number for different sizes of keyhole mouth. For
compact flow fields, the apparent sound source is of quadrupole type and varies linearly with
the vorticity. Therefore, it changes linearly with the flow velocity. It is found that at low Mach
numbers associated with free-space turbulence, the generated velocity of sound is related to
the vorticity correlation tensor. It is observed that larger the radius of the keyhole more is the
magnitude of vorticity production. The vorticity production increases sharply when the corner
angle of keyhole is of higher magnitude. However, at these larger angles the rate of vorticity
production increases and ultimately approaches a constant value. Strong shock waves induce
faster vorticity. Only exception occurs when the slipstream originating from the shallow corner
attaches to the downstream wall of the keyhole. It is found that the vorticity induced by the
slipstream contains a large fraction of the total vorticity. Therefore, the slipstream is an important
source of vorticity in comparison with baroclinic effects caused by shock wave diffraction.

3. Results and discussion

In fluid dynamics, vorticity is well-known as curl of the fluid velocity. It can also be considered
as the circulation per unit area at a point in a liquid–vapour velocity field. It is a vector quan-
tity, whose direction lies along the axis of the fluid’s rotation. For a two-dimensional flow, the
vorticity vector is perpendicular to the plane. The various hydrodynamic transport phenomena
calculations are based on dimensionless numbers which is based on the detail mechanism of
keyhole generation due to vapour bursts described by Fabbro et al (2004). This is followed by
rapid collapse of the keyhole channel due to excess vapour recoil pressure. In general, as shown
in figure 2, the vorticity (ω) in radian per second is a powerful concept in case of low viscous –
high Reynold number flows. In such cases, even when the velocity field is relatively compli-
cated, the vorticity field can well be approximated to zero everywhere except in small regions of
spatial confines. Related concepts include vortex-line, a line that is everywhere tangential to the
local vorticity. Similarly, a vortex-plane in the fluid is formed by all vortex-lines passing through
a closed curve in the keyhole. The strength of a vortex is the integral of the vorticity across a
cross-section of the keyhole. It is same everywhere along the keyhole (because vorticity has zero
divergence). A consequence of Helmholtz theorem (or equivalently Kelvin’s circulation theo-
rem) states that in an inviscid fluid, the strength of the vortex line remains constant with time. In
figure 2, it is pointed out that the degree of vorticity sharply increases at high Reynolds numbers.
It also depends on the radius of the keyhole mouth, which generates the vapour recoil pres-
sure across the keyhole axis. Vorticity of the melt has been calculated as a function of Reynolds
number. It shows that vorticity increases with Reynolds number for various Mach numbers. The
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(a) (b)

(c) (d)

Figure 2. Renoylds number as a function of vorticity for four different values of the keyhole mouth radius
at (a) Ma = 0.3, (b) Ma = 0.5, (c) Ma = 1.2 and (d) Ma = 2 for constant laser power P = 2.5 kW.

power of the laser is kept constant at 2.5 kW. It is a finding that the Mach number does not influ-
ence vorticity of the melt significantly a shown in figures 2 a–d. Higher Mach number is a strong
hydrodynamic dimensionless quantity which accounts for the enhanced vorticity. It is found that
for the higher order of keyhole with a size rkh = 1.2 mm, the average vorticity reduces by 5 times
when compared to the vorticity at rkh = 0.2 mm. The vorticity shows ascendancy with increase
in Mach number. In all cases in figures 2 a–d it is found that Mach number is an important param-
eter for the enhancement of the vorticity as a function of Reynolds number. The magnitude of
vorticity slightly increases for higher Mach number due to the generation of strong shock waves
in the keyhole. The free-vortex flow of the liquid-vapour in the keyhole channel is derived from
the vorticity transport equation. This equation is the curl of the Eulerian momentum equation. A
barotropic flow in keyhole channel ensues with vanishing source terms. The vorticity associated
with irrotational flow is zero. For a two-dimensional liquid–vapour flow in the keyhole chan-
nel, the vorticity acts as a measure of the local rotation of fluid elements. Note that the vorticity
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does not imply anything about the global behaviour of a fluid. It is possible for a fluid travel-
ing in a straight line to posses vorticity. It is also possible for a fluid which moves in a circle
to be spatially irrotational. For liquid–vapour substances in conserved force field the expression−→∇ × −→

B = 0. A barotropic fluid is defined by the mathematical property
−→∇ ρ × −→∇ p = 0. For

an inviscid fluid τ = 0. For a constant density fluid, ∇ρ = 0, at a given temperature gradient.
Vortex dynamics presumes that the vorticity field can be modelled in terms of discrete vortices
enclosed within intensive and relevant flows. In general, the presence of viscosity causes a dis-
persion of vorticity away from these small regions (e.g., discrete vortices) into the general flow
field. This can be seen in the keyhole channel from the presence of diffusion term in the vor-
ticity transport equation. Thus, in cases of strong viscous flows, the vorticity will be dispersed
through out the flow field. In this case, it will be prudent to consider velocity field rather than
look at the vorticity field which becomes less intuitive. In figure 3, the value of Mach number
is shown as a function of keyhole size rkh for five different values of CW CO2 laser power, at a
constant external pressure. In the case of keyhole radius ranging between rkh = 0.2–0.4 mm, the
Mach number ranges between 1.5 ≤ Ma ≤ 3.2, implying vapour ejection from the fluid. In the
range of keyhole size 0.4 ≥ rkh ≥ 0.8 mm, the Mach number varies between 0.1 ≤ Ma ≤ 2.7,
indicating subsonic to supersonic transition of vapour flow in the keyhole channel. The value
of Mach number linearly decreases for comparatively higher keyhole sizes. This phenomenon
explains the hydrodynamic behaviour of liquid–vapour recoil pressure in the keyhole volume. In
this case, the keyhole behaves like a nozzle for the recoiling vapour flow. If the keyhole size is
small, the fluid flow is enhanced due to high vapour pressure prevailing inside the keyhole chan-
nel. This oscillatory hydrodynamic nature of Mach number variation can explain the fluid flow
instabilities and collapse of keyhole channel encountered during deep penetration laser beam
welding. In figure 4, the results represent keyhole size rkh as a function of Reynolds number for

five different values of CW CO2 laser power. Turbulent Reynolds number Re = [ρ(Ma)×rkh ]×−→ω
μ

represents the ratio of the inertial force to the viscous force in terms of vorticity −→ω . It reflects
the degree of turbulence within the liquid–vapour phase in a keyhole channel. In our case, we

Figure 3. Size of keyhole mouth as a function of Mach number variation for five different values of laser
power.
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Figure 4. Size of keyhole mouth as a function of Reynold number for five different values of delivered
CW CO2 laser power at constat external pressure.

consider the velocity of the liquid–vapour phase equal to the Mach number. In all the cases,
the increase in Reynolds number results in widening of keyhole due to prevalence of relatively
higher turbulence. The incident laser power is also an important parameter that enhances the
turbulent motion in the keyhole. It is also directly related to the rate of melting of the material.
Results shown in figure 5 represent keyhole depth as a function of Rayleigh and Mach numbers
for a laser power of 1 kW and welding speed 12 m/min. The Rayleigh number shows conductive
mode of heat transfer inside the keyhole depth 0 ≥ hkh ≥ 0.3 mm. In the Rayleigh number range
5 × 107 ≥ Ra ≥ 2 × 107, the mode of turbulent convective heat transfer dominates at the key-
hole depth 0.3 ≥ hkh ≥ 0.5 mm. In the bottom of the keyhole hkh = 0.5–0.8 the Raleigh number
again reduces to Ra = 107 and the process reverts from convective to conductive heat transfer
mode. The Mach number falls rapidly with increasing depth of the keyhole channel due to inter-
ference of the flow pattern. Inside the keyhole depth, the Mach flow pattern can be divided into
three distinct zones i.e., subsonic, sonic and supersonic flow. While traversing down the keyhole,
the Mach flow pattern, which is supersonic in keyhole mouth, gradually becomes sonic at inter-
mediate levels and finally turns into subsonic in bottom most part of the keyhole. The knowledge
of these hydrodynamic parameters is essential to optimize the weld quality in laser beam weld-
ing. If the Mach number of liquid–vapour phase exceeds a certain value, it can cause formation
of pores in the weld seams and ejection of melt from melting bath. This effect can reduce the
mechanical resistance of welding quality.

Marangoni convection in the weld pool can affect its depth significantly, which is often criti-
cal in welding. Marangoni convection in the weld pool is induced by surface-tension gradients
along the pool surface, which drives the liquid flow at the pool surface from low surface tension
to high. The surface-tension gradients are induced by the temperature gradients along the pool
surface. Laser-induced heating makes the temperature of the pool surface significantly higher at
the center of the keyhole than at the edge of the keyhole wall. In the configuration of a weld pool,
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Figure 5. The profile of Raleigh and Mach number variation as a function of keyhole depth.

buoyancy convection occurs in the same direction as Marangoni convection. Therefore, it
should be checked whether the convection observed is driven primarily by Marangoni con-
vection or buoyancy convection. The dynamic Bond number is often used as an indication
of the relative strength of buoyancy convection to Marangoni convection. It is defined as
Bo − βρg × L2/ (−∂γ /∂T ), where β is the thermal expansion coefficient of the melt, ρ the
density of the melt, g the gravitational acceleration, L the characteristic length of the pool, and
∂γ /∂T is the temperature coefficient of surface tension of the melt. As shown in the figure 4,
the region of the melt of the flow loops are very close to the pool surface, where fluid flow is
much faster and the flow lines are much more closely spaced than in the bulk pool. This suggests
that convection in these pools is dominated by Marangoni convection. When the temperature
difference between the center of the pool surface and the edge is high, the flow loops are stable
and axi-symmetric. When the temperature difference is reduced beyond a certain point, how-
ever, convection weakens and the flow loops begin to lose stability and axi-symmetry. Therefore,
if the buoyancy force is significant then the Marangoni convection appears in the centre of the
keyhole and it disappears away from the keyhole region.

3.1 Validation of the model

Finally, the simulation results are compared with the experimental data. The effectiveness of the
developed computational procedures have been confirmed. The contour for the boiling point of
the material is defined as the keyhole boundary where the region between the boiling and melt-
ing indicate formation of weld pool. Moreover, when the Rayleigh number, is below a critical
value, the heat transfer occurs primarily in the form of conduction. When it exceeds this critical
value, heat transfer becomes convection dominated. This weld pool has the shape very similar
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to the weld pool shape presented by Sudink et al in which the contribution of transport such as
conductivity, fluid flow and convexity in the weld pool shape were taken into account to define
the fluid flow in weld pool (Dowden 2002). It is reasonable to analyse the figures 1 a–d we are
able to estimate another weld pool cross section with a different laser power. To validate this
assumption, a laser weld cross section in a 5 mm plate was chosen. For extending this to a 3-D
modelling, one could use the data of the weld cross section from an experiment for defining the
absorption coefficient for each element along the thickness. So an absorption profile is easily
obtained as a function of penetration depth, which is helpful for prediction of weld cross sec-
tions. The Reynolds and Mach numbers decrease with radius of keyhole for various laser powers.
Calculated results of the Reynolds number in the keyhole and weld pool are compared with the
results presented by Hu & Tsai (2003). Heat transfer from the laser keyhole in the weld pool
and details of the fluid flow play an important role in determining weld shape and size. Experi-
mental and the finite volume methods are utilized to investigate the thermal phenomena during
continuous laser keyhole welding. It has been found that the shape and size of the molten pool in
the work piece are affected by welding parameters such as welding speed and the incident laser
power as studied by Kaplan et al (2002). It has been observed that the temperature coefficient of
surface tension and Marangoni convection are sensitive parameters that describe the fluid flow
in the weld pool region. These coefficients also affect the pattern of the fluid flow in the molten
pool.

4. Conclusions

The strength of vorticity across a cross-section of the keyhole channel has been described in
terms of angular velocity of the melt. It is equal everywhere in the keyhole as vorticity has zero
divergence. The magnitude of vorticity gets enhanced with higher Reynolds number. It also
depends on the radius of the keyhole mouth which experiences vapour recoil pressure along
the keyhole axis. The resulting increase in the curvature of the fluid momentum is related to
the rapid temporal collapse of the keyhole. Present study also addresses vorticity dynamics in
liquid–vapour flow occurring in the keyhole channel. The Mach number is considered as a strong
hydrodynamic indicator connected to enhanced vorticity in the keyhole channel. It also explains
the rapid oscillatory motion in the liquid–vapour phase. The expression of thermal diffusivity
and turbulent Prandtl number defines relationship between the excess shear stress and heat flux
in the keyhole region. In the analytical calculations, the Mach number is found to be linearly
decreased with increasing size of keyhole mouth. The hydrodynamic treatment of liquid–vapour
recoil pressure acting along the cross section of keyhole charecterizes nozzle action associated
with vapour recoil flow. It is assumed that the velocity of the liquid–vapour phase is equal to
the supersonic flow present in the keyhole volume. The Reynolds number increases for larger
keyhole sizes due to higher turbulence. The laser power is also an important parameter which
influences the variation in turbulence motion in the liquid–vapour phase in keyhole region. This
is again directly proportional to the rate of melting and evaporation of the material. In addition,
surface tension forces acting with shear force caused by intense turbulent vorticity brings out
rapid collapse of the keyhole walls. This phenomenon is more prominent at higher Mach num-
bers. In the experiments, the time for the complete collapse of keyhole after the appearance of
protrusion was about 0.2 μs. This number showed reasonable correlation between the experi-
ment and our computations in which vorticity and dimension of keyhole mouth are functions of
Reynolds number and Mach number, respectively.
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