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1. Introduction

Glasses are a sub-group of amorphous materials obtained by the quenching of melts
and may be distinguished from other non-crystalline materials by the fact that they
exhibit the so-called ‘glass transition’ (Materials Advisory Board 1968). Glasses may be
formed from practically all kinds of materials in which the strength of interparticle
potentials range from very weak van der Waals (Bondi 1968) through metallic (Cahn
1980) and long range and non-directional ionic (Rao 1980, 1982) to the strongly
directional covalent type (Rawson 1967). The stabilities of glasses so formed also vary
widely: metallic glasses, for example, are prone to crystallize even before they undergo
the glass transition (Angell 1981), while the so-called ‘covalent network’ glasses, such as
B,0; and SiO,, are extremely resistant to devitrification (Rawson 1967).

It is well known that glasses retain an imprint of the parent liquid state and hence
possess only short range order. The degree of such order, however, varies widely.
Recent investigations, particularly those using high resolution electron microscopy
(Gaskell et al 1979; Bursill e al 1981), have suggested the presence of well defined
correlations over 50A regions that could constitute the ‘clusters’ which characterize the
mosaic of a glass. Evidently the particles (throughout this article we understand by the
term ‘particle’, an atom, ion or molecule that is a sufficiently ultimate constituent of a
glass) in a glass do not interact with identical potentials and therefore it should be
appropriate to describe properties associated with such particles through the use of
suitable distribution functions that reflect the distribution of such environments as
quantitatively as possible.

The glass transition which marks the ultimate solidification of a supercooled meltisa
complex phenomenon that has not been completely understood so far (Rao 1979;
Cohen and Grest 1980). The super-cooled melt itself is in metastable equilibrium and a
‘real-time’ glass transition is a consequence of the system freezing out of this metastable
equilibrium. A real glass, consequently, incorporates an excess free energy that
manifests itself in a host of relaxation phenomena around the glass transition. The
distribution of environments is characterized by a corresponding distribution of the
excess free energy, and several irreversible phenomena and responses of glasses to
external stimuli may possibly be traced to it. Broadly, all responses that characterize the
return to equilibrium of a system perturbed by external stimuli such as alternating
electrical or mechanical fields, electromagnetic radiation etc., may be described as
‘relaxation phenomena’ (Wong and Angell 1976). Information about particle motion in
glasses can be extracted from a study of relaxations. It is the purpose of this article to
briefly review the present understanding of different types of relaxation phenomena in
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glasses which are characterized by different interaction potentials. In §2 we summarize
the methods of investigating particle motions through the use of dielectric and
iy mechanical relaxations, vibrational band shapes, spin resonance absorption relaxations
; “ and Mossbauer spectroscopy. In §3 we present some selected studies of glasses using
; . these techniques which have some definitive or novel information related to particle
1 motions. In §4 a rather brief summary of the results of computer experiments bearing
! on particle motions related to glasses is given and in §5 we present a summary of the
conclusions.

h 2. Methods of studying particle motions

2.1 Dielectric relaxation

Very generally, the dielectric constant ¢* is a complex quantity and may be written &*
= ¢ +i¢" (Daniel 1967; Owen 1963). The measured dielectric constant &(w) = |&* ()],
at frequency o, may then be written, &(w) = [ (¢)* + (¢")*]% The complex nature of
&*(w) implies that the displacement current and applied field are out of phase by an
angle 6 such that ¢ = ¢,cos dand ¢” = ¢ sin § (Daniel 1967; Owen 1963; Stevels 1977),
where ¢, is the static dielectric constant, and

tand = ¢'/¢. oy

tan 4 is referred to as the loss tangent or dissipation factor. The term ‘loss’ implies that

. the out-of-phase component of the dielectric current which leads to power dissipation

o is proportional to sin 6 which for small § is equal to tan é itself. The dependence of &*(w)
v on frequency o can easily be shown to be (Daniel 1967)

e¥ () = £ + (& — €4 )/(1 +iwwT), 2

where ¢, is the high frequency limit of the dielectric constant. 7 in (2) is the relaxation

time whose significance is clearly seen in figure 1. Equation (2) implies that (Daniel
1967; Owen 1963)

€ = 8y, + (6, — € )/(1 + 02 1?) 3)

It

¢ = (6, — &) 0t/(1 + 0?1?) @

Figure 1. Time dependence of polarisation on applying a static field at t,. The relaxation
time, t, is indicated by the lin¢ (—.— -~ ) where P(t) = P+ (P, —P) (1 —1/e).
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whereupon tan § may be written
tan & = £'/8 = (& — &x) WT/(&; + € @2 T2). %)

Equations (2) to (5) are known as the Debye equations and assume the presence of a
single relaxation time . The variation of ¢ and &” as a function of wrt is shown in
figure 2. An inspection of the above equations or of the figure suggests that ¢” and
hence, tan &, attains a maximum value when wt = 1ie whenow, , =1~ !, Similarly, it
can be shown that (Owen 1963) ‘

e = (6= )2 ©)
€ia = (6 8x)/2 @)
tan ., = (8~ &a)/(65 + €ao)- (8)

The full-width at half-maximum (FwhM) of the loss peak is roughly about 1-41 decades
of frequency. The frequency corresponding to a maximum in tan 8, @y is given by
{Owen 1963)

Oigns_ = (E:/6)1T.

In general, however, the concept of a single relaxation time is an over-simplification,
particularly for glasses, and the assumption of a distribution of relaxation times is more
appropriate (Wong and Angell 1976; Owen 1963). A relaxation time spectrum may be
represented by G(7) such that [3 G(r)dt = 1 (Owen 1963). The Debye equations (2-5)
get modified appropriately and £* may then be written as (Owen 1963)
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Figure 2. (a) The real part of &* as a function of log wr for a dielectric with a single
relaxation time. &, = 8, &, = 2; (b) the imaginary part of e* for the same dielectric (after Daniel
1967).
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g* =g, +[(ss ~€) JG(t) dz il/(l +iwT). 9)

Many types of distribution functions have been used; historically the oldest cor-
responds to a Gaussian probability function (Wagner 1913; Owen 1963) where

G(t)dt = (b/m)t exp (— b2 22). (10)

In this equation b is a constant and z corresponds to In (t/t,) where 7, is the peak value
of the relaxation time. It is implicit in the use of a Gaussian that the intrinsic relaxation
time 7, is broadened by an infinite number of independent causes. The breadth of the
distribution increases rapidly as b decreases below 1. The introduction of a relaxation
time distribution does not, however, materially alter w_, which still corresponds to
(to)” ! and the total dispersion in & remains equal to (g, — &,)/2 (Owen 1963). Fuoss and
Kirkwood (1941) have considered the possibility of deriving distribution functions
based on experimental & vs @ plots using transformation methods. Cole and Cole
(1941) obtained a distribution function based on an empirical modification of the
complex form of the Debye equation

8% = (5,— &, )/[1 + (iwto)' %] (11)

where «, 0 < a < 1, is a constant related to the width of the distribution. Another
distribution function of an empirical origin that has been used to analyse asymmetric
Cole—Cole plots (see later) is the Davidson—Cole function (Davidson and Cole 1951). It
is yet another modification of the Debye equation and is written

e* — ey = (& — 84, )/(1 +iwTo)? (12)

where 8, 0 < f < 1 is a constant similar to a.

The origin of the distribution functions has been discussed by many authors notable
of whom are Kauzmann (1942) and Frohlich {(1958). Kauzmann (1942) has applied the
theory of chemical rate processes to the problem of dielectric relaxation times. In this
approach the distribution of relaxation times originate from thermal fluctuations that
cause changes in thé environments of the relaxing dipoles (Owen 1963). As a
consequence of such changes, a symmetric distribution of barriers results about the
barrier height corresponding to the unperturbed state. Frohlich’s (1958) analysis is
more relevant to glasses in that it recognises the presence of a distribution of site
symmetries and dipole environments in a glass. This very naturally leads to a relaxation
time spectrum since t, = 74 exp (— AH/KT). A distribution in AH, therefore, may be
regarded as the origin of the relaxation time spectrum in this approach. An advantage in
Frohlich’s approach is that irrespective of the initial distribution in AH, an increase in
temperature should lead to narrowing cf the relaxation time spectrum. This, of course,
implies either that 7 is unaffected or that AH and In tj vary proportionately, a feature
verified in a number of systems.

Dielectric data is often represented using the Cole-Cole plot which is simply an
Argand diagram (or a complex plane representation) of the real and imaginary
components of ¢* (Cole and Cole 1941; Daniel 1967; Owen 1963). In the simple case of a
Debye dielectric, the Cole—Cole plot (figure 3a) is a simple semi-circle terminated at &,
and & on the real axis (Daniel 1967; Owen 1963). The semi-circle itself is the locus of &*
values each for a given value of wt,. &, corresponds to wt, = 1 and the equation of
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(a)

Figure 3. The Cole—Cole representations for (a) the Debye dielectric and (b) for a dielectric
with a distribution of relaxation times (after Owen 1963). ’

(@ )

Figure 4. Equivalent circuit representations of (a)a Debye dielectric and (b)a dielectric with
a distribution of relaxation times (after Owen 1963).

the semi-circle may be obtained by combining the Debye equations (Daniel 1967)
(6= (€ +8)1/2+ (") = (6,—2.)*/4 (13)

Now, considering any two vectors u and v within the semi-circle one sees that the two
are necessarily perpendicular to each other. The following equations may also be easily
derived (Daniel 1967)

u—v=(g—¢e,) (14a)
and

u=¢—g, +ie (14b)
Using the definition of &' (equation (3)) it is clear that

Y = niowt (14¢c)

The generalized Cole-Cole distribution which takes into account the existence of a
distribution of relaxation times simply amounts to modifying (14c) as (Daniel 1967)

v = u(iwty) ~° (15)

The Cole-Cole plot for such a distribution is shown in figure 3b. It is the arc of a
circle whose centre lies below the ¢’ axis and the line joining the centre of the semi-circle
and ¢,, makes an angle of an/2 with the & axis (Lovell et al 1976; Owen 1963).

Dielectric dispersion and relaxation are often conveniently understood using
equivalent electrical circuits. Such circuits are shown in figure 4a for a Debye dielectric
whose relaxation behaviour is depicted in figure 3a and in figure 4b for the Cole-Cole
type of dielectric whose relaxation behaviour is shown in figure 3b. The capacitor ¢,
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gets charged instantaneously while the charging of (¢, — &) may be regarded as being
prevented bya resistance equal to /(g — &) In figure 4b the impedance corresponds to

7 (ior) /(8 — &)

2.2 Mechanical relaxation

The response of a glass to cyclic mechanical stress may also be treated similarly
(Litovitz and Davis 1965; Philipoff 1965). 1t is however, conventional to treat the
behaviour of the modulus rather than the compressibility and this may be regarded as
being equivalent to the dielectric constant. For the propagation of a shear wave in a
viscoelastic medium, the shear modulus G* may be written as (Wong and Angell 1976,
Litovitz and Davis 1965)

G* = G +iG" = G +icon (16)

where w is the angular frequency and 1, is the shear viscosity. When the static shear
modulus is zero (as relevant to a glass above glass transition)

, G' = Ggw*t? /(1 +wl) (17
and
6" = Goot, /(1 +0*t) = @ (18)
At low frequencies, fj; = G, T5. In mechanical relaxation studies it is often convenient to
define a complex longitudinal modulus M* = M’ +iM" = K* +4G*/3 where K* is the
bulk modulus and G* is the shear modulus. Litovitz and Davis (1965) have shown that
M’ and M" may be approximated as

M =pv? and M’ =2pv’/ew (19)

where « is the absorption coefficient and p and v are the density of the material and the
velocity of sound, respectively. The absorption coefficient, o, may also be related to 7
using (Litovitz and Davis 1965)

ad = nw[ (1, +4n5/3))/Ko (20)

where K, is the low frequency (‘static’) bulk modulus, 7, is the volume viscosity and A
the wave length of the ultrasonic wave. It is common in ultrasonic studies to relate the
various moduli to acoustic impedances. The complex shear impedance, Z;, for instance,
may be written, (Litovitz and Davis 1965)

Z, = pv, = p[(1/o)) +(@/iw)]™" = Re + X 21
using this, G’ and G" may be expressed as (Litovitz and Davis 1965)

G = (R =X3)p (22a)
and

G' =2R,X,/p. (22b)

Since an applied mechanical disturbance propagates both as longitudinal and shear
waves, two theoretical models, namely, Maxwell and Voight models (Philipoff 1965)are
used to analyse the mechanical relaxations. In Maxwell’'s model, the total deformation
is taken as the sum of the viscous and elastic components while the shear stresses for the
two processes are considered to be equal. In the Voight model, by contrast, the total
stress is taken to be the sum of the viscous and elastic shear stresses but the resulting
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deformations are considered to be equal. Equations (16) to (20) are based on Maxwell’s
model.

The discussion so far has been limited to a system with a single relaxation time. In real
situations, as pointed out earlier, a distribution of such times exists and these relaxation
times are described in terms of a reduced parameter, t,/1, . Two such distributions often
used correspond to the symmetric Gaussian and the asymmetric Davidson—Cole
distributions. In the presence of these distributions, K', K", ,, G', G" and 1 are defined
by the integrals given in table 1.

In this article our intention is to focus on particle motions in the glassy state itself. As
such, an analysis of the frequency dispersion of the shear modulus in the supercooled
liquid is only of marginal interest to this article. Mechanical relaxation in the low-
frequency region studied in internal friction measurements is more informative with
respect to particle motions in glass.

We may note in passing that while the analyses of dielectric data are often performed
using complex susceptibility, analyses of mechanical relaxations are done using
complex modulus. More recently, however, the modulus representation is in vogue
even in dielectric relaxation studies. This transformation is easily achieved by defining a
dielectric modulus M* = M’ +iM" = 1/e*. The resulting expressions are similar to
those for mechanical relaxation (Wong and Angell 1976; Macedo et al 1972). In
situations where the d.c. conductivity is large and is comparable to the a.c. conductivity,
it is often advisable to treat the corrected conductivity (o, , = 0,y — 04 ) itself as a
complex quantity so that (Grant 1958; Daniel 1967)

o* = ¢ +io" = iw (¢ —ig"). (23)

Mechanical loss at low (10”2 Hz to 50 kHz) frequencies is often called internal
friction which is identical to the loss angle or tan & (Zdaniewski et al 1979). In this long-
wavelength region where power dissipation is primarily through viscous flow,
mechanical relaxation is advantageously described (Zdaniewski et al 1979) using the

Table 1. Mechanical properties for distributions of relaxation times.

K'=Ky,+K, J‘“’ k{z/1)) 0?2 d (1/7))/(1 + 0*1?) " G'=G, j"‘ o?tk(t/z,)d(t/t))/ (1 + w?t?)
0 0
K'= K,J‘w k{t/e)ord(t/e)/(1 + w*T?) G' =G, J‘w wtk(t/1)d(z/7)/(1 + w*t?)
0 0
=K, f k(o) ed /) (1 + ) = Ge j " k(e/)dere)
0 ‘ 0

Distribution functions used
(i) Gaussian:

2
k(t/tyy) = bjn'l? Ty /rrexp[ —bln (t/ry,))] O0<rt< o0

(ii) Davidson-Cole:

5
k(t/ty) = T/t sin Bri/0) [t/ (1 = T/7)] 0 <1/t <1
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compliances S, and S, where the subscripts u and r denote the unrelaxed and relaxed
states. S, can be written S, = 1/C, and S, = 1/C, in terms of the stiffness constants C,
and C,. The complex compliance is §* = §'— i8", so that

tand = (5, 5,)/(S, +8,0"7’) (24)

which may be compared with (5) in the dielectric case. For many solids, the relaxation
strength, A = (S, —S,)/S,, is far less than 1 so that

tan 8 = Awt/(1 + v*?) (25)

and tan 8 is therefore a symmetrical function of log wr centred about wt = 1. tandisa
measure of the absorption of vibrational energy in a solid (Fitzgerald 1951) and is also
referred to as O ", where Q is the quality factor. Experimentally it is determined by
measuring the logarithmic decrement of vibrational amplitude of a freely vibrating
solid, ¢, where ¢ = In(4o/A,), tan & is then given by

tand = Q™' = 2:303¢/nn, (26)

where n is the number of cycles.

One of the basic modes of particle motion is vibrational. In the formalism that we
have employed so far for dielectric and mechanical responses the expressions werc
relevant for time-scales far larger than vibrational time-scales. These time-scales,
however, are themselves accessible to far infrared (Fir) spectroscopy (Wong and Angell
1976). The nature of absorption of energy from the impressed field has to be treated in
the frame-work of a forced harmonic oscillator (Dekker 1967). If w, is the frequency of
a harmonic oscillator that is subjected to an alternating field of frequency w, it can be
shown that the complex dielectric constant arising from the polarization induced by
elastic displacements is (Dekker 1967)

e* = 1 +[4nNe? /m((w} — 0?) + ho)]. 27

In (27) N, e,m,and y are the number of particles per unit volume, the charge and mass of
the particle and the damping constant (in units of w™') respectively. The real and
imaginary components may now be seen to be (Dekker 1967)

¢ = 1+ {4nNe? (03 — 0?)/[ (0} — 0?) +7?0’]} (28)
¢" = 4aNe* (yo)/m[ (w0 — 0 +y* w?]. 29

It may be noted that absorption takes place only in the presence of the damping
constant, y, and this type of absorption is called ‘resonant absorption’. While the
absorption, ie. & or tan §, peaks around w, as in the case of relaxation, & (or more
appropriately, ¢ — 1) exhibits an anomalous dispersion (Lovell et al 1976). In solids it is
more accurate to use wo which is corrected for the presence of the Lorentz field and this
is achieved by writing @, for w, where @, = w? — (4nne?)/3m (Dekker 1967).

Since refractive index and dielectric constant are related, we can consider resonance
absorption in terms of a complex refractive index, n*, such that (Dekker 1967)

n* = n—ik. (30)
Noting that n*? = ¢* = ¢’ —i¢”, it follows that

¢ =n?—k? (31a)

and
¢' = 2nk. (31b)



Particle motion in glasses 209

It is conventional to measure absorbance a () in the high-frequency regime and a (w)
is related to & (w) by the expression (Wong and Angell 1976)

a(w) = we” (w)/cn(w) (32a)

where c is the velocity of light. &” may be related to the conductivity of the material
through the relation (Wong and Angell 1976)

o (w) = wey&" (W) (32b)

where ¢, is the permittivity of free space. Using this expression it is possible to evaluate
conductivities at very high frequencies using values of the absorbance.

2.3 Vibrational spectroscopy

Particle motion in glasses, especially around the glass transition, can be profitably
investigated using vibrational spectroscopy (Yarwood and Arndt 1979; Lascombe
1974). The band widths in 1r and Raman spectroscopies, in particular, are influenced
profoundly by molecular interactions. In the Schrdédinger picture, transitions are
regarded as taking place between well-defined states but in the Heisenberg approach
attention is focussed on the time-evolution of these transitions so that the intensity of
the band can be related to the appropriate correlation functions (Gordon 1965;
Yarwood and Arndt 1979). It may be noted that both auto- and cross-correlation
functions affect the band-shape but the latter are important only when motion is highly
cooperative in nature. The shape of the correlation function, in principle, contains
complete information about particle motion. Detailed accounts of the origin of band
shapes and their analysis has been given by a number of authors (Gordon 1965,
1968; Bratos and Maréchal 1971; Young and Jones 1971; Nafie and Peticolas 1972;
Bartoli and Litovitz 1972; Bailey 1974; Lascombe 1974; Yarwood and Arndt 1979). The
two auto-correlation functions of interest to us are {Q;(0)* Q;(t) ) and (w;(0) w;(t)>
where the Q’s are the normal coordinates of the ith molecule and the u’s are the unit
vectors along the transition moment corresponding to the Q’s. If the normalised 1r
band intensity is written I (), a Fourier transform of the band is related to the
correlation function by (Yarwood and Arndt 1979)

O () = by (O = (QO)- Qu(D)>
(P w(0) w(t)]> = Jf & (@) exp (iwt) dw, (33)

where P, = cos f;(t) is the first order Legendre polynomial and 6;(t) is the angle
between the transition dipoles of the ith molecule at times 0 and ¢. In the case of Raman
spectra obtained using a vertically polarized light source we have to consider both the
vertically polarized scattered intensity (I,,) and the horizontally polarized scattered
intensity (I,,). I,, and I, contain information with respect to different correlation
times and are related to isotropic (I, (w)) and anisotropic (I, (w)) scattering
intensities through the following expressions (Bartoli and Litovitz 1972).

L, (@) = I, (@) — (4/3)1 () (34a)
Lypiso (@) = Iy (@) (34b)

C-14
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Corresponding correlation functions are given by (Yarwood and Arndt 1979)

0, (1) = ¢, (1) = <Q:(0) Qi) > = J [0 (@) exp (iwt) deo 335

band

D, 0 (8) = D (D3 (1) = <Qi(0) Qi(0) > <P, [, 0)- w; ()]
= J I i (@) exp (i07) do, (36)
band

where P, = 4[3 cos?8;() — 1] is the second order Legendre polynomial. The auto
correlation function corresponding to ¢ Q;(0):Q;()) is known as the vibrational
relaxation function (van Konynenburg and Steele 1975; Rothschild 1976; Doge et al
1977). While (u,(0)-u,(t)) represents the reorientational correlation function
(Yarwood and Arndt 1979). From the above equations it is obvious that

P50 (t) = By 1) | (37a)
¢3(0) = O (/D ® (37b)
¢2R (I) = (Daniso (t)/q)iso (l) (370)

In arriving at the above equations, it is assumed that the effect of a finite slit-width has
been taken into account. Ignoring slit width effect is strictly incorrect.

A plot of the correlation function against time can be used to obtain the correlation
time, 7, which is defined by ¢ (z,) = ¢(0)/e (figure 5). The correlation times obtained

1.0 l
0.8
Mo 323K '
2)e 373K
NB 473K
0.6
Ir
04
0.2r-

Time (ps)

Figure 5. Variation of ¢(t) with t for sulphate glasses at the temperatures indicated (see
§3.6). Values of , are also shown (after Sundar et al 1982).
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thus from ¢,, (from 1r) and ¢,, (from Raman) are the reorientational times. The
correlation function {u;(0)- u;(t) ) is also often designated {u{* (0)- u{® ()} indicating
that it is related to roto-diffusive motion.

Vibrational spectra can also be analysed in terms of band moments (Gordon 1965
1968; Bailey 1974) since the correlation functions can be expanded in terms of a series ot"
the moments. For a classical system consisting of relatively heavy molecules (Bailey
1974), the odd moments can be ignored and the correlation function may be written
(Yarwood and Arndt 1979)

d(t) = 1 —[Mo 132+ [M t* /4] - [Mgt5/61] + . . .. (382)
where

M, =j‘ (a)—wo)”l(a)—a)o)dw/J o~ wy)do. (38b)
band band

Many models of rotational and roto-diffusive motions have been described in the
literature. Debye considered only small angle diffusive steps in his model (Debye 1929).
Gordon developed a model of extended diffusion along similar lines (Gordon 1966).
Gordon’s M and J diffusion models correspond to cases where only orientations are
randomized upon collision (M diffusion) and where the length of the angular
momentum vector is also randomized ( J diffusion). These models have been applied
extensively and have been discussed by Kivelson and McClung (1968). The various t
values suchast,,7§ = 7,,and 7§ = 1,;arerelated amongst themselves. In the perturbed
limit of a free rotor, 7, (corresponding to the correlation time from the Debye model) is
approximately equal to 7, (Yarwood and Arndt 1979) and is itself approximated by the
Stokes—Einstein relationship,

Ty = dmna® 3K, (39)

where 1 is the viscosity and a is the molecular radius. On the other hand, Kivelson and
McClung (1968) have shown that , for a spherical top molecule is given by

1, = I,/8nKr3n, (40)

where I, is the moment of inertia (referred to the ath axis), K is a constant between Oand
1 whose value is determined by the anisotropy of the molecular potential and y, is the
mean molecular radius. Equation (40) shows that 7, cc 1/n.

24  Spin resonance studies

In glasses which contain either paramagnetic species or nuclei with non-zero spin, spin
resonance experiments are of value in studying particle motions. A nuclear spin
precesses about the axis of an applied magnetic field at its Larmor frequency, ® = yH,
where y is the nuclear gyromagnetic ratio and H is the applied field. The variation of the
magnetization M of a material with time is given by (Pake and Estle 1973; Carrington
and McLachlan 1967),

dM/dt = yM x H. (41)

The relaxation of magnetization along the three coordinate axes is given by the
following equations known as the Bloch equations (Bloch 1946; Pake and Estle 1973)

dM, /dt = y(M x H), — M,/T, (42a)
dM,/dt = y(M x H),— M,/T, (42b)
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dM,/dt = y(M x H), — (M, — Mo)/T,. (42c)
T, and T, are known as the longitudinal or spin-lattice and transverse or spin-spin,
relaxation times respectively and M, is the equilibrium magnetization. The Bloch
equations are easily solved for the condition that an oscillating magnetic field is
superimposed upon the static field. Expressions for the real, ' and imaginary y”, parts
of the complex magnetic susceptibility y* = y' —iy" are given by the following
equations (Carrington and McLachlan 1967; Schumacher 1970),

X (@) = 33000 Ty{w — o)L /[1+ (0 —wo)* T} +y*HIT, T;] (43a)
1'(©) = 1000 Ty /[1 + (0= o) T3 +y*HIT, T,] (43b)

 and w, are defined by & = yH and w, = yH, where H,, is the value of the field at the
absorption maximum (x;.). T; is related to the line-width and is given by (Poole and
Farach 1971)

T, = 2/AHY, = 2/\/3yAHS,, (44)

where AHS, is the peak-to-peak line-width in the derivative spectrum (assuming a
Lorentzian profile of absorption). Determination of 7 , however, is more complex and
needs saturation experiments. It may then be determined using AH vs P plots where P is
the rf power. Knowing the slope, 7, may be determined using the formula,
T, = slope/y*T, (Poole and Farach 1971). The origins of the line-broadening in
magnetic resonance experiments generally fall into two categories viz, homogeneous
and heterogeneous band-broadening. Homogeneous broadening occurs when the spin-
levels between which the transition takes place are not clearly defined and are
intrinsically broadened. This may occur either because of spin-spin dipolar interactions
or spin-lattice interactions. ‘Inhomogeneous broadening’, however, describes an
envelope of individual resonance peaks which are (shifted from their true position
particularly by magnetic field inhomogeneities (Poole and Farach 1971). The dipolar
interactions may be treated using the dipolar Hamiltonian, H pp Which (for the case of
nuclear spin interactions) is given by (Carrington and McLachlan 1967),

o=y 23000, | 4
which describes the interaction between two identical magnetic moments aybByl
separated by a distance 7. This line broadening mechanism dominates in many solids
but is largely averaged out in fluids. Using a Boltzmann distribution for the population
of the spin states it can be shown that (Carrington and McLachlan 1967),

(1/T1) = Wy +2W,, (46)

where W, and W, are transition probabilities involving matrix elements of H pp- Spins in
the neighbourhood of the excited spin that are involved in random motion (both
rotational and translational) cause random fluctuations at the site of the excited spin.
An auto-correlation relaxation time, ., of the random fluctuations can be defined that
determines the value of Ty and T, (Carrington and McLachlan 1967).

Of greater importance in glass is motional narrowing that occurs in NMr studies. We
have already noted that T, is inversely proportional to AHY{ , or, equivalently (Wong
and Angell 1976), ‘

T;! = Awlt, (47)
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where A, is the line-width corresponding to the rigid lattice and 7 is the relaxation
time. Atomic motions cause a decrease of the dipole-dipole interactions between the
nuclei, thereby bringing down the value of 7, and narrowing the resonance band-width.
This type of narrowing has been treated by Bloembergen et al (1948) whose theory has
been modified (Gutowsky and McGarvey 1952; Gutowsky and Pake 1950) to relate v;
the jump frequency to Aw

v; = 2n7)”! = aAw/tan (—;— (%)2 ), (48)

where a is a constant of the order of unity and Aw, is the line width when there is no
motional narrowing. Since v; itself can be treated as a thermally activated quantity
(Lidiard 1957; Poole and Farach 1971),

Vv, = Vg €Xp (— E,/kT). 49)

The relation between 7, and T which leads to band width narrowing with increasing
temperature is at once apparent. A phenomenological model for motional narrowing
has been developed by Hendrickson and Bray (1973) based on a two-state model. This
yields the expression

1 1
In (Aw Aa)0> = (—E,/kT)—1In(1/B—1/w,), (50)
where B is the line-width associated with the excited state and may be related to the
nature of the motion involved.

In esr spectroscopy line-broadening mechanisms are again the spin-spin and spin-
lattice interactions. The spin-lattice interaction is characterized by the relaxation time
T, and may be looked upon as arising from two causes. In the first, the spin experiences
magpnetic field variations due to the dipolar fluctuations from lattice vibratiohs. In the
second mechanism, proposed by Kronig (1939) and van Vleck (1939), variations in the
local electrostatic fields are regarded as affecting the orbital motion of the electrons
which in turn perturbs the energy levels in the paramagnetic species. This perturbation
is sensed by the spin through spin-orbit coupling, thus providing a mechanism for spin
relaxation. In general, 1/T, is proportional to the square of the spin-orbit coupling
constant, 4, and inversely proportional to the axial field splitting, J, raised to a high
power. The temperature dependence of spin-lattice coupling can also be quite different
in different temperature ranges (Ayscough 1967).

Spin-spin relaxation is more directly explained. This may occur either through direct
exchange in which case T, should be directly proportional to the exchange interaction
energy J (or, », = J/h the so-called exchange frequency) and inversely proportional to
the square of the dipolar interaction E ), (Ayscough 1967). Spin-spin coupling could -
also take place via the magnetic field of the spins themselves.

In solutions, however, relaxation of spin-half free-radicals and paramagnetic ions is
governed by the anisotropy of the g-tensor, by spin-orbit interactions and also by
dipolar coupling with the magnetic nuclei, (Carrington and McLachlan 1967,
Ayscough 1967; Poole and Farach 1971; Pake and Estle 1973). It has been shown
(Carrington and McLachlan 1967) that for the case of the anisotropic g-tensor Ty and T,
are governed by the relations

T, = (¢':¢) B H3 [122./(1 + @} 1) ]/60R” - (1)
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Ty = (g g ) B HE[ 81,4 61,70 + witd) ), 60n%, (S1h}

where (¢': ¢') denotes the inner product of the tensor with itselt, (g7 ¢') + Xy gl gy The
formulation of the relaxation mechanisms for paramagnetic wons and free-radicals with
spins greater than half is, however, more complex and detatled discussions muy be
found elsewhere (Poole and Farach 1971},

2.5  Mossbauer spectroscopy

Mossbauer spectroscopy can also be employed very uselully to mvestigate particke
motions in glasses. The particle motion is directly reflected m the Lamb Mossbauer
factor or the recoil-free fraction, £, which is given by (Werthemm 1964)

f=exp(—dn? (x?yi%, 15

where {x?) is the mean square amplitude of vibration in the direction ol gamma-ray
emission averaged over a time-interval equal to the bie-time of the excited nuclear state
and A is the wavelength of the gamma ray photon, Since v* 0 reflects the asersge
displacement of particles from their mean position i temperature-virable study of the
Mossbauer spectra of glasses should be guite mfvrmabve particularly m the
neighbourhood of the glass transition (Chumpeney 1979 where  lirpeasale
disturbances in particle positions may be expected. Other parameters such sy isomer
shift and quadrupole splitting also reflect the etfeet of moton but these etfects are
rather subtle and do not allow uneguivocal mterpretuation by themselves

3. Experimental studies

3.1 Dielectric response

Amongst the various methods used to study reluxation phenomena i glasses, diclectric
relaxation is probably one of the most widely used {Owen 1963, Day 1974, Stevels
1977). We have already noted that diclectric relagiation 1 both temperature and
frequency dependent so that one might expect to mvestigate relaxation behaviour by
varying either temperature or frequency. The impressive amount of dita gathered so
far, docs in fact demonstrate that both the variables have been explted. The nor
sources of dielectric loss in glasses are (&) migration losses and (b) deformution Jusses
(Stevels 1957, Owen 1963). It is to be expected that deformation losses are associated
with the dipolar mechanism of charge storage and should, therefore, be common to
molecular, covalent network and other types of glasses. Migration losses, on the other
hand, should play a large role in moditied network and in purely iome plasses. In
semiconducting glasses, electron hopping from site to site is the dominant source ol
diclectric loss (Lakatos and Abkowitz 1971; Thurzo 1975 Namikawa 1975 El
Bayoumi and MacCrone 1976; Mansingh ot al 1972, {975, 1976, 197K},

The subject of the dielectric behaviour of glasses has been reviewed excellently by
Owen (1963) and more recently by Stevels (1977). In their study of pure fused quartz,
Mahle and McCammon (1969) have found a dielectric loss peak at | kHzand at 23K
which they attributed to the motion of network oxygens. Many technically important
glasses which contain cations in a silicate or & horosilicate network exhibit delectric
loss peaks. The activation energy obtained trom loss-maximum frequency es reciprocal
temperature plots is 07 ¢V (Stevels 1977). Taylor (1956, 1959} has also shown that the
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activation barriers for dielectric relaxation and d.c. conductivity for several alkali
silicate glasses are approximately equal indicating that the same motion is operative in
both cases. A more recent review by Namikawa (1975) of a large number of silicate
glasses, however, indicates that dielectric behaviour of glasses may actually be grouped
in three categories. In the first category, a Maxwell-Wagner (Daniel 1967; Wagner 1914
Maxwell 1954) type of behaviour is postulated in which ions move over short distances
with low activation energies. As a consequence, the barriers to ac. and d.c.
conductivities are vastly different. In the other two categories, ionic motion occurs over
larger distances and the barriers to a.c. and d.c. conductivity are similar. The two
categories, however, may be distinguished by the magnitude of a correlation factor, p,
where p is defined as the ratio of 64 t0 & (& — €4) Wy Where @, is the frequency at the
loss maximum (¢, and o, are referred to the same temperature). In figure 6a, band ¢
the behaviour of ¢” as a function of log fis shown for the three categories, and some
examples are listed in table2. Semiconducting glasses such as barium
phosphotungstates also appear to exhibit migration losses very similar to those
corresponding to long range diffusion of ions (Namikawa 1975).

The mechanism of ionic transport in glasses has been discussed by many workers
using different models. Stevels and co-workers (Haven and Stevels 1956) have

considered several mechanisms by which Na™ can be transported in glasses such as free -

transport, vacancy transport, interstitial transport and interstitialcy transport
corresponding both to short and long distances. Urnes (1967) has considered the
possibility of a Grotthus-type mechanism being operative in glasses under the action of
an electrical field. Both these models have, nonetheless, been criticized though they are
capable of explaining at least qualitatively, the discrepancy between measured values of
the diffusion coefficient, D, and those derived using the Nernst-Einstein equation

D/N = KT [né. (53)

A correlation factor, f, which is a measure of this discrepancy may be defined through
the relation D/N = fkT/ne?. Doremus has suggested that the deviation of f from unity is
due to very fine scale phase separation. The presence of sub-microscopic heterogeneity
has also been suggested by Terai and Hayami (1975). The low values of f that have been
observed can occur when preferential paths are provided by such heterogeneities. In
these models, the mechanism of d.c. conductivity would itself require the presence of
both the fine scale phase separation and of different ranges of jump distances and would
also require the operation of defect interstitialcy mechanisms. These facets of dc.
conductivity may be compared with several features of a.c. conductivity mentioned
earlier. Thus materials where f is very different from unity should generally show
Maxwell-Wagner losses.

Most alkali silicate glasses conform to a distribution of relaxation times of the
Cole-Cole type with an a of about 0-4 (Namikawa 1975). The relaxation time spectra
are reported to be fairly temperature independent (Taylor 1956, 1959). Semiconducting
{ungstate glasses also behave similarly. In molybdenum- and in vanadium-phosphate
glasses, however, Mansingh and co-workers (1972, 1975, 1976) have shown that « has
different values above and below the absorption peaks; for wt €1, = 06 while for
ot > 1,0 = 0-4. At very low temperatures, « tends to 0-9. A symmetric behaviour in log
¢"fe" . vs log (0/wy,,) plots have been noticed by Hakim and Uhlmann (1971) who
have discussed their results in terms of a distribution function suggested by Glarum.

Dielectric relaxation in borate and phosphate glasses have been studied by many
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workers (van Gemert 1977; Quinten et al 1978; van Gemert and Stevels 1978), While
pure B,O; glass does appear to exhibit feeble dielectric relaxation (figure 7) alkali
borate glasses exhibit dielectric peaks around 25K ata frequency of 1 kHz (van Gemert
1977). The height of the loss peak is approximately proportional to the alkali
concentration upto 20 mol % beyond which it decreases, This has been correlated with
the fraction of tetrahedrally coordinated boron atoms and the relaxation may then be
viewed as a consequence of the motion of the alkali ions among the four identical planes
of the tetrahedron. The loss is generally characterized as a deformation loss, or, more
appropriately as loss due to local motions. Activation energies for such motion are low

I—M‘M
Maxwell Wagner loss 7
6
5
’ \ €
€ 160 C 180 210 4
0.6 ()
0.4
0.2 -
OI‘I‘J_ 1 | | 1 |
-2 -1 0 1 2 3 4 5 8
log f(Hz)

Migration loss~]

(b)

log f (Hz)

Figure 6. a, b.
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Figure 6. Typical dielectric relaxation based on (a) Maxwell-Wagner loss for an alkali
borosilicate glass (b) migration loss (NLD) I for an alkali silicate glass (c) migration loss (NLD) 1T
for an alkali silicate glass (after Namikawa 1975).

(ca 0-1 V) (Stewvels 1980). Similar losses due to local motion have been observed in
silicates as well, where the activation barrier is ca 0-05-0-1 eV.

Dielectric relaxation studies of systems containing discrete anions are sparse. In their
search for the so-called -relaxations, Goldstein and co-workers (Johari and Goldstein
1970) found a loss peak at ~ 0-16 T, in a Ca(NO;),-KNOj glass which, however, they
did not regard as a f loss peak. At such low temperatures the f-relaxations are expected
to be very diffuse. In this system as well as in the Ca(NOj), - 4H,O system (Johari and
Goldstein 1970) one may expect that the actual f peak is swamped by the large d.c.
conductivity (Hayler and Goldstein 1977). In sulphate glasses the dielectric loss peak
was observed just below T at a frequency of 1 kHz (Rao 1980). B-relaxation peaks are
generally believed to be universal features of the glassy state (Wong and Angell 1976;
Goldstein 1969; Johari and Goldstein 1970, 1971; Hayler and Goldstein 1977) and are
associated with ionic motion between wells separated by low barriers (0-1-0-4 eV). In
fact, a.c. conductivity measurements in sulphate glasses corroborate the presence of
short range motion characterized by such barriers which are clearly much smaller than
the activation barrier to d.c. conductivity (Sundar and Rao 1982b) (= 1-0eV).

Dielectric properties of many molecular organic glasses have also been investigated
by Goldstein and co-workers. Glasses which have been studied are listed in table 3. A
large number of these glasses exhibit f-relaxation around 0-8 7, witha characteristically
low activation energy of 0-1-0-4eV (figure 8). p- relaxatlon may be explained
convincingly in the frame-work of the cluster model. In this model glass is regarded as

i
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Figure 7. Tan§ versus temperature for B,Oj; glass prepared from H, BO; using different
melting procedures: after heating at (1) 1000°C for 10 min (2) 1000°C for 30 min (3) 1000°C for
5 hr (4) 1200°C for 6 hr (after Quinten et al 1978),

Table 3. p-relaxations in some organic glasses.

B-relaxation

temperature, T,
Systems studied T,(K) frequency Ty/T,
Rigid molecules:
50 mol %, o-fluorotoluene in m-fluorotoluene 121 Shoulder, 85K, 1 kHz 0.70
12 mol % chlorobenzene in cis-decalin 133 124K; 1 kHz 093
48-3 mol %, 1-chloronaphthalene in tetrahydrofuran 111 112K, 500 Hz 10
38:1 mol % 1-chloronaphthalene in pyridine 147 103K, 1kHz 07
Alcohols:
2-Pentanol 133 104K, 10 kHz 078
3-Methyl-2-butanol 170  Shoulder, 150K, 10kHz 088
Non-rigid molecules:
Dimethy] phthalate 194  Shoulder, 175K, 1kHz 090
Diethyl phthalate 184 157, 1 kHz 085
Isopropy! benzene 127 Shoulder, 115K, 1 kHz 091

consisting of clusters (regions characterized by a high degree of positional correlation)
connected by tissue material of lower density within which particle motion is possible
even below 7, (Goldstein 1975; Hayler and Goldstein 1979). Particle motion in such
regions would then give rise to § loss peaks. It is worth noting that the cluster model has
other significant implications in the phenomenology of the glassy state. Further,
anionic motions in glasses should also contribute to dielectric losses at least at very low
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Figure 8. Variation of tan d with T/T, for a number of molecular glass systems: chloro-
benzene in cis-decalin (~. - — ) (1 kHz); mixture of 0- and m-fluorotoluene (- - —-) (1 kHz); 1-
chloronaphthalene in tetrahydrofuran (O) (0.5 kHz); bromobenzene in tetrahydrofuran
(— ——)(1 kHz); 1-chloronaphthalene in pyridine (- ) (1 kHz). f-relaxations are clearly
seen; low temperature anomalies are also evident in some cases (after Hayler and Goldstein
1977).

temperatures particularly when these ions are asymmetrically shaped. Investigations of
anion motions and consequent dielectric loss behaviour in glasses, however, do not
appear to have been reported.

3.2 The mixed alkali effect

‘Mixed alkali effect’ is the term used to describe non-linearities in the various properties
of glasses with respect to composition containing more than a single-type of alkali ion
(Isard 1969). Such deviations from linearity are particularly noticeable in properties
connected directly with alkaliion motion (Isard 1969; Day 1974; Rao 1982). In dielectric
loss measurements, for instance, the mixed alkali effect produces a pronounced dip in
tan 6 (Stevels 1951; Kostanyan 1960; van Ass and Stevels 1974a, b; van Gemert et al
1974; Sundar and Rao 1982a) and a characteristic loss peak in internal friction
measurements (Zdaniewski et al 1979). In d.c. conductivity the mixed alkali effect gives
rise t0 a clear minimum (Bartholomew 1973; Rao and Sundar 1980; Sundar and Rao
1982b) and to substantial alterations in alkali ion diffusivities (Terai 1971; Ohta 1975;
Fleming and Day 1972) in a host of glasses; in other properties (e.g. molar volume),
though, the mixed alkali effect is rather slight (Ivanov 1964; Caporali 1964). Figure 9
shows the mixed alkali effect as manifested in the various properties related to jonic
motion in a range of glasses. The effect has been seen in both network (Day 1974) and
discrete anion glasses (Rao 1982; Rao and Sundar 1980; Sundar and Rao 1982a). It can
also be observed as a ‘mixed anion effect’ so that currently, it is often referred to as the
‘mixed ion effect’.
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Figure 9. (a) Alkali diffusion coefficients and the mixed alkali internal friction peak as a
function of composition in a mixed-alkali silicate glass. Cross hatch denotes the slower ion;
(b) variation of tand and ¢ with composition in a mixed-alkali lead oxide-calcium
fluoride-silica glass; (¢) variation of resistivity with composition for various mixed-alkalj
silicate glasses (after Day 1976).

Many theoretical approaches have been made to explain the mixed alkali effect.
These can be grouped under three heads viz. (a) structural (Stevels 1957; Charles 1965),
(b) electrodynamic (Hendrickson and Bray 1972a, b) and (c) thermodynamic theories
(van Gemert and Stevels 1978). Structural theories stress the importance of void sizes
necessary for the transport of ions and consider the possibility of a blocking effect
which reduces the effective mobility of the ions. In the electrodynamic theories the
dissimilar masses of the ions (which give rise to dissimilar vibrational frequencies)
develop an interaction energy due to the electrical fields of the vibrating ions. This
energy affects the activation barrier and hence the motion of the ions. The
thermodynamic theories consider that the simultaneous presence of ions of different
sizes affects the total interaction energy-and hence the migration barrier. Phase
separation (Charles 1965), increase of pairing energies (Sakurai and Ooka 1968),
anharmonicity of thermal vibrations (Weyl and Marboe 1962) and micro-strain fields
(Rao and Sundar 1980) have all been considered as possible origins of the mixed alkali
effect but, to date, no single model has proved to be either universal or quantitatively
accurate in accounting for this motion dependent phenomenon.

The decrease in values of tan  in mixed alkali regions suggests two possibilities: (i)
the ions stabilize in their own positions in response to the polarizing field or (ii) the
consolidated motion of these ions in a sufficiéntly smali region does not involve changes
in polarization. As we shall see a little later, the latter possibility is consistent with the
results of internal friction measurements.

3.3 Mechanical relaxation

Mechanical relaxation is measured using different techniques in different frequency
ranges. Between -1 and 250 Hz it is measured by following the torsional oscillations of
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a fibre, between 1 and 10 kHz by following the flexural vibrations of a bar and between
10 and 110kHz by following longitudinal vibrations (Zdaniewski et al 1979). More
recently, commercial instruments are used which can cover 4-5 decades of the entire
internal friction measurement range (Atake and Angell 1980).

Single component network glasses such as SiO,, B, O; (Kurkjian and Krause 1968)
and others exhibit very low energy losses. The losses are generally attributed to the
network oxygen response and sometimes to the very small concentrations of impurities
such as water. Ballaro er al (1975) for example, have observed a low temperature
internal friction peak in silica glass with an activation energy of 0-05eV in the
megahertz region (figure 10). Binary alkali silicates have been the most extensively
investigated and these, in general, exhibit two internal friction peaks (at ~ 1 Hz); one
between 233 and 248 K (Forry 1957; Ryder and Rindone 1960, 1961; Zdaniewski et al
1979) and the other between 373 and 573 K (Ryder and Rindone 1960, 1961; Shelby and
Day 1969, 1970). The low temperature loss peak is believed to be due to alkali ion
motion (generally referred to as the single alkali peak) since it has an activation energy
(0-7-10eV) very similar to that observed for d.c. conductivity in a number of glasses
(Higgins et al 1972). The position of the second peak is dependent upon the nature of
the modifying cation, silica content, traces of dissolved water etc., so that it is of
uncertain origin. It has also been attributed to non-bridging oxygen ions (Rotger 1958),
possibly because its magnitude has generally been found to be proportional to the alkali
content (Forry 1957; Mohyuddin and Douglas 1960; Douglas 1963).
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Figure 10. Internal friction coefficient as a function of temperatur_c for SiO, glass at the
frequencies shown. The ordinate scale for each frequency has been shifted upwards (scale on
the rus) (after Ballaro et al 1976).
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The mixed alkali effect is very sensitively detected in internal friction experiments
through the so-called ‘mixed alkali peak’ which appears (at ~ 1 Hz) at a temperature
slightly greater than that of the single alkali peak (Rotger 1941; Jagdt 1960). With
increasing concentration of the second alkali the mixed alkali peak shifts to lower
temperatures and its magnitude is also increased. Concurrently, the single alkali peak
shifts to higher temperatures so much so that when the proportions of the two alkalis
are comparable only a single, giant loss peak is observed (Zdaniewski et al 1979). We
have pointed out earlier that the origin of mixed alkali relaxation is not very clear. Since
the dielectric loss attains a minimum whereas a giant loss peak appears in internal
friction it appears that the elastic dipole (formed from dissimilar alkali ions) is
somehow rearranged in the a.c. stress field without causing alterations in electrical
polarization. One is tempted to think that such a possibility ensues primarily from the
rather high values of time constants in internal friction measurements as compared to
the time scale of polarization renormalization.

Internal friction losses have also been nioted at very high frequencies (megahertz
region) in glassy selenium and GeS, (Carini et al 1978). An absorption minimum has
been noted for these materials at 150 K and 450 K respectively which the authors have
discussed in the light of a ‘stochastic resonance absorption’ model. Mechanical
relaxations of a variety of metallic glasses have also been investigated. Tyagi and Lord
(1979) have measured the internal friction of Fe,4NigoPy 4B, FeyoNiyoBgSi, Py, and
FegoB,o glasses at frequencies of 0-2 and 1 Hz. The increase in internal friction with
temperature yields an activation energy of 40-80kcalsmol™! which the authors
attribute to unspecified atomic motions.

Ultrasonic studies of glasses, particularly silica (Golding et al 1973; Hunklinger et al
1972) and some chalcogenides (Ng and Sladek 1975; Farley and Saunders 1975) have
revealed an anomalous saturation of the ultrasonic attenuation at very low tempera-
tures. Many other physical properties, such as heat capacity (Fislia et al 1969), also
behave anomalously in this temperature range. Theoretical approaches to the problem
were first made by Anderson and Bommel (1955) and later by Anderson et al (1972). It
seems that these anomalous features may be explained if we assume the existence of
two-state potential wells separated by low energy barriers (asymmetric double well
potential) (Phillips 1972). Particle motion between these wells can occur either by
tunnelling through or by hopping over the barrier. The model is sufficiently general so
that it can be used to account for various anomalies through an imaginative use of
structural data. Indeed, the low temperature anomalies in fused quartz have been
attributed by Anderson and Bommel (1955) to the displacement of SiO, tetrahedra
which is consistent with the random network model proposed for these glasses. In
borosilicate glasses too, studies by Arnold et al (1974) have indicated the presence of
such anomalies. Currently, it is believed that such anomalies are a fundamental
property of glasses and attempts have been made to correlate the glass transition

temperature with the density of such energy-split states (Raychaudhari and Pohl 1981;
Cohen and Grest 1981).

3.4 The glass transition and associated relaxations

We have pointed out earlier that pronounced dielectric loss occurs near the glass
transition. Very similarly internal friction studies also show loss peaks which are known
as a peaks that generally tend to appear at temperatures above the calorimetric glass



e ——— o p————

Particle motion in glasses 225

transition temperature. The glass transition itself marks the onset of flow properties
and is associated with steep variations in heat capacity, thermal expansivity and
compressibility of the material (Rao 1979). It is also the temperature above which the
rate of acquisition of entropy by the system is higher. A consideration of the glass
transition as it occurs upon supercooling of liquids is even more informative. The glass
transition then corresponds to the kinetic freezing’ or the falling out of equilibrium, of
the metastable supercooled liquid. It is at once obvious that the ‘freezing’ is a time
dependent phenomenon which logically leads to the postulation of a ‘fictive tempera-
ture’ (Hagy and Ritland 1957, Haddad and Goldstein 1978). This is a structure related
temperature and can be regarded as that temperature where the structure of the glass is,
in fact, its equilibrium structure. Consequently, the fictive temperature of a glass and
the relaxations around 7, are related to each other. Whena glass is brought rapidly toa
temperature above the fictive temperature it relaxes to the equilibrium structure with a
characteristic relaxation time spectrum. Many experiments have been designed to
follow the relaxations at T, including measurements of refractive index (Macedo and
Napolitano 1967), density (Ritland 1954), thermal expansivities (Hagy and Ritland
1957; Williams and Angell 1973) and heat capacities (Boehm et al 1981). In general, the
relaxation time may be related to the fictive temperature as (Narayanaswamy 1971),

t = A exp [ (xAh/RT + (1 — x)Ah/RT} )], (54)

where a, x and Ah are constants and T, is the fictive temperature. It is clear that as T
tends to T, ¢ has essentially an Arrhenius dependence which corresponds to small
displacements from equilibrium. The relaxation in this region is generally described as
non-linear response (Wong and Angell 1976) and we do not propose to discuss it
further in this article. However, we give below a summary of our understanding of the
kinds of motion that characterize T, mostly for purposes of completeness.

Relaxation times become very large as a supercooled liquid approaches T,. Since
cooling leads to a considerable decrease in volume and entropy, configurational
rearrangements that take place near T, become increasingly difficult and more
cooperative (Barlow et al 1966; Rao 1979). Over a substantial range of temperature,
transport properties of the supercooled liquid are non-Arrhenius and may be
represented by the well-known Doolittle (1951) or Vogel-Tammann-Fulcher (vTF)
(Vogel 1921; Tammann and Hesse 1926; Fulcher 1925) equation,

¢ = doexp [ £ B/(T—To)] (55)

where ¢ is the transport property being measured and B is usually an activation barrier
and T, a constant with units of temperature. Most theories of the glass transition have
addressed themselves to an explanation of such a temperature dependence and to an
identification of T, with a truly thermodynamic glass transition temperature
(Kauzmann 1948; Rao 1979). The experimental glass transition, howeyver, occurs
beyond T, and corresponds to the ‘freezing-in’ of excess quantities such as entropy or
free volume. The non-linear relaxations alluded to above are associated with these
frozen-in excess quantities (Wong and Angell 1976).

Considerable effort has also been expended in the literature on a discussion of the so-
called ‘order parameters’ (Cooper 1977; Gupta and Moynihan 1976, 1978; Kovac 1981)
which can be any of the excess quantities that determine the free energy of theliquid and
hence the glass transition temperature. (It has been conventional to use the term ‘order
parameter’ in phase transitions so that it denotes a perfectly ordered state when equal to

c.15
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unity. The order parameter cooperatively vanishes at the transition temperature. In the
context of the glass transition it is preferable to designate the excess quantities of the
supercooled liquid as ‘ordering parameters’ after Cooper (1977)). It has been known for
a long time (Davies and Jones 1953) that the Prigogine-Defay ratio, =, for the glass
transition is either equal to or greater than unity depending upon whether a single
ordering parameter or a multiplicity of ordering parameters govern the glass transition
(n is defined as equal to (Ax)?/TVAC,Ap where A, AC, and Af are changes in thermal
expansivity, heat capacity and compressibility respectively at 7;). Further constraints
upon ordering parameters that determine the value of z have been investigated by many
workers (Kovac 1981; Gupta and Moynihan 1976).

A model of the glass transition that is particularly aitractive in the context of the
relaxations has recently been discussed by Perez et al (1981). Their approach is largely
based on Goldstein’s model (Goldstein 1975; Hayler and Goldstein 1977) that
considers glass as consisting of dense clusters embedded in connective tissue of lower
density. Particle motion is then considered to occur within the tissue material and/or on
cluster boundaries. From an elaborate consideration of relaxation time spectra and
internal friction losses as a function of temperature Perez et al (1981) have attributed
the B loss peaks to cooperative rearrangements in the tissue material and « relaxations
to thermally activated particle motion on cluster surfaces.

3.5 Magnetic resonance spectroscopy

Studies which have used magnetic resonance spectroscopy to understand particle
motion in the glassy state are relatively few in number. Even these investigations have
concentrated, specifically, either on ionic motion per se or on the anomalous behaviour
of T (the spin-lattice relaxation time, discussed in §2.4) due to the two-level systems
(TL8).

The work of Bray and co-workers on NMr studies of ionic motion in glass has been
truly monumental. In silicate and borate glasses, for example, Hendrickson and Bray
(1974) have used "Li NMr to explore the behaviour of the spin-lattice relaxation time. A
semilog plot of inverse corrected linewidth vs 1/T (figure 11) obtained in Li, O - 2SiO,
glass clearly shows the presence of motional narrowing which has been analysed in
terms of equation (50). Three straight line segments (denoted by I, Il and III) are evident
in the plot with region II having the highest slope and, consequently, exhibiting the
highest activation energy. Region I has been attributed by the authors to short range
motion which has a smaller activation energy and higher values (107! to 10~ kHz) of
B, as in (50). In region II the activation energy is about 0-6-0-7 eV and the B value is
much smaller (~ 10~*? kHz); the latter feature has prompted the authors to associate
this region with predominantly long range motion of the alkali ion. It is interesting to
note that motional narrowing in the glassy region indicates two distinct regimes for
ionic motion. There is a close correspondence between these results and those of
dielectric relaxation discussed earlier. Hendrickson and Bray (1974) have further
pointed out that the short range motion of the alkali ion could possibly be associated
with equivalent sites on the SiO4 or BO, tetrahedra. In any event, such short range
motion is evidently a feature of the vitreous state since region I does not appear on
similar plots made for crystalline samples.

1B yMr and spin lattice relaxation has been studied in the case of glassy B, O and
B,S, through the glass transition and well into the supercooled region (Rubinstein
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Figure 11. A plot of log inverse corrected 7Li linewidth vs 10%/T for Li,0-28i0, glass.
Inset: the measured linewidth as a function of temperature, which clearly shows motional
narrowing (after Hendrickson and Bray 1974).

8 NMR LINE SHAPES IN B203

Figure 12. Changes in the !B NMR spectrum in amorphous B,0; as a function of

temperature (after Rubinstein 1976).

1976). Figure 12 shows the dramatic spectral changes that ensue, particqlar}y at 1‘"9 fqr
B,0,. While the central narrow line emerges only beyonc} T,(~ 550 K) in the oxide, it
evolves gradually at the expense of the ‘powder pattern’ in the sulphlde even bclov\f T,
(~ 375K). In fact, an extremely narrow line has been observed in glassy B,S; just
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25°K above the glass transition. The author suggests that the structures of the two
glasses are very similar but that B,S; behaves as a molecular fluid beyond 7,

Rubinstein and Resing (1976) have also reported NMr studies which are related to
TLs in glassy as well as in polycrystalline B, O;. An anomalous low minimum has been
observed in 7; which is mildly frequency dependent. From figure 13 which shows T} asa
function of temperature for both the crystal and the glass, it becomes clear that
relaxation is # 30 times faster in the glass than in the crystal. The authors have
analyzed their observations in terms of asymmetric double-well potentials which were
earlier used to rationalise the existence of low temperature thermal anomalies.
Figure 13 also shows a minimum in 7, and this has been discussed in terms of
temperature dependent broadening of the phonon spectrum which, in turn, causes a
decrease in the effective density of states. Szeftel and Alloul (1978) have studied nuclear
magnetic relaxation in Se, B, O3, borate and borosilicate glasses using 7”Se, !B, 2°Na
and 2°Si NMr in very low temperature region. These workers have observed that T,
is field independent and that it has a complicated temperature dependence of 1/[T 7]
where 0 < y < 1. They have also confirmed the presence of T; minimum in B,O; at
300 K but most importantly they attribute the relaxation time behaviour to an electric
field fluctuation at the nuclear site due to the tunnelling of nearest neighbour defects.
These defects have tentatively been identified as bridging oxygens tunnelling between a
pair of potential wells.

Muller-Warmuth and Otte (1980) have recently reported a study of nuclear magnetic
spin relaxation in a number of organic compounds. In an investigation of solutions of
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Figure 13. The spin-lattice relaxation time as a function of temperature in both glassy and
crystalline B, O, (after Rubinstein and Resing 1976).
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benzene and substituted benzenes in glass-forming solvents such as o-terphenyl, cis-
decalin and benzophenone, they found a minimum in T, around 100 K. Such an
anomalous decrease in 7'y has been analysed in terms of distribution of correlation
times and has been attributed to the characteristic low-lying excitations present in
amorphous systems. The activation energy of such correlation times was found to be
generally very low (=~ 01 eV).

Motional narrowing can play an equally significant role in ESR spectroscopy as is
evident from a recent study by Antsiferova et al (1973) of an organic free radical (pADS)
in supercooled aqueous glycerol. They have compared simulated line-shapes obtained
using various models with experimental results and have concluded that the jump
diffusion model (§3.5) is more appropriate to a viscous medium than the Brownian
motion model. It is quite curious that ESR studies have not so far been widely used to
study particle motion in the vitreous state. Some work in this direction has recently
been initiated in our laboratory (Parthasarathy et al 1981a) both in organic and in
inorganic glasses primarily to gather information on particle motion in the
neighbourhood of T,. Such data, it was felt, would be vital to an understanding of the
glass transition itself. It must, however, be emphasized that analysis of all the dynamical
features associated with the non-linear relaxation region through Esr relaxation times is
avowedly difficult. The variation of relaxation time per se with temperature should
nonetheless reveal the evolution of liquid-like behaviour within the glass.

Experiments on organic glasses were made using an ESR spin-probe, TEMPONE (2,2,6,
6—tetramethyl-piperidin-4~one—l-oxyl) which was dissolved in the liquid under study at
a concentration of ~ 10'® spins cm™ 3 Transverse correlation times of this probe were
then studied through the glass transition. The spectra of TEMPONE in glycerol and in
methyl salicylate are shown in figure 14a, b. Correlation times, 7., were obtained using
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Figure 14. ESR spectra of TEMPONE in (a) glycerol and (b) methyl salicylate at selected
temperatures (after Parthasarathy et al 1981).
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Figure 15. A plot of log 7, against T, /T for A: glycerol; B: o-toluidine; C: methyl salicylate;
D: propylene carbonate; E: dimethyl phthalate; F: p-anisaldehyde. The broken ling indicates T,
(after Parthasarathy et al 1981).

the procedure of McConnell (Stone et al 1965) and the variation of log 1, with T,/T is
shown in figure 15 for all the liquids studied. It is clear that upto a temperature T, where
T, >T,,,is rather large and generally independent of temperature. In the supercooled
region where T >T,, t, decreases rapidly. The authors have rationalised their
observations using the cluster model of glass, elements of which were discussed earlier
in this section. In this model, the glass transition may be considered to correspond to a
‘congelation’ of clusters as the melt is cooled. The existence of a considerable amount of
less dense, intercluster tissue material is, of course, assumed. The TEMPoNE radicals
being themselves heterogenities were considered to act as nuclei which eventually grow
into clusters upon cooling. It is for this reason that their correlation times were seen to
increase rapidly in the supercooled region and reach values characteristic of the glass
well above T, (at Ty ). It is quite likely that the extent of hydrogen bonding is at least
partially responsible for the deviation of T} from 7, and, hence, for the different values
of T, observed in the various glasses. The activation energy obtained from the
supercooled region ranged from 0-6 to 3 eV.

In inorganic glasses, transition metal ions may be effectively used as spin probes. The
large relaxation times of Mn** and Fe* have been exploited in a study of the glass
transition in 3 glasses: a discrete anion sulphate glass, a covalent network phosphate
glass and a complex PbO-PbCl, glass of intermediate ionicity (Parthasarathy et al
1981b). Surprisingly, it was found that the line widths were constant through the glass
transition, showing thereby no motional narrowing effects (figure 16). One wonders
whether motional narrowing was offset by line broadening mechanisms operating in
glasses with relatively high 7,’s or whether such narrowing takes place in the
supercooled liquid at temperatures which were not accessible to these workers.
However, it was noticed that the resonance strength decreased rapidly through the glass
transition. The decrease in resonance strength has, nonetheless, been discussed
indirectly in terms of transverse relaxation times which were related to a function of
inverse configurational entropy values of which were obtained theoretically from a
two-state model (Angell and Rao 1972).
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Figure 16. Variation of the ESR spectrum of Mrn?* in a sulphate glass (T, = 460 K) at
selected temperatures (after Parthasarathy et al 1982).

3.6 Vibrational spectroscopy

The discussion in §2.3 indicated the possibility of using vibrational spectroscopy very
effectively to understand particle motion in the glassy state. Little, however, appears to
have been accomplished in this direction (Angell 1980). Rothschild (1974) has recently
analysed the 1033 cm™ ! ring deformation band in quinoline in the crystalline, liquid
and glassy states. He has found that relaxation in this molecule is primarily vibrational.
Relaxation times appear to be much higher in the crystalline rather than in the glassy
state where the wide distribution of environments may promote effective relaxation.

Reports of other recent vibrational band shape studies in viscous liquids and glasses
has been reviewed by Angell (1980). Raman studies of organic (toluene) and inorganic
(KNO,-Ca(NO;),) glasses have been reported (Clarke and Miller 1972). While very
little heterogeneous band broadening has been found above T, in the case of toluene,
band broadening appears to be substantial in the case of the nitrate glass.

The behaviour of 1r band shapes has been investigated in a sulphate glass (Sundar et
al 1982) in order to understand particle motions around T,, using the 620cm ™!
sulphate deformation mode. Surprisingly, the band-width was found to increase upto
T, and thereafter, it remained constant. Correlation times, were obtained using the
Fourier methods discussed in §2.3, and these are shown as a function of T/T, for a
number of compositions in figure 17. Second moments were also evaluated using (38b)
and it was found that these reached saturation values just below T, in all the
compositions. The kind of saturation behaviour observed both in 7, and second
moments appears to indicate that liquid-like particle motion evolves in glasses at
temperatures less thanT,. This would indeed be quite consistent with a cluster model of
glasses and the glass transition discussed earlier since it is possible that melting of the
inter cluster material prior to T, would give rise to the observed behaviour.
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Figure 17. A plot of z,, obtained from Ir band-shape analysis, as a function of T/T, for
sulphate glasses whose molar compositions are as shown (after Sundar et al 1982).

3.7 Mossbauer studies

A number of interesting Mossbauer studies, particularly through the glass transition,
have been reported in the literature. One of the earlier studies is by Cooper and co-
workers (Gosselin et al 1968) who studied the Mossbauer spectra of a sodium trisilicate
glass containing 8-25 wt % of Fe, Oj through the T,,. They have reported that the line
width of the Fe** resonance is unchanged while that of Fe** broadened. Recoil-free
fraction, isomer shift (1) and quadrupole splitting (qs) were observed to decrease with
increase in temperature. More recent studies have confirmed that changes in these
parameters, viz, recoil-free fraction, Lamb-Mossbauer factor, line-width, 1s and qs
through the glass transition are, in fact, quite generally found (Champeney 1979).
Figure 18 shows the general behaviour of recoil-free fraction as a function of
temperature for both glassy and crystalline states.

In their studies of Fe** ions in glycerol, Abras and Mullen (1972) have found
evidence for the broadening occurring both due to jump and continuous diffusion of
particles depending upon temperature. A more recent report on x-ray attenuation and
Mossbauer line broadening in an aqueous phosphoric acid solution of Fe?*, however,
presents evidence against the jump model (Ruby et al 1975). Barnes and Langevin
(1963) have investigated a frozen aqueous solution (as) of an ion salt and have noted
that the recoil-free fraction decreases continuously with temperature and vanished at T,
(210K). Brunot et al (1971a,b) also report similar findings in their Fas studies. The
decrease in recoil-free fraction at the T, has also been recorded by Simopoulos et al
(1970). Yet another recent report of the Mossbauer study of ferrocene in o-terphenyl
(Vasquez and Flinn 1980) notes that while ¢ x* ) decreases at T, line-broadening is not
significant at temperatures just greater than T, (figure 19). A s1gmﬁcant point made by
these workers is that values of the glass trans1t10n temperature obtained through
studies of transport properties such as diffusion and viscosity should be distinguished
from those obtained from static properties such as specific volume, enthalpy or power
spectrum,

A qualitatively different approach to the problem has been adopted by Ruby and co-
workers in their reports of Mossbauer studies on ferrocene in butyl phthalate (Flinn et
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Figure 19. Mossbauer spectra of ferrocene in o-terphenyl for selected temperatures. While
the recoil free fraction decreases rapidly beyond the Ty, it is significant that the line width shows
no clear-cut increase (see figure 18) (after Vasquez and Flinn 1980).

al 1976; Ruby et al 1976) and phosphoric acid. They have observed an increase in (x*)
beyond T, but they note that rotational relaxation is unlikely to be observed in

Mossbauer studies. Even more interesting,

however, is their interpretation of the




234 K J Rao and R Parthasarathy

decrease in elastic scattering intensity in terms of ‘soft modes’ as interpreted in the
context of glasses. As Flinn et al (1976) remark, ‘It is not that (such) transverse modes of
the liquid gradually disappear with decreasing viscosity, but they are shifted to lower
energies’. Considering the exciting possibilities that such an approach opens up and the
fundamental importance of soft modes themselves, we feel that a brief digression on the
soft mode postulate will not be out of place here.

The concept of soft modes as a basis for understanding phase transitions in solids has
been developed over the last two decades and has provided a unifying structural
approach to phase transformations (Rao and Rao 1978). The softening of vibrational
modes or of elastic stiffness constants, it may be noted, has long been recognized as an
origin of lattice instability (Born and Huang 1954). In the present context the
applicability of the notion of phonons to disordered solids has been discussed by many
authors and has been excellently summarized by Wong and Angell (1976). It is also
known that the glass transition corresponds to the onset of the loss of solid-like rigidity
as the vitreous solid undergoes transition. Against this background, therefore, it is
attractive to consider that the decrease in force constants of some phonon modes, at the
glass transition, gives rise to large amplitude motion of particles which is, essentially,
the feature of a soft mode. Unlike solid-solid transformations, no new vibrational
modes may be expected to appear at the T,, which would strengthen and stabilize a new
phase. It is also worthwhile to note that there may not be complete softening of all the
modes at T, since the properties of the vitreous state are characterized by distribution
functions. In this context, it is likely that long- and short-range phonons in a glass
are also governed by a distribution of force constants which may not concertedly
soften. Thus, the soft mode that may drive a glass transition is quite likely to be different
in its details from the soft mode that drives crystalline transitions, a point made by
Flinn et al (1976). The advantage in the soft-mode approach is that it provides a novel
method of describing the glass transition as it occurs in the glass; theories that consider
this transition from the standpoint of the supercooled liquid are, in contrast, essentially
theories of viscosity in which the glass transition marks the termination of the liquid
regime.

To sum up, we note that the increase in amplitude of the transverse modes, { x* ,at
T, seen in Mossbauer experiments is significant in that it suggests the possibility of
developing an entirely new approach to the problem of the glass transition itself.

4. Computer simulation and particle motion

At the outset we note that computer simulation studies reported in the literature to date
have concentrated upon elucidating particle motions in the neighbourhood of the glass
transition (Frenkel and McTague 1980; Angell et al 1981). There appears to have been
no study that has sought to describe either the TLs or, indeed, the other types of particle
motion in the glassy state described earlier. However, computer simulation studies in
supercooled regions which have been performed with realistic potentials have brought
out some of the most significant features related to the glassy state. Both Monte Carlo
{(mMc) (Raveche 1976; Raveche and Streett 1976; Wendt and Abraham 1978; Abraham
1980) and molecular dynamics (Mp) (Kristensen 1976; Rahman et al 1976; McTague et
al 1978; Clarke 1979) techniques may, in principle, be employed but the latter is
preferred in studies of dynamic properties since it is the more direct approach to the
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autocorrelation effects. In this section we summarize some of the recent computer
simulation studies which, in our opinion, enable us to understand particle motion inthe
glass transition at a fundamental level.

In a recent article, Angell et al (1981) have reviewed computer simulation
experiments to explore the effect of the (assumed) inter-particle potential upon glass
formation. It is now well-known that computer simulation studies entail the use of very
high rates of quenching (= 10'2 deg K sec™*) (Angell 1982) and of a number of
particles that usually does not exceed a few thousands (& 4000) (Cape and Woodcock
1979). Consequently, several features of the simulated glass transition do not
completely match those of a‘real’ glass transition. In these studies, the T, itself is located
through the behaviour of the diffusion coefficient (Angell et al 1981). In simple fluids, it
has been found that diffusivity approaches zero at T, more rapidly than is the case with
related laboratory glasses. Further, diffusivity in a real glass can be quite low
(10~ ® cm? sec™ ) but in a simulated glass it is often more than 10 S cm? sec™ . This
can be simply understood from the fact that in many simple polar molecules the
product of 7,D is a constant (=~ 2% 10716 cm?) which for a diffusivity of
10~ 18 cm? sec™ ! would give rise to relaxation times of = 100 sec, the time-scale of
laboratory experimental measurement. In the case of a simulated glass T, would occur
even at a diffusivity of roughly 10~ cm? sec” ! because the corresponding relaxation
time would be ~ 107 sec which is still roughly 100 times the simulated cooling rate.
In such a short time the system can only relax vibrationally and not configurationally. It
has also been noted (Damgaard-Kristensen 1976) that a simulated glass transition is
rather smeared-out and that the density of a simulated glass is ~ 7% lower than that of
comparable laboratory time-scale glasses. A more disturbing feature of these studies is
the size dependence of the approach to equilibrium (Clarke 1979) which hints at the
possibility that most reported measurements may not correspond to well-relaxed
systems. The significant results of simulation studies are as follows. (2) They affirm that
glass formation can, indeed, ensue from supercooling of the melt. (b) Glass formation
appears to be controlled by the repulsive part of the potential: the softer the potential,
the lower is the glass-forming tendency (Alder and Wainright 1960; Raveche 1976;
Hoover et al 1971; Hiwatari 1978). This finding seems to accord very well with the fact
that the alkali metals, which are described by soft potentials have, as yet, not been
vitrified, in contrast to transition metals which have harder potentials and have been
vitrified (Chen 1980). (d) Relaxational behaviour also appears to be controlled by the
softness of the potential (Clarke 1979; Woodcock 1976, 1978; Barker et al 1975).
Different types of potentials have been used in several reported studies and interesting
results with respect to the structure of glasses so formed have been obtained. From the
foregoing it is quite clear that the choice of an interaction potential has a profound
influence both on the local structures in the simulated glasses and upon their
relaxational behaviour.

5. Concluding remarks

In the foregoing sections we have discussed several approaches to the study of particle
motions in glass that principally involve spectroscopic techniques. Other methods are
indeed available: for instance, neutron scattering, that has been used with particular
success in studies of motion in polymers, but we have not dealt either with this or with
others such as x-ray and light scattering, hypersound propagation and diffusion
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studies. Our choice has been directed by considerations of relevance of the technique to
a large variety of glasses and of directness of the information obtained. We feel that the
techniques discussed above meet such criteria to a greater extent than others, though it
is debatable.

In the discussion of dielectric and mechanical relaxations, we have found that both
variable temperature and variable frequency approaches have been used, wherein
power absorbed from the imposed field is used for particle motion. Information in
these techniques may consequently be directly related to jump frequencies and
associated relaxation times. In resonance spectroscopy, on the other band, information
with respect to particle motion can be obtained only through perturbations caused to
the absorption or emission band characteristics. These spectroscopic techniques are,
nonetheless elegant, the mathematical apparatus available for data-analysis is powerful
and data may be obtained about the particles whose motion is being studied. However,
these techniques, particularly vibrational spectroscopy, are comparatively under-
utilised in the context of the study of particle motion in glasses.

We may note that there are three generally distinct temperature regimes where
different kinds of motion may be discussed, and each region is roughly determined by
the thermal energy of the system. Motion at extremely low temperatures ( < 0-2T}) is
almost entirely localised and occurs between a pair of asymmetric, split-potential wells,
Activation energies for such motion are low (& (-1 eV) and motion manifests itself in a
host of low-temperature anomalies. There is now a large and growing body of evidence
to show that such split-potential wells (TLs) are a typical feature of the glassy state. In
network glasses TLs may be visualised as involving motion in the network but in
molecular or discrete ion glasses these may involve small changes in orientation or
position of ions within their cages. Between 0-2 and 0-8 T, both short range and long
range motions begin to evolve within the glass. The strength of the absorption tends to
be very low in lower temperature limits of this regime because of inherent broadening
mechanisms. In this range of temperature activation barriers to motion range from 0-2
to (-8 eV and the motion itself ranges from group motion to long range hopping of ions.
Dielectric and mechanical relaxations at higher temperatures in this range are called f-
relaxations and many systems with diverse types of bonding appear to exhibit this
phenomenon. Alkali ion motion in a variety of glasses also appears in this temperature
range. Mixed ion effects, in particular, seem to display characteristic behaviour in
dielectric and other studies. Beyond 0-8 T}, large scale particle motions begin to
take place and separation of the various contributions is very difficult. Collective and
cooperative movements that begin to appear in this region have still not been
well understood even though Mossbauer experiments have provided significant
information related to such motions.

Motion between 02 7, and T, strongly suggest the relevance of a cluster model, the
basic ingredient of which is the existence of density fluctuations on a scale accessible to
high resolution electron microscopy and small angle radiation or particle scattering.
While experimental support for this model has been accumulating, modelling and
analysis of particle motion remain to be carried out. It would be profitable to assume
the presence of both density and composition fluctuations on a scale that does not cause
macroscopic phase separation. We have already pointed out that motion, particularly
of ions involved in electrical conductivity, may be traced to motion either in the tissue
region or on cluster surfaces.

Particle motion studies as related to the nature of bonding have been inferred only
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from simulation studies on liquids that, unfortunately, do not tell much about
behaviour in the glass. However, the importance of repulsive potentials on glass
formation may be extended to discern patterns of particle motion. Such patterns may
well be grouped on the basis of the softness of the repulsive potential and a study along
these lines should be particularly useful in understanding particle motion in fast ion
conducting glasses.
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