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Glass transition. A new approach based on cluster model of glasses*
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Abstract. The structure of real glasses has been considered to be microheterogeneous,
composed of clusters and connective tissue. Particles in the cluster are assumed to be highly
correlated in positions. The tissue is considered to have a truly amorphous structure with its
particles vibrating in highly anharmonic potentials. Glass transition is recognized as
corresponding to the melting of clusters. A simple mathematical model has been developed
which accounts for various known features associated with glass transition, such as range of
glass transition temperature, T, variation of T, with pressure, etc. Expressions for configur-
ational thermodynamic properties and transport properties of glass forming systems are
derived from the model. The relevence and limitations of the model are also discussed.
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1. Introduction

Glass transition continues to be an enigmatic feature of glassy state. Several attempts
have been made in the literature to model the transition theoretically and all such
efforts have succeeded only partially. A more recent observation of significance in this
context is that most real glasses are microheterogeneous in structure as evidenced from
a number of sophisticated experiments. Hence, the limitations suffered by earlier glass
transition models may atleast be partly attributed to the assumption of a homogeneous
random structure of glasses implied in them. In this work, an attempt has been made to
understand glass transition giving specific recognition to the microheterogeneous
nature of the glasses. A few experimental aspects related to glassy state and glass
transition are summarized in §2. Salient features of earlier glass transition theories are
surnmarized in §3. Evidences that support microheterogeneous structure of glasses are
briefly referred to in §4, and a simple mathematical model of glass transition based on
cluster concept is developed in §5, where in model results are also discussed. In
succeeding sections, the thermodynamic and transport properties derived from the
model are presented and the possible limitations of the model are discussed in the
concluding section. :

2. Glass formation and features of glass transition

~ Glass is the resultant solid product when a melt is cooled in such a way that
crystallization is bypassed (Turnbull 1969). Rates of cooling required for the f ormation
of glasses, however, vary widely. For example it is of the order of million degrees/sec for
cooling metallic melts into the glasses while it is a negligible fraction of degree/sec for
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cooling B,O; melt into glass (Owen 1973). In the temperature region below the melting
point (liquidus temperature) volume and entropy of the super cooled liquid decrease
continuously into the glassy state (figure 1a). But the slopes of their variations exhibit
changes over a narrow region of temperature prior to solidification. This effect is even
more clearly evident in heat capacity and thermal expansivity plots where ‘more or less’
sudden changes occur in a narrow region of temperature (Rao 1979). The phenomenon
is referred to as glass transition. The glass transition is generally reversible. An
operationally-defined glass transition temperature, T, refers to the intersection of
linear extrapolations of heat capacity curves as shown in figure 1b.

The region between 7, and T,, is referred to as supercooled liquid. The experimental
glass transition temperature is a function of the cooling rate and is higher for higher

“cooling rates. Heat capacity plots almost universally exhibit a hump on the heating
cycle. The magnitude of the hump increases for well-annealed glasses (Moynihan et al
1976).

Viscosity (and other transport properties) varies exponentially in the supercooled
region and as the glass transition is approached viscosity attains a value of ~ 10'3
poises. It may be easily recognized that such high viscosities correspond to character-
istic relaxation times of the order of minutes and it far exceeds laboratory time scales for
general physical property measurements. Hence the supercooled liquid manifests as a
solid capable of sustaining normal shear forces and with characteristic solid like heat
capacity. The variation of viscosity in the supercooled region often exhibits a non-
Arrhenius behaviour in many glass-forming melts (Angell and Moynihan 1969)

n = 1o exp [E,/(T—T,)], (1)

where 7o, E, and T, are constants of the Vogel-Tamman-Fulcher equation for viscosity.
T, which has units of temperature renders the viscosity formally infinite when the
temperature of measurement is equal to it and indeed suggests a rheological limit to the
liquid regime. This parameter not only linearizes the otherwise nonlinear # vs
(1/T) plots (where In# is plotted as function of [1/(T —T,)]) but is numerically always
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Figure 1. Schematic of variation of thermodynamic properties during glass transition:
(a) Volume (¥) and entropy (S) variation with temperature. Lower T, corresponds to slower
cooling rates. Tg is the thermodynamic limit to glass transition temperature indicated by
extrapolation of entropy lines. 7,, is the melting point of the crystalline material of same
chemical composition. (b) Variation of heat capacity with temperature. T, is indicated as
intersection of extrapolated lines. Note the hump in C, variation.
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lower than the experimental T,. No instance is known where T, is greater than 7. The
magnitude of (7, —T,) decreases as the glasses are annealed.

The entropy plot in figure 1a is also quite revealing. While slower and slower cooling
rates bring glass entropy closer and closer to the entropy of parent crystalline phase the
entropy lines are never known to cross each other. Indeed if intersection occurs an
apparent violation of the third law of thermodynamics would ensue, since the
supercooled liquid which is inherently disordered would have a lower entropy than the
corresponding ordered crystalline state (Kauzmann 1948) (Kauzmann paradox).
Intersection of the extrapolated entropy line of the supercooled liquid with that of the
crystalline solid corresponds to a zero configurational entropy state and can be
estimated (normally done through the so-called Kauzmann plots, where heat capacity
is plotted as a function of In 7 and the area matching is utilized to determine the
isentropic amorphous state) (Angell and Rao 1972). Such a temperature is referred toas -
T, which may be considered as a thermodynamic limit to disordered liquid state. Below
this temperature the transformed amorphous solid possesses zero configurational
entropy or (as Kauzmann suggested) the material may undergo a transition to an
ordered crystalline solid. While it is interesting to note that T, and 7,, both suggest a
certain temperature limit to the liquid state from thermodynamic and kinetic points of
view respectively, it is intriguing that T, = T, within experimental limits of accuracy in
well-documented systems in literature (Angell and Moynihan 1969).

We may therefore infer that infinitely slow cooling of a melt, would result in an
equilibrium transition to a glass at a temperature, T =T, = T,. Unattainability of
infinitely slow cooling rates, however, causes the supercooled melt to fall out of the
equilibrium at 7, > T in an experimental glass transition. Such arguments suggest that
an equilibrium thermodynamic transition is latent and that it does not manifest due to
kinetic reasons. The thermodynamic nature of such a glass transition is-also suggested
by the fact that T,/T,, (T, is the melting or liquidus temperature) is ~ 2/3 for a large
variety of glasses (Sakka and MacKenzie 1971). A real glass therefore possesses a frozen
entropy, a measure of which is indicated in the Kauzmann plot in figure 2. The frozen
entropy is large in covalently-bonded oxide glass systems as compared to ionic glass
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Figure 2. Typical Kauzmann plot obtained from heat capacity measurements (C, vs InT
data on a sulphate glass from author’s laboratory). Frozen entropy is shown by hatching the
area.
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systems such as those of nitrates and sulphates. The discontinuity in the heat capacities
at the glass transition, AC,, is also reco gnized as a characteristic parameter of the glasses
and it is generally larger in ionic glasses than in covalently bonded oxide glasses (Angell
and Sichina 1976).

3. Theories of glass transition

Many modelistic approaches have been made in literature (Rao 1979; Parthasarathy et
al 1984) in order to understand the various features of glass transition which were
briefly described in the preceding paragraphs. Among them the free volume theory
(Cohen and Turnbull 1959; Turnbull and Cohen 1961, 1970) has laid emphasis on
concomitant decreases in volume and fluidity of glass-forming melts in the supercooled
region. Therefore glass transition has been related to the decrease of free volume
associated with particles. Below a critical value of free volume particle transport is
considered impossible. A recent extension of free volume model (Cohen and Grest
1980, 1981) in conjunction with percolation concepts has imputed a first order
character to glass transition at T’ <T.

A thermodynamic theory for glass transition was developed by Gibbs and coworkers
(Gibbs and DiMarzio 1958; Adam and Gibbs 1965; Gibbs 1963) wherein the
configurational entropy was related to the viscosity. The primary transport event was
associated with the plurality of attainable particle configurations. The experimental 7,
in this theory is directly related to the falling out of equilibrium of the system at low
values of configurational entropy. because attainment of different configurational
states requires a high degree of cooperativity. Also, entropy theory directly implies a
zero-configurational entropy ground state of amorphous materials. In another
approach to glass transition Goldstein (1969, 1976a, 1977) has suggested that the
configurational state of a supercooled liquid, can be described through a energy
hypersurface of position and momentum coordinates and that the glass transition
occurs when the system of particles gets trapped upon cooling into one of the many
potential minima which are present on such a hypersurface. All such theoretical
approaches attempt to describe the thermal variation of a suitable liquid property such
as volume, entropy or enthalpy and seek to identify the glass transition as a terminal
event in the behaviour of a supercooled liquid. Several well-known limitations of these
approaches have been discussed elsewhere (Rac 1979; Parthasarathy et al 1984;
Goldstein 1963, 1976b).

In a basically different approach Angell and Rao (Rao and Angell 1971; Angell and
Rao 1972) sought to discuss glass transition using concepts of Ising model developed
for crystalline phase transitions. They abstracted a lattice of bonds from the non-
periodic glass structure and considered the consequences of excitation of bonds. An
appropriate concentration of such broken bonds around the particle would give rise to
the familiar transport. The model could account for the rapid heat capacity increases, a
characteristic of glass transition but suggests that no discontinuities of C, may occur at
T,. Other limitations of this model are discussed in literature (Goldstein 1976b; Rao
1979). ‘

4. Intermediate range structure in glasses

The continuing efforts in modelling glass transition are a pointer to the fact that the
current models of glass transition are unsatisfactory. The reason for this situation could
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be that the models have ignored or failed to recognize the role of intermediate range
structure in glasses and have assumed that glasses possess a completely random and
homogenous structure. Many recent experimental evidences do not support- this
assumption (Zarzycki and Mezard 1962; Schmidt et al 1980; Gaskell et al 1979; Bursill
et al 1981; Phillips 1982; Sundar et al 1982; Parthasarathy et a! 1981; Hemlata et al 1983,
McCall 1973; Rubinstein 1976; Hoare and Barker 1976; Hoare 1976). Foremost among
such evidences are results of high resolution electron microscopy of metallic (Gaskell et
al 1979) and ionic glasses (Bursill et al 1981) which indicate the presence of fringe
patterns characteristic of crystalline order extending to dimensions of ~ 50 A. Many
evidences from spectroscopy reveal the existence of intermediate range order extending
upto 50-100 A in space even in SiO, and GeQ, glasses and have been recently discussed
by Phillips (1982). Computer experiments (Hoare and Barker 1976; Hoare 1976) also
suggest the presence of large clusters called amorphons in which the particle positions
are highly correlated. Amorphons are built basically with non-space filling icosahedral
motifs and can be as large as several hundred atoms in size. Therefore any new
approach to glass transition has to recognize the possibility of such high degree of
atomic correlation over distances of the order of 50-100 A, and its influence on the
detailed atomistic processes characterizing the transition.

5. Cluster model of glasses and glass transition

The cluster model of glass recognizes the presence of intermediate range structure. In
this model glass is considered io be made up of highly correlated regions known as
clusters which are held together by ‘connective tissue material’ (Hoare and Barker 1976;
Hoare 1976; Haddad and Goldstein 1978). Though not clearly stated by earlier workers
it is intutively obvious that the connective tissue is characterized by a much lower
degree of correlation so that it may be considered as truly amorphous. Since the origin
of the tissue is that it is the ‘left over’ material after full development of clusters while
cooling the melt, it is reasonable to assume that they have a slightly lower density than
the clusters. The nature of the high degree of correlation in the cluster can be either one
of microcrystallites or of large amorphons. Such a description is particularly relevent to
ionic, metallic and molecular (small molecules) glasses. However in highly covalently
bonded glasses like SiO,, GeO,, B,03, As,Se; etc also, clusters are formed during
cooling by rebonding of molecular fragments which are present in their melts.

In the cluster model, transition of supercooled melt into a glass is visualized as
follows. Supercooled region of melts is characterized by fairly large scale density and
compositional fluctuations which nucleate the clusters at low enough temperatures.
Such clusters grow in size rapidly but their growths become self-limiting at sizes of
50-100 A. Glass transition occurs when a major part of the melt is thus transformed to
clusters and these clusters impinge on each other; the remaining tissue material simply
freezes (Rao and Rao 1982).

The reason for the self-limiting growth of amorphon-like clusters is fairly obvious,
since beyond a certain size such ensembles become energetically unfavourable (Burton
1970, 1973a, b). In the case of the covalently-bonded clusters, occurrence of topological
(wrong directionality of bond popagation or wrong dihedral angles) and compositional
(wrong bond), disorder may act to terminate the growth {Phillips 1982). In metallic and
multicomponent ionic glasses where the clusters are in many instances appear to
be microcrystalline, self-limiting growth is most likely a consequence of just the
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compositional disorder over microscopic scales. Since the cluster and the tissue have an
interface, mobile atoms or ions in the system may be looked upon as distributed
unequally in these two regions in accordance with a distribution law (equalization of
chemical potentials). This composition gradient at the interface is counteracted by the
tendency for randomization (entropy force) and hence growth of the clusters attains a
limit. It may also be seen that such small compositional differences offset the free energy
gains that would accrue from further increase of the cluster volume.

We therefore assume that a cluster-tissue scenario is quite generally applicable to all
types of glasses. Thus, a microheterogenous structure is recognized here as an inherent
feature of all real glasses. A simple mathematical model for glass transition is developed
below for such a microheterogeneous glass. The model may be particularly relevant to
ionic glasses.

Particles in a glass made up of cluster and tissue regions fall into three categories: (a)
Particles inside the cluster which vibrate in essentially harmonic potentials. (b) Particles
in the tissue-region which vibrate in shallow and highly anharmonic potential wells.
These potential wells coalese at higher (thermally accessible) energies. (c) Particles on
the cluster surface which vibrate in potential wells of substantially high degree of
anharmonicity which are characterized by a slowly rising potential towards the tissue
region. The effect of temperature on such a glass may be viewed as follows. The particles
are vibrationally excited in all the three regions. However, the vibrational levels in the
tissue region are closer and particles are easily excited into various levels. Since the
higher energy levels in this region correspond to coalesced potential wells (doubly,
triply etc., multiply connected), particles execute oscillations with systematically
increasing amplitudes. Particles on the surface of clusters also undergo similar
vibrational exitations and are driven to the multiply connected regions of potentials.
Large amplitude vibrations of particles allow a permanent escape of such particles from
the surface of the cluster. When particles leave the surface of a cluster in this manner a
new set of surface particles are exposed from the interior of the cluster. Also the total
number of particles in the tissue region increases. Therefore-as the temperature
increases not only the population in the higher vibrational energy levels increases but
the total number of particles in the tissue region also increases at the expense of clusters
whose sizes keep shrinking. The process continues till clusters shrink and shed all
particles into the tissue region. The temperature at which clusters vanish corresponds to
the glass transition temperature T}, in this model. We may therefore note that the
presence of such multiply connected wells allows for a gradual evolution of translatory
motion from a vibratory motion. Further, to a first approximation, excitations into the
vibrational energy spectrum of tissue region may be considered as sufficient for
discussion of configurational properties associated with glass transition.

Since the cluster surfaces act as a source of particles for the tissue during heating and
these particles are distributed into the spectrum of energy levels, we may note that there
is a quasiequilibrium of particles on the surface and particles in the spectrum of energy
levels.

Particles on cluster surfaces == Particles in the vibrational energy
manifold @)

5.1 Formulation of the model

The problem of glass transition, therefore, reduces to finding out how the sizes of
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clusters decrease as a function of temperature. This rate is related to the rate at which
the surface particles ‘melt’ into the tissue which in turn is related to the rate at which the
tissue particles near the cluster surface diffuse away. Since diffusive step occurs through
the excitation of particles into multiply-connected higher energy levels in the tissue
region, the rate of dissolution depends on the rate at which the higher energy levels are
populated. The cluster particles may jump into the vibrational manifold of the tissue at
any energy level depending on the structure of potential wells. However, since the
particles in the tissue as a whole re-establish an equilibrium distribution in accordance
with an appropriate partition function the quasi equilibrium in relation (2) is valid. If
the number of vibrational states we wish to consider is sufficiently large and if the
temperature is not very high in comparison with energy separation of ground and first-
excited states, the ground state is always the most populated. In view of these
considerations we assume that till clusters melt fully (upto 72 ) the number of particles
in the ground vibrational state remains constant.

Let f; represent the fraction of particles in the ground vibrational state of tissue
region at a temperature 7. If N, is the number of particles in the tissue region, then

N, fo = constant.
Therefore,

d(N,fo)/dT =0,
or _ : :
dInN,/dT = —dlInfy/dT. 3)
Let V. and ¥, be the volumes of clusters and tissue so that the total volume V is

V = V,+ ¥, = constant. '

If N, is the number density of particles (approximately equal for both tissue and cluster
regions), we have

V.+(N,/Ny) = constant,
or
dIn N,

dT

dlnN,_
ar = “)

Theréfore, from (2) and (4),
1 dV, dlnf

= . 5
V-v,)dr dr ©
Integrating both sides with respect to temperature o
T4V T ' ‘
= dinfy. ©6)
L= V=V J;:o ° : ‘ .
Since Inf; at 0K is zero we can write, ‘
I[(¥=V2)/(V-V])] = Inf(T), ()

where V2 and V7 are cluster volumes at temperatures 0 and T (deg K) respectively and
Jo(T) is the fractional population in the ground vibrational state at 7. Let us suppose
that the total volume of glass and volume of clusters at 0 K are related as ¥V = a¥V?,

(Chem. Sci.) — 14 )
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where a is a constant (somewhat affected by the thermal history of the glass). Equation
(7) may be written as

In[(a—1)/a]=n[1-(V/aV?)] = Info (T),

or b 1
a—
Wﬂ?=ab—‘a ﬁgj. ®)
We may recognize that if we used a simple form of partition function,
Z=.§_‘,Oexp[—-a,-/RT], )
with g, = 0, we have f, (T') = 1/Z, so that
VI VO = a(l ~ (“; l)z). (10)

Equation (10) implies that (V7 /V2) decreases from unity to zero as T increases from 0
toTY, the glass transition temperature. Since V. is total cluster volume, ¥, = Zv,; where
v, is the volume of the ith cluster. If we further assume that cluster volumes have a
narrow distribution, then ¥, = n {v,; > where (v, ) is the average cluster volume and n
is the total number of clusters. One can then define 7, = {v,; »'/* as an average linear

- dimension of the cluster. Since clusters possess a high degree of positional correlation
. or microcrystalline order, 7, may be looked upon as average propagation length of a
- phonon mode. Hence (77 /7)) = [ {vZ»/<{vf >]'® = £ may be considered as an order

parameter with comprehensible significance in the cluster model. When clusters are all
spherical and are of equal size, 7, corresponds to the radius of the cluster. Equation (10)

. becomes,

a

- am(l_ (““1)2)”3. a

5.2 Evaluation of &

In order to be able to investigate the behaviour of ¢ as a function of temperature the
energy spectrum needed to evaluate Z has to be specified and a reasonable value of a
must be assigned. For a collection of spherical clusters of equal radii touching each
other, ¥/V?2 = a ~ 16, a value consistent with random close packing of clusters. No
unique representation of connected potential wells can however be prescribed. A
plausible schematic is shown in figure 3 for which justification lies in the nature of
sensible conclusions it leads to. It represents a systematic one-at-a-time increase in the
degree of coalescence of potential wells. Also every higher excited level is shown as
pertaining to next coalesced stage of potential wells. The various levels and energy
differences are designated so that the subscript nin AE, denotes energy level separation
in n-connected potential wells. The dotted lines represent ‘effective’ or pseudo-single
potential well equivalents of the coalesced wells. If k,, k,, . . . k, represent the force
constants characterizing these pseudo single wells, one can write

AE; = (ky /w5 . .. AE, = (ky /)2, (V)

where p is the appropriate reduced mass. One can also approximate the amplitudes of
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Figure 3. Schematic of vibrational energy spectrum in tissue region. AE,, AE, etc are the
energy separations in single.and multiply connected or coalesced potential wells. The
amplitudes are assumed to be 2nx for n-connected wells (see text).

vibration in the various pseudo wells e.g. 4x (2-connected) . . 2nx (n-connected) wells,
where 2x is the assumed amplitude of vibration in single well. The vibrational potential,
- for example, with respect to single and two-connected wells may be equated as

V= ‘lka x?— “ls‘kx (4] x? = %kz (2x)2 - %kz Cy (2x)3, (13)

where ¢; and ¢, are used as anharmonicity parameters which are small in comparison to
k;x or k,x. Thus, (13) leads to

kyk x> 1 1

ko (2xF 4 2

Similarly for an n-connected well,

k, [y =~ 1/n2. | | (14)
In view of relation (12) we have
AE,/AE, = (k,/ky)'* = 1/n. . (15)

In other words, energy separations in an n-connected well is (1/n) times the energy
separation in the single well. We are now in a position to evaluate the partition function,
Z, of (9) because

g, = ll AEl +12AE2+ “ee lnAEn,

where ¢, is reckoned from the ground state of single (uncoalesced) potential well and
li,1; . .. I, are the numbers of levels existing in various ‘connected’ wells (for the
example in figure 3, [; = [, =. .. = 1). Using the approximate relation of (15),

e =AE [l +1L,/2+13/3+ coly/n]. (16)
For the special case of figure 3
&,=AE; Y 1/k

k=1 ‘
We have used the normalized energy AE, /RT in the partition function and evaluated 4
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Figure 4. Variation of ¢ in model calculations as a function of RT/AE, for various sets of n
and a values. Dotted portions indicate ‘steep’ fall of £ to zero.

with a few selected values of @ and n. The behaviour of ¢ is shown in figure 4 as a
function of the inverse of normalized energy.

5.3 Variation of ¢ and Landau theory of phase transition

The nature of variation of ¢ in figure 4 is remarkable for it is highly reminescent of the
variation of order parameter in cooperative phase transitions. ¢ decreases very rapidly
towards higher values of (RT/AE,;) and {—0 as T'— T?. Therefore it further
strengthens the case for considering £ as an order parameter for glass transition. The
free energy density of the glass may then be expanded in terms of & in the
neighbourhood of T'0; :

®(P,T, &)= (P, T)+b&*+d&* + . .. : (17

This has the immediate result that b changes sign through 7% and b = B(T'—=T)). Also,
the change in C, at T'J is given by

. B2 ‘
AC, = —2—‘1»7"3. | (18)
Further ' ‘
E= B“Z(T——T‘g))”z. _ (19)

(Equations (18) and (19) are standard results of a Landau treatment of free energy in
(17) (Rao and Rao 1979)). The exponent of (I'—7'7 ) in (19) suggests that this approach
is in the nature of a meanfield approximation for glass transition. This supports the
view that glass transition has second-order characteristics, a feature emerging from a
simple consideration of Kauzmann plots of experimental heat capacity data.



Cluster model approach for glasses 399
54 Behaviour of & and a in relation to T

It is however interesting that steep changes in ¢ occur towards 70 which is marked by
dotted lines in figure 4. If we consider this as a consequence of spontaneous dissolution
of clusters whose sizes have decreased to less than some ‘critical’ nuclear sizes, then
towards the completion of glass transition, the nature of the transition may exhibit first-
order characteristics. Recently it has been suggested by Cohen and Grest (1980) that
glass transition could be a first order transition. The rather large C, humps
experimentally observed by Boehm et al (1981) in some well-annealed fast ion
conducting glasses suggest such a possibility (authors have however interpreted this as
annealing effect). If indeed the dotted portions correspond to spontaneous dissolution
of critical-sized nuclei whose sizes are generally 5-10 A in radius (Kingery et al 1976) we
would expect the radii of clusters to be of the order of 25-50 A at 0 K which is
remarkable agreement with available high resolution electron microscopic data
(Gaskell et al 1979; Bursill et al 1981).

In figure 4 curves with large n correspond to large degree of coalescence and
correspond to low values of T'J, for same value of AE. For higher values of aalso, & — 0
at lower values of RT/AE. Since a is a measure of the proportion of connective tissue,
increase of a amounts to increasing more open (less dense) disordered regions.
Therefore AE itself decreases (shallower potentials). But, increase of a also implies that
more states (larger n) are likely to be active (populated) in determining Z so that it
reduces 7§ . Hence the net influence of a on T} is far less obvious in the model. However,

= 1 corresponds to a state of zero tissue material. If an ideal glass is defined by a = 1,
and if clusters are microcrystalline, the state of the ideal glass would be one of extremely
fine-grained crystal which would only exhibit a normal melting transition. This is
consistent with the value of ¢, = I; AE, + . . . being very high so that £ — 0 only at very
large values of (RT/AE,). This conclusion is somewhat similar to early views of
Kauzmann (1948). When the cluster is an ‘amorphon’, a = 1 is disallowed because the
essentially spherical geometry of an amorphon becomes an overriding criterion and
connective tissue is essential for the glass structure.

- Glass transition temperatues can be estimated from the model. Consider a values
ranging from 1-4-1-7 and n = 4-10. £ becomes zero for RT,/AE values between 12 and
2:2.For a AE =~ 1 kcal it would mean that T'J is between 600 and 1100 K. Vibrational
excitation energy of 1 kcal (400 cm ™ !) corresponds to the cage-vibrational frequency of
Li* ions in most Li* containing glasses. Also the transport properties Li* containing
glasses are largely determined by the motion of Li* ions. T'Q of 600-1100 K estimated
from the model for such glasses is therefore quite consistent with known (Button et al
1982; Branda et al 1983) T, data. Similarly in K* ion containing glasses such as
Ca(NO;),~KNO, glasses the frequency of K * ion vibrations of ~ 200 cm ™" require T,
to be between 300 and 550 K. Indeed these glasses have typical 7, values (Rao et al 1973)
of 330-400 K. (The choice of vibrational frequency for prediction of the glass transition
temperatures of a multicomponent ionic glass is, however, an educated guess). The
model also accounts for the generally low glass transition temperatures of ionic glasses.
One of the predictions of this model is related to the maximum possible T’ of an ionic
glass. Since the highest known cage vibration frequency corresponds to that of the
lightest Li* ion which is ~ 450 cm ™' and since the highest (reasonable) RT, /AE at &
= 0is ~ 2-2, the highest T'? for a simple ionic glass is ~ 1100 K. (Though Be** should
have higher vibrational frequency the only known simple glass of beryllium salt is that
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of BeF, which is rather covalently bonded). Further the model accounts for the
observed trends in many related glass systems. For example for same value of KT'? /AE,
T J should be lower for lower values of AE. This has been noticed in Li*, Na* K* Rb™,
Cs phosphate glasses in the studies of Exarhos and coworkers (Exarhos and Risen
1971; Exarhos et al 1974). T, of these glasses as (1/u)!/* or as AE of alkali ion
vibration.

In covalently-bonded glasses where molecular fragments are involved in flow process
the choice of model parameters becomes rather unsatisfactory in this model.

The parameter @ in the model plays important role in many experimental aspects of
glass transition. In ‘good’ glasses, annealing may alter the value of a to some stable value
. which is higher than initial a. Density, refraction etc exhibit relaxations which in
this model are primarily time variations of @ in the annealing region. It is also to be
expected that a and the conventional Toole temperature are related.

6. Thermodynamic properties from the model

Heat capacity variation around 7, which is a hallmark of glass transition may be
evaluated from the model as follows. We confine ourselves to the configurational heat
capacity of the glass, and in the present model, all configurational changes originate
from tissue region. Since the effect of temperature is to excite the particles to various
thermally accessible states in vibrational spectrum, the total heat absorbed AH is given
by

AH =[ZAE, [, 1(V/V), (20)

where (¥, /V) s the fraction of the tissue material. All the quantities in (20) are already
defined. Configurational heat capacity, C, (conf) may be obtained from AH as,

1dV,

C, (conf) = (3AH /0T), = (ZAE 51!2)- (ZEL) g7 1)

"dT )V
Since

V. VO V. ~1
vy =1- s i s =a(1-202),

and V?/V = 1/a, we may obtain all the quantities in terms of Z and a:
-1 :
MZ(ZAEE%> + (2 AE:‘fi) (0Z/aT),
a 7 dar T
where the subscript i has been used in place of » to facilitate labelling double sums in

later steps. Upon differentiation and some simple manipulations the above expression
reduces to

C,(conf) =

C, (conf) =

(“; D Zﬁ% SAEES, 22)

The heat capacity of the glass is given by (22) upto the glass transition temperature TJ

where 3=V, /V%=0 or a= (a—1)Z. Above T, the heat capacity is given by
(OAH/0T') where AH = X, AE,;f; and is given by

R;z [;AE?]}——;%:AEEAEJJJ}. (23)

C, (conf) =
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An inspection of (22) and (23) suggests that while C,, rises rapidly in the transition
region, at T'J a sudden (step) decrease occurs because of the second term in (25). This is
an inescapable featurc of the model since ¥, attains a maximum at 7.

The partition function used in the above expressions is unsatisfactory for evaluating
other configurational thermodynamic properties like volume thermal expansivity,
a (conf ) and volume compressivity B (conf). Indeed, it would be preferable to express Z
using Gibbs free energies (Rice 1975; Angell and Rao 1972) rather than simple energies,
so that

Z =1+ exp(—AGyRT), (24)

where AG; = AE; + PAV; —T AS; with AV; and AS; as additional molar volumes and
additional vibrational entropies (as compared to ground state molar quantities)
respectively. AV, and AS; may be assumed to be generally small so that AE; is nearly
equal to AG; upto sufficiently high temperatures. If, however, large values of AV; and
AS; are used one can achieve high values of C, (conf) like in an N-state model (Angell
and Rao 1972). Using the partition function in (24), (22) becomes,

@a-1),

a

C,(conf) = ZAH 21, (25)
where AH, = AE;+ PAV;. The summation in (25) implies that all excitations including
those to 2-connected-3-connected etc wells, contribute to configurational heat capacity.
But it is intuitively reasonable to consider that the heat absorbed in excitations to lower
levels contribute to only vibrational heat capacity. Hence C, (conf) in (25) or (27) may
be computed using a reasonably high initial value of i. In figure 5 typical calculation of
C, (conf) is presented using 16 states and a AE; = 1kcal (400 cm™!). In figure 5a
calculated values of C, are shown as a function of T using i = 4-16, i = 6-16 and
i = 8-16 without entropy term (equation (23)). The behaviour of corresponding ¢ is
also shown in the inset. In figure 5b similar calculations are presented for the same set of
aand n but with a constant AS; value of 0-75 cals deg~! mole™ . It may be seen that the
use of AS; generally increases both the steepness of C, rise and the magnitude of C,. The
magnitude of the discontinuity at the peak of the C, curves is reduced by increasing the
number of initial states ignored in computing the heat capacities. The general
behaviour of C, curves is quite comparable to experimental configurational heat
capacity behaviour.

The increase in volume resulting from excitations in the tissue region, is given by

(a

= (V/V)L AV, fi = zzAVf (26)

a (conf) and B (conf) may be evaluated using the definitions « = 1/V (0V/dI),
and B = —1/V(0V/0P), along with (24) and (26). For the glassy region a(conf) and
B(conf) are given by

(a—l)

a(conf) = TZ ZAV AH,f;, 27

VR

(a—-l)
a

B (conf) = V;TZAVZ 1. (28)

At the glass transition all the three quantities C,, (conf), a(conf) and #(conf) attain
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Figure 5. Heatcapacity variations from the model. The numbers with in parenthesis such as
(5, 16) indicate that slates i = 5-16 were used in computing heat capacities. Insets indicate
variations of ¢ for the (n, a) set employed in the C, calculations. (a) and (b) are heat capacity
variations computed without and with the use of AS;. AS; = constant = 0-75 cals/deg mole.

maximum values. This is because variation, d/dT'(V;/V') is highest at T'0. Indeed this
value may be equated to excess quantities, AC,, Aa and A usually measured at
experimental 7. We may now consider one of the relations of intérest to glass transition
theories, namely the Prigogine-Defay ratio, n, which is given by

1= AC,AB/TV Au?. | (29)
Since (a—1)Z = a at T'J, (25), (27) and (28) may be combined so that
(£ ams)( 3 avin)
=izt i=1 ) - (30

n

Y (AHAVf)?

i=1

Equation (30) may be seen to satisfy the generally known behaviour of n hamely =1
(equality holds good when n = 1).

7. Effect of pressure on glass transition

The model also allows us to determine the effect of pressure on the glass transition
temperature. Since at 72, ¢3 =0,

| Z=af(la—1) = constant. | (31)
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Treating Z = Z (T, p) and upon general differentiation, we have

dZ = (0Z/0T}),dT + (0Z/dp)redp = 0.
Therefore

dT'g/dp = —(0Z/0p)s/ (OZ/Tg),. (32)
Using the partition function of (24), in (32), we have

a7 ZAViexp[——AGi/RT]

= . (33)
dp RZ%eXp[—AGE/RT]

In order to check the validity of the above expressions a knowledge of AV is essential.
Unfortunately there is no simple way of even estimating these values. Since several
of the required physical parameters are known (Rao et al 1973) for the case of
(40 Ca(NOQ3),: 60 KNO,) glass, we attempt the following examination of the
consistency of the above expressions. K * ions are known to be dominent mobile species
in Ca(NO;),-KNO; glasses. The cage-vibrational frequency of K™ ions in oxygen
(NO; group) cage, is ~ 200 cm™ Lor AE; ~ 500 cals/mol.T, of the above glass is 337 K.
Hence RT, /AE = (674/500). Using the thermal expansivity of the above glass as 11
x 10™* deg ™! and molar volume as 41-3 cc. AV may be evaluated using (27) in a slightly
approximated form: a(conf) (AV/ VRT2)ZAE,f; where it is assumed AV = AV,
=AV,=AV;...=AV,and AH; ~ AE; The value of AV,is thus found to be 0-50 cc. We
may now use this value of A¥;in (33). With the same assumptions as above we find that
the calculations yield (d7,/dp) of 46 deg/kbar which is in fair agreement with the
experimental value of 5-8 deg/kbar (compressibility may also be determined using AV;
= 0-50 cc. But the presence of AV as a square term in the expression renders it much
less accurate. Indeed the value of bulk modulus turns out to be 2-2 x 10> dynes/cm? as
compared to the experimental value of 0-16 x 10'% dynes/cm? determined from sound
velocity measurements (Rao et al 1973). For these approximate calculations the
agreement is still noteworthy). ' :

8. Transport properties frbm the model

Above the glass transition temperature, T g, therefore, the particles are all essentially in
the ‘tissue’ and particle excitations bring about configurational changes whose
magnitude is large enough to manifest asa macroscopic flow. Configurational entropy
of the system in this region can be directly related to the viscosity using Adam-Gibbs
approach so that ‘ :

n = noexp (B/TS;),

where 1, and B are constants of the viscosity expression, B being expressed in units of
“energy. S, may be evaluated from a knowledge of heat capacities since S, = |C, (conf)
dinT.

9. Model potential and its implications

A particularly simple potential scheme has been employed in these studies as discussed
in §5.2 and schematically depicted in figure 3. An important implication of this
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potential scheme is evident from (12) and (14). As particles are excited to higher
vibrational states, their further exitations are governed by lower force constants and
lower energies since exitations take place in regions of multiply connected potential
wells. If the history of a single ‘average’ particle were to be traced as its motion ‘evolves’
from vibrational mode to translational mode through the glass transition, it absorbs
quanta of energy from the thermal bath in stages, AE,, AE; /2, AE, /3 . . . etc. AE, /n.
Or with the effective force constants which keep ‘softening’ in steps of decreasing
magnitude. Both Mossbauer and vibrational spectroscopic studies support such an
energy scheme. In Mossbauer studies the Mossbauer intensity decreases during
transition in a manner suggestive of a ‘soft’ mode (Ruby et al 1976; Flin et al 1976). In
vibrational spectroscopy, the absorption band is seen to broaden towards low
frequency side (Exarhos et al 1974} as temperature is increased. The energy level scheme
in figure 3 can account for this effect. As higher levels get populated, their further
excitations cause absorptions at lower energies and the inherent breadths of these
bands produce an appearance of broadening towards low frequency side. It may be
noted that since the ground state is still populated, the absorption at AE, continues to
be present and the entire band is riot shifted in the manner in which mode softening
occurs in crystalline solids.

10. Concluding remarks

Glass transition model developed in this paper has taken full advantage of microhetero-
geniety. It has also assumed that microheterogeniety is a universal feature of glasses.
This belief is gaining increasing acceptance in literature. The treatment of the model has
been influenced greatly by a propensity to make it specifically relevent to simple ionic or
metallic glasses. However, several aspects of the model are quite general. One of the
important assumptions of the model relates to treating f N, as a constant upto T).
Apart from intuitive justification, this assumption is also somewhat justified by the final
results obtained from the model. Perhaps one can dispense with this assumption and
simply relate the decrease of cluster volume to the increase in tissue volume:

0 0

where N{ is the number of particles in the ground state. Further, using the constraint
LN} = N, the behaviour of d¥,/dT may be formulated. Consequences of such
treatment are being examined. The partition function used is rather heuristic. One can
consider it as an ad hoc energy scheme without affecting any of our other conclusions.
But using such a scheme provides meaningful interpretation of the physical phenomena
involved in glass transition. As a result of the above assumptions the glass transition is
shown to correspond to a constant value of Z (equation (31)). This is is a significant
conclusion particularly if approached from high temperature liquid side. Glass
transition seems to occur in supercooled liquids at a particular value of partition
function. Also, this conclusion is independent of the detailed description of Z because
atTY, Z =[a/(a—1)] and a = V/V? is a constant in the model.

The model developed here is in a large measure phenomenological, heuristic and
semiquantitative. It is hoped that glass transition problem may be understood better if
microheterogeniety is treated as an essential feature of all real glasses.
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