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Zeno blocking of interplanar tunneling by intraplane inelastic scattering
in layered superconductors: A generalized spin-boson analysis
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Following an earlier proposal that the observed temperature dependence of the norntaksistesistivity
of oxide superconductors can be understood as arising from the inhibition of electron transport atagishe
due to in-plane incoherent inelastic scatterings suffered by the tagged electron, we consider a specific form for
the interaction Hamiltonian. In this, the tagged electron is coupled to bosonic baths at adjacen{thknes
baths at any two planes being uncorrelatadd is coupled also to the intraplane momentum-flip degree of
freedom via the bath degrees of freedom. Thus our model Hamiltonian incorporates the earlier proposed
picture that each in-plane inelastic scattering event is like a measurement of which plane the electron is in, and
this, as in the quantum Zeno effect, leads to the suppression of interplane tunneling. In the present scenario it
is the baths which bring about a coupling between the intraplane and interplane degrees of freedom. For
simplicity we confine ourselves to dynamics in two adjacent planes and allow for two states only, as far as
momentum flips due to scattering are concerned. In the case when the intraplane dynamics is absent, our model
reduces effectively to the usual spin-boson model. We solve for the reduced tunneling dynamics of the electron
using a non-Markovian master equation approach. Our numerical results on the survival probability of the
electron in the initial plane show that the intraplane momentum flips lead to further inhibition of the interplane
tunneling over and above the inhibition effected by pure spin-boson dynamics.
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I. INTRODUCTION . .
The cuprate superconductors continue to capture the HOZKE;T ekak,oak,o+k§;T B, o B0

imagination of theorists, leading to a plethora of proposals

for describing different physical properties. One of these ho N

properties is the unusual suppression of ¢haxis resistivity - kZ‘r (Bk,o,oTH.C). 1.2
compared to theab-plane resistivity, in the normal state, ’

which cannot be simply explained by the anisotropy of they, Eqg. (1.2, the summations are over the wave vedt@nd
underlying crystal structure. It is also clear that any proposegpin o, although the latter can be suppressed as there is no
mechan_ism for suppression of tlweaxis _resistivity has tq spin-flip scattering. In the KJ model the role &’ was
concomitantly account for loss-free pair tunneling, whichjmagined such as to cause repeated interruptions in the time
leads to superconductivity. A model to elucidate and encomgyojution of the electron state, due to successive in-plane
pass the above-mentioned phenomena was earlier presenigdhiiering events. Thus an initial state of the electron lying in
by one of us in collaboration with othetdlhe basic premise the a plane with wave vectok, and spinc and denoted by
of this analysis is that the strong intralayer eIectron—eIectrona,ko,@ would transform into |a,k;,0), then into
scattering blocks the single-electron interlayer tunneling bu}a,kz,@' and so on. Invoking then the “watched pot effect”
not the tunneling ofthe time-reversedelectron pairs. This ot Simonius® KJ had argued that the survival probability of
proposal is much in thefp'”t of and complementary 10 th&he glectron in ther layer, which is related to the transport
work of Chakravartyet al:” and that of Kumar,all based On  coefficient across the axis, is suppressed. In this paper we
the idea of confinement by “orthogonality catastropie. rovide an explicit treatment of this analysis, with the aid of
The above—menthned idea was mc;orpprated by Kumal odel forH' .
and JayannavaiKJ) in terms of a Hamiltonian Before we specifyH it is useful to rewriteH, in a sim-
plified notation by introducing pseudospin operat@os spin
1/2) which describe the two-level system of adjacent cuprate

H=Ho+H', (1D jayers. Thus,
where ', though not specified, was assumedntat com- HZE edkK)(kle(|a)al+|B)AB])
mute with 7, and taken to describe in-plane scattering pro- K

cesses. The terrfig, on the other hand, takes into account 5
the single-electron energies in two adjacent cuprate layers __5 2 Ky (K| ® (| a)(B]+]|B)al). 1.3
(designated byr and 8) and tunneling between them: 2 X
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On using the closure property of the statdg,can be further
reduced to

"2
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where § is simply the tunneling frequency for coherent
propagation across theaxis.
Combining Egs(1.4) and(1.6), the full Hamiltonian can

P ho T+ 4T 14 be written as
Ho=5n— 5 (T +T7), (1.4
. . . "2
where the first term represents the free-electron Hamiltonian p 1
, P . N H=>—+ (—+TZ > gqag+al)
in terms of the momentum operatpr, and T* are pseu- 2m 2 q
dospin operators which connect theand 3 layers. Similarly L .
1 ; ; ~
3+ T? p_I’Oje(.)t a given state on to tHer) and|B) states, HZ-T2|S Gq(bq+b$) K= (T +T7)
respectively: 2 q 2

T'=la)Bl, T =[BXal,

1
T*=5 (@)l B)(B]). 15

We are now set to write dowk’ in accordance with our

+2 h(wqalag+ Qqblby). (1.10
q

Thus,H operates in the product Hilbert space(dfthe dis-
crete two-level system of adjacent cuprate lay€ig,con-
tinuous phase space of a free quantum particle, (@andin-

stated objective; i.e?{’ should contain terms that cause mo- dependent sets of quantum oscillator®r bosonic

mentum flips as well as couple to a heat Battat incorpo-

rates quantum dissipative processes of inelastic scatterin

Thus following Caldeira and Leggétive may write

1
5+T?

H=2

Eq: gq(ag+ay)

+ X

1
5 TZ) 2q Gyq(bg+b)

+ 2 h(wgalag+ Qqblby), (1.6)
q

whereX is the position operator conjugate po In order to
understand the structure of the Hamiltonidnit is useful to
project Eqg.(1.6) onto thea or the 8 plane. Thus

P’ .
(a|H|a)=ﬁ+X% gq(aq+a;)+% fiwgalag,
(1.7)

where we have dropped the term proportionabupas it is
inconsequential. Similarly,

p* .
(BIMIB)= 5+ X2 Gq(bg by + 2 A2gbiby,
(1.9

where again we have omitted the term proportionabtp
Taken separately, either Eq1l.7) or (1.8) describes the

“quantum Brownian motion” of a free electron in which the
dissipative friction arises from linear coupling to a quantum

heat bath comprised of bosonic excitatior8 Viewed dif-

re projection operators associated with the two adjacent cu-
prate layers we may view{ as describing a free electron
coupled to an environment of quantum oscillators in which
the coupling itself depends on which layer the electron is in.
Additionally, the term proportional té& accounts for coher-
ent tunneling of the electron across the layers.

A comment is now in order as to what has motivated us to
use the phrase “zeno blocking” in the title of the paper. If
H' is absent and{, is the only operative part of the Hamil-
tonian, then the electron happens to reside in a superposed
state of layersy and B, in each of which it moves like a free
particle[Eq. (1.4)]. WhenH' is switched on, the heat bath
comes into play and causes inelastic scattering of the elec-
tron through momentum flips. The strength of the scattering
process which can be measured in terms of a scattering cross
section, say, depends on eithg| or |G4|?, depending on
which layer the electron belongs to, in view of the presence
of the projection operatorss (- T?) in the HamiltonianEq.
(1.6)]. Thus, each in-plane inelastic scattering eleist like
a quantum measurement of which plane the electron is in, if
we view the heat bath as a measuring appargtiiberefore
as in the quantum zeno effect, it is expected that a succession
of such scattering events would lead to a suppression of in-
terplane tunneling.

One other noteworthy point is that if the intraplane dy-
namics is absent, i.e., if the kinetic energy of the electron
goes to zero, then the position operataran be replaced by
a constant. Because the bath operatmy&]) and by(b})
belonging to two distinct layers are taken to be independent,
the Hamiltonian in Eq(1.10 reduces to the usual spin-boson
Hamiltonian

§xcitation$ belonging to thex or the 8 plane. As §=T?)

ferently, asx causes transitions among the free-particle

states, Eqs(1.7) and (1.8) account for inelastic scattering
processes i andg planes, respectively. On the other hand,

the off-diagonal element df{ is given by

ho
(al HIBY=(BHIa) =~ a9

ho
Hsg=— 5 (TH+T)+T°2 figy(ag+ag)
q

(1.11

+ Z hwqagaq .
q
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As has been extensively discussed in the review article bgomplicated. This is the subject of this paper, the breakup of

Leggettet al. ,* Eq. (1.11) can describe the dissipative dy- which is as follows. In Sec. Il we review and compare the

namics of a mechanical particle moving in a symmetricrelative merits and demerits of the various existing treat-

double-well potential. The minima of the two wells corre- ments of the spin-boson Hamiltonigi.11). This analysis

spond toT?==*1 states. It has been argued by several auhelps us to motivate a similar treatment for the more general

thors that when the damping, occasioned by the heat battase of Eq(1.14) which is presented in Sec. Ill. In Sec. IV

coupling, exceeds a certain critical value, the system undemwe discuss the numerical results for the survival probability

goes a spontaneous symmetry breaking transitiom=a0. (1.12 and present certain conclusions. An analysis of the full

When that happens, tunneling gets suppressed and the p&tamiltonian in Eq.(1.10 is deferred for future work.

ticle is localized in one of the two wells. While this phenom-

enon can also be viewed as a quantum Zeno effect of Som@. spIN-BOSON HAMILTONIAN: DILUTE BOUNCE GAS

sort and is subsumétiby the the more general Hamiltonian APPROXIMATION AND BEYOND

in Eq. (1.10, the effect discussed in the preceding paragraph

is a more subtle one, with richer consequences, as discussed The first step in the analysis of the spin-boson Hamil-

below. tonian(1.1)) is to subject it to a unitary transformation, well
Coming back to the full Hamiltonian in Eq1.11), we  known in polaron physics. This transformation is defined by

would like to compute the survival probability in, e.g., the  the operator

layer, defined as g

q
U—ex;{ > (wq

q

1 (aq—ag)TZ}. (2.0
Po(t)= 5 +(T%(1), (1.12

, L » This changes the HamiltoniaHsg to Hgg Where
with the initial condition

1 Hep=UH U‘1=—ﬁ—5(T+A +T A+ hogala
(T(t=0))=>5. (113 5% TSP 2 - g TR
(2.2
Thus,P,(t) measures the stay-put probability of the electronwith
in the « layer given that it was localized in the layer att
=0. The “leakage” inP,(t) would clearly then be a mea- g
sure of the transport across tbexis. A+=exp{t2 (—q (ag—aj)|. (2.3
The calculation ofP,(t) based on the complete Hamil- a | @q

tonian of Eq.(1.10 is a rather formidable one. We instead note that we have ignored the counterterm that would occur
study a simpler Hamiltonian in this paper, in order to set ug, Eq. (2.2) as a result of transformation, E(.1), since it
the required theoretical machinery and check the relevanjyes not affect the dynamics.

trends in the result. For this we assume that there are only The point about the structure B« is that in any theor
two momentum stated the electron between which the mo- in which\) the first term in Eq(2.2 i:?reated as a yerturb);-
mentum flips occur. Thus the continuous phase space of th[e qle. P

: ) . - ion, the couplingparametrized by,) is essentially consid-
electron, described in terms of the position operatand the  4(ad to all orders. However, a shortcoming of such a treat-

momentum operatop, is drastically reduced to a truncated ment would be that the tunneling frequengyvould have to
Hilbert space of pseudospin operatéfsr spin 1/2 S* and e taken to be small. This explains why this analysis goes
S~. The simplified Hamiltonian can then be expressed as under the name of the dilute bounce gas approximation
(DBGA) or the noninteracting blip approximation in a path
T integral formulatiorf: We discuss below the DBGA using a
> hgq(ag+al) , ; \
q master equation techniquevell known in the quantum op-
tics literaturé’), following Aslangulet al. *® who showed the
_ ﬁ_5 T equivalence of their results with those derived from the path
(THP+T) ) _ -
2 integral method. Incidentally, both these approaches, viz., the
path integral and master equation, have also been shown to
+> A(w-ata+0.blb.). 1.1 be equivalent to a resolvent operator technique, which is for-
Zq (043584 {24PgP) (1.19 mulated in the Laplace transform domain instead of in the
Note th h bath oscill i time domain®®
ote that now the system-bath oscillator coupling constants |, ganera| the Hamiltonian in a system-plus-bath decom-
gq and G4 have dimensions of frequency. It is pertinent to position can be expressed as
mention that a model very similar to that in Ed.14) but in

a very different context of hopping of a particle along a chain

hA 1
H=— 7(S++Sf)+252 §+TZ

—+

1
E—TZ) % 71.Gq(bg+ b))

of sites, each coupled independently to a bath, had been Hse=HstHet H, 24
treated earlier, within a functional integral formalishn. where in the present case, of course,

Even though the Hamiltonian in Eq1.14 is a much
simplified version of Eq.(1.10, its analysis can be quite Hs=0, (2.5
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while

X (1=coswyt)—isin wgt ]
HB=E ﬁwqaaaq. (2.6
! (AL (DA_(0))=(A_(DA.(0)=D(~1), (2.14

The interaction ternf{, has a general structure . . .
! g the equation of motion fo(T*(t)) can be written as

H,=h 2>, SB;, 2. -, 52 rt ,
=12 S, 27 (T (t>>=—zfodr[cl><—r>+q><r>]<T (t=7)).
where in the present case the summation indems from 1 (2.15

t0 2 and Aslangulet al. ® have shown that the solution of E@.15

agrees with the one arrived at from the path integral ap-
S;=T", S,=T7, Bi=—35A_, By=—3A,. proach within the DBGA.

2.8 As stated earlier and as is manifestly clear from Eq.

: (2.15, the DBGA, though valid in the strong-coupling re-

We assume that &t 0 the system and bath are decoupledgime* is actually (_)f second order in the 'Funneling frequency
so that the total density operator has the factorized form 9- Beécause of this, the DBGA has an inherent defect that
correct thermal equilibrium results are not recovered from
p(0)=pg(0)®pg. (2.9 time-dependent solutions, in the appropriate asymptotic

limit.* Weiss and Wollens&k have shown how to alleviate

' this problem, within the path integral approach, by consider-
exp( — BHg) 1 ing interacting blips. Alternatively, this issue has been ad-
pg=—— =_—, (2.10 dressed in the resolvent operator method by Qureshi and
Zg KT Dattagupt® by adding and substracting the “free’-

Zg being the partition function of the bath. Thys; com-  tunneling term in Eq(2.2). ThusHgg is rewritten as
mutes withHg .

Further, the bath is taken to be in thermal equilibrium, i.e.

- ; ho hé
Defining a reduced system density operagigras s O N o _ - _
Hsg > (T +T) 5 [TTA_-D)+T (A.—1)]
ps=Trgp (2.1
and using standard techniques to eliminate the bath degrees +2 ﬁwqaéaq. (2.16
q

of freedom under the Born approximation, the equation of

motion for ps can be written a$ The idea behind the above decomposition is that in any

perturbative treatment of the second term in Ej16), the
ps=—i[Hs,psl—i>, (B)[S; .psl first term(i.e., the free-tunneling ternis dealt with exactly.
j Thereforenowin accordance with the separation indicated in
Eq. (2.4), Hs is not zero but given by

t
—fodTZk {(By(t=7)By(0))) -
| Hs=——(T"+T"). (2.17
X[Sj 'efiHs(tfr)SkpS(T)eiHS(tfr)] 2
—({(Bu(0)B:(t— S e iHs(t-7) iHs(t=7)7 The master equatiof2.12 in this case leads to the fol-
(BB (=M S; @ ps(m)SE ( ]}2) lowing (closed equations of motion:
2.1

In the above we have defined (TA(t))=— J;dT{Kll( NTHt—1))
(XY =(XY) = (X)N(Y), 2.13

where the angular brackets denote bath averages in the en-
semble defined byg in Eq. (2.10. Using earlier results

+Kpg(r(T (t=7) =T (=)},

) . t
<T+(t)—T_(t)>=—f dr{4K o 1)(T*(t— 7))
(AL)=0, (A.(1)A.(0))=0, 0

+K T (t=7) =T (t—7)},
(AL(0)A_(1)=(A_(0)A, (1) AT == T

(2.18
=d(1) where
- 4g§ 1 52
—ex;Jl —% “’_S cotl'(E,Bwq) Kia() =7 (14 cosdy)[@(— 1) + ()],
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I T T T T probability as a function of time in the result beyond the
\ DBGA than in the DBGA result.
0.8 F\\ beyond DBGA —— -
| } DBGA -----
06 \‘ < \\ i Ill. EFFECT OF MOMENTUM FLIPS ON THE SURVIVAL
= \ 3 S PROBABILITY
R \ / = T
041 A / o ] We turn our attention in this section to the main focus of
02 L i the present study, viz., theaxis transport in layered super-
. conductors. Before we discuss the calculation it is useful to
0 L L L L recall the relevant phenomenology in order to put matters in
0 10 20 30 40 50

ot

perspective. Experiments in YBAwO,_, suggest that

both the in-plane gb-plane resistivity and thec-axis resis-

FIG. 1. Survival probability as a function of normalized time in tivity, in the normal state, have an identical temperature de-
the spin-boson model. Solid lin@lashed ling corresponds to be- Pendence over a significantly wide range of temperatures:
yond the DBGA(DBGA). The values of the various parameters are
Bh6=50, D=1000, andK=0.1.

p=A/T+BT. (3.1

52 What is of particular interest, in addition, is the prefadBor
_ o _ of the linear term which shows an order-of-magnitude vari-
Kig)=igsino[@(=)+ (D], ance between thab-plane andc-axis values:

52 Bap=1.4X106,

B.=3x107°.
Kag(t) = Z-cosat[(—t) +D(1)]. (2.19

(3.2

Our central proposal is that in-plane inelastic scattering
Note, however, that terms corresponding to the systematig/€"tS determine the off-plane transport via incoherent tun-
part of the evolution in Eqg2.19 get canceled off and only "€ling processes. Now, in the incoherent regime one would
the structure of the kernel matrix elements in E@sl9 gets expect for the stay-put probability an exponential relaxation
altered due to the decompositon in Eg8.16). Note further
that the DBGA equatiofiEq. (2.15] is recovered from Eq.

(2.18 on putting cost=1 and sin¥=0 in Eq. (2.19, im- where s is a “renormalized” tunneling rate and is the

FA?Q%JQ?RZ?SS?ljenﬁleslir:/gll‘crje%\lljirn?:r;e scales much Shorterin-plane scattering time. Thus the rate of transmittance

Equations(2.18 can be solved using Laplace transform across the adjacent planes is given by
techniques. We consider the spectrum of bath oscillators to

P (t)~exp(—§°1t), (3.3

_%2
be Ohmic; i.e., we replace the expression dft) in Eq. A=o0r @4
(2.19 by If dis the interplane separation, one can define a “mobility”
—w/D —
» e hw =dA\. (3.5
CI)(t):exp[—ZKf do cotI-('B )(1—005wt) K
0 w 2 Thus thec-axis resistivity
—isinot ] (2.20 pecp” H(=1/d8%7). (3.6)

_ _ _ _ On the other hand, the in-plane resistivijty, can be ex-
whereK is a dimensionless constant that parametrizes damppected to have the Drude form

ing (strength of coupling to the batand D is a cutoff fre-
qguency. In the limit of BAD>1 and Dt>1, the Laplace

pab=May/NET,
transform of®(t) has the expressiéh

(3.7

wheremy}, is the effective mass of electrons in thb plane,
n the number density, anglthe electron’s charge. Therefore,
the important point to note is that both andp,, are gov-
(2.21) erned by the temperature dependence.of
The next issue to address is what is the relevance of the

whereI'(z) is the gamma function of argumentThe sur-  spin-boson model as far as the inelastic scattering processes
vival probability, Eq.(1.12, can then be computed by nu- in general and the temperature dependenceinfparticular
merically inverting the expression for its Laplace transform.are concerned. Here we may refer to the detailed work of

It is instructive to compare the results for the survival Chang and Chakravafwherein it has been shown that the
probability P, (t) (1.12 in the DBGA and beyond the DBGA electron-hole excitations above the Fermi surface are indeed
in the sense of Eq2.15 and Eq.(2.18), respectively. These described by a spectral density of bosonic excitations which
are presented in Fig. 1. It can be seen from the figure thatave the Ohmic form. Further within the DBGA it is well
there are many more coherent oscillations in the survivaknown that[cf. Eq. (2.21)]

27 )2K—1F(1—2K)F(K+zﬁ,8/27-r)

q)(Z):eXD(iWK)(ﬁBD T(1-K+zhBl2m)
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“loeKL 3.8
! 38 He=2, fi(wqalag+Qqblby), (3.19
Therefore, the phenomenology contained in 831) would q
suggest thak =1, which further implies that one is in the .
strong-coupling regime, thus justifying the calculational Hi=— — (T +T VA, + A
scheme outlined in Sec. I ! s J(A++A)
We return now to the issue at hand concerning the role of

momentum flips due to in-plane scattering, accounted for in + ﬁ_a(T+_Tf)SZ(K+_Ki)_ %S+(§(})+§(}))
terms of the pseudospin operat®s, as in Eq.(1.14. In 2 4
analogy with the spin-boson case we introduce the unitary 7 A AA
transformation - TS*(g(j) B?)— S*TZ( )—B®)
U=ex E (a —al) 1+TZ hA
- q — 7s—TZ(§(+1)—§(f)). (3.16
G 1 ; i
+Q—q(bq—b;)(§—Tz> ZSZ]. (3.9 In the above an overbar is used to denote, for instance,
q _
X=X-1. (3.17

The Hamiltonian in Eq(1.14) becomes _ _ o _
The interaction part of the Hamiltonian can be expressed in

~ ho the compact form
H=— T(T*+T’)(A++A_)
6
7o A Hi=h2, B, (3.19
+ 5 (TH=T)S(A, A )~ s"(BW+BY) =
where
hA N 5. hA 1 ) B B
-7 S (B +B@)— S*TZ(B() B(2)) S, =T +T7, S,=(T"-T)F S=S,
AA S,=S, S5=S+TZ, S¢=S T
- TS-TZ(BP—B(PH% fi(wqalag+ Qqblby), )
(3.10 Bi=— (A +A-), Bp= 2(A+ Ao),
where A
By=— —(BW+B®
Yq r, Ca T S :
AL =ex tz w—(aq—aq)+Q—(bq—bq) ,
q q q
A A
31D By=— 7 (BW+BY), Bs=-5(BW-BY),
29
B(l)zexp[ + —q(aq—aT)] A
+ q/ (1
q @q BG:—E(QP—@E)). (3.19
2G, : . :
B@=expl = —(bq—bg) ) (3.12 Using the Born master equatig®.12 we can now write
B a {Qq down a closed set of equations of motion for the average

values of the pseudospin operators representing the momen-
tum flip and the tunneling degrees of freedom. For this pur-
pose it proves convenient to define the following complete
set of operators, viz.,

Again we ignore counterterms which would occur in Eq.
(3.10 as a result of the transformation, E8.9), since these
do not affect the dynamics, assumigfy w,=Gg/Q,. This

is a valid assumption since we consider any pair of cuprate

layers to be an unb|a-se~d two- ste.lte system. . Xo=1, X{=T% Xo=T +T", Xg=T -T",
As before we rewriteéH{ by pulling out the free-tunneling
terms, thus yielding X,=F, Xs=S', Xg=5,
H=Hs+Hg+H,, (3.13 X;=T?F, Xg=(TT+T)S, Xo=(T"—-T7)S
where X10=T%S", Xy=(TT+T7)S", Xyp=(TT-T7)S",

314  X=TS, Xu=(T'+T)S, X=(T'-T)S.

L
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The equations of motion for the averages of the above op- Y i s T === T ]
erators can be expressed in the compact form \ e
08 L\ \\ RS- Wit T
15 \\ S d
! t \
(Xpy=— JOdT nE—:l Kin(7)Xn(t=17) +Kio(7) |, = 061 N\ NWESGAR ]
= 3 \\ 7 N ... ‘*\\\_ KT
(32]) > 04 \\\ ,/' T A -
where the matrix elements of the kernel in the integro- o2l a ~""b |
differential equation are given by '
6 0 1 1 ] ]
" . " B 0 10 20 30 40 50
Km<t>=j;l[ajkmB,-k(t)+Bjk<t>B,-k<t>]. (3.22 ot

FIG. 2. Survival probability as a function of normalized time in
. 1 the generalized spin-boson model. Values of various parameters are
Bﬂ:§(<Bj(t)Bk(0)>i<Bk(0)BJ(t)>)’ 3.23 A=0, Bh5=50, andD = 1000. Different curves correspond to dif-
ferent values ofK: (a) K=0.1, (bh) K=0.25, (c) K=0.5, (d) K
15 =0.75, and(e) K=1.
A= 2 wjNim(t) KRy, .
I,m=0 problem, the structure constants defined in E326) are
such that the kernel matriK becomes diagonal under the
i DBGA. Further, it turns out tha{T*(t)) obeys the same
Blirll(t)zl mE:O K=Jr'm(t)7‘nmk' (324 equation as in the spin-boson caée und>er the DBGA, namely,
' . Eq. (2.15), except for the coupling constaft in the spin-
tisymmetrized correlation functions of the bath operators. pgGA, the tunneling particle does not sense the presence of
The matrix r(t) determines the time evolution oXi, i the momentum-flip degree of freedom at all, pointing to a
=1,2,...,15, under the free HamiltonigHs [Eq. (3.14], physical limitation of the DBGA in this context. Conse-
quently, in order to evaluate the effect of momentum-flips on

15

elMstx e Hst= > ri(0X;, (3.25  the tunneling dynamics, one i®rced to go beyond the
] DBGA.
while the « and\ terms are the structure constants defined
through the commutator and anticommutator algebra: IV. DISCUSSION OF NUMERICAL RESULTS AND
CONCLUSIONS
[Xi.S1=2 wkXe, {X.S}=2 MiX¢. (3.26 In Fig. 2 we have plotted the survival probability of the
K K

electron in the initiale plane in the case when the in-plane
A careful examination shows that the only nonzero bat nelastic scattering is absefie., A=0). In this case, as we
y rhave noted in Sec. lll, the tunneling dynamics is governed by

correlations are ; : s : "
an effective spin-boson Hamiltonian with a modified cou-

2 pling constant. Figure 2 shows that as the coupling to the
Bfl(t):l—6[<1>1(—t)id>1(t)], bath becomes strongeiK ( becomes larger the survival

probability evolves in time more and more slowly on aver-

2 age. This behavior is well known in the literature from stud-

Bziz(t):—z[q)l(—t)i@l(t)], ies of spin-boson dynamics. What is new in our work is

evident in Fig. 3, in which we have plotted the same quantity
when A#0 (i.e., inelastic scattering is presgnfFigure 3

AZ
B§4(t):Bfa(t)=E[<D(—t)i<D(t)], 1
T s
Bi(t)=Biyt) =4BL1). (3.27 O8R\AN ¢ T ¢ .
Again we consider an Ohmic spectrum of bath oscillators. . 06 AN VAV . 7
Note thatd(t) is given by the same expression as in Eq. & a N N
(2.20 and®,(t) is given by the same expression as that of 041 b ]
®(t) but with K relaced byK/2. We calculate the survival 02k |
probability[Eq. (1.12] by solving Eqgs(3.21) following the
method outlined at the end of Sec. Il. 0 L L L L
One is tempted to ask if the structure of E¢&21) sim- 0 10 20 5 30 40 50
plifies under the DBGA. Note that the DBGA equations are ¢
recovered by putting,,(t) =&, . It so happens that in our FIG. 3. Same as in Fig. 2, except naw= 6.
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shows that, in comparison with Fig. 2, there is a furtherhave been treated rather simplistically in that only two mo-
slowing down of the time evolution. Thus, it turns out that mentum states have been allowed. But even through this
the in-plane inelastic scattering events lead to further inhibioversimplified picture we have been able to capture the es-
tion of the tunneling of the tagged electron, acrosscthais,  Sential physics of the “Zeno blocking” of interplane tunnel-
over and above what occurs due to the spin-boson dynamic9: This is not surprising because it is known, in classical
Figures 3c), 3(d), and 3e) can be fitted to exponentials stochastic the.ory, that momentum-reversing coII|S|ons'
' ' . L lead to Brownian motion, described by classical Langevin
[cf. Eq. (3.3)] and thec-axis resistivityp, can be extracted

. equations. Since the Ohmic dissipation model is known to
from the respective exponenisf. Eq. (3.6)]. As already yield quantumBrownian motiorf'*° our simplified model,

Stated, the inclusion ok # 0 terms has led to further inhibi- described by Eq(114), works reasonab'y well. It would of
tion of the transmittance across layers, over and above whaburse be important to extend the present analysis to a full
is permitted within the spin-boson dynamics. It is fair to phase-space treatment of the electron’s momentum. We shall
state, however, that in-plane scattering processes () return to this matter elsewhere.
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