ONCE MORE NICE EQUATIONS FOR NICE GROUPS

SHREERAM S. ABHYANKAR AND PAUL A. LOOMIS

(Communicated by Ronald M. Solomon)

ABSTRACT. In a previous paper, nice quintinomial equations were given for unramified coverings of the affine line in nonzero characteristic \(p \) with the projective symplectic isometry group \(\text{PSp}(2m, q) \) and the (vectorial) symplectic isometry group \(\text{Sp}(2m, q) \) as Galois groups where \(m > 2 \) is any integer and \(q > 1 \) is any power of \(p \). Here we deform these equations to get nice quintinomial equations for unramified coverings of the once punctured affine line in characteristic \(p \) with the projective symplectic similitude group \(\text{PGSp}(2m, q) \) and the (vectorial) symplectic similitude group \(\text{GSp}(2m, q) \) as Galois groups.

1. Introduction

Let \(m > 2 \) be any integer, let \(q > 1 \) be any power of a prime \(p \), and consider the polynomial
\[
F = F(Y) = Y^n + T^qY^u + XY^v + TY^w + 1
\]
in indeterminates \(T, X, Y \) over a field \(k \) of characteristic \(p \), where
\[
n = 1 + q + \cdots + q^{2m-1},
\]
\[
u = 1 + q + \cdots + q^{m-1},
\]
\[
w = 1 + q + \cdots + q^{m-2},
\]
and consider its Galois group \(\text{Gal}(F, k(X, T)) \) and the Galois group \(\text{Gal}(\Phi, k(X, T)) \) of its subvectorial associate \(\Phi = \Phi(Y) = F(Y^{q-1}) \). Also consider the deformation
\[
F^\sharp = F^\sharp(Y) = Y^n + T^qY^u + XY^v + S^wTY^w + 1
\]
in indeterminates \(T, X, S, Y \), where \(S \) is another indeterminate, and consider its Galois group \(\text{Gal}(F^\sharp, k(X, S, T)) \) and the Galois group \(\text{Gal}(\Phi^\sharp, k(X, S, T)) \).

1. Here we regard \(\text{Sp}(2m, q) \) as acting on nonzero vectors. For the vectorial associate \(\hat{\Phi}(Y) = Y^q\Phi(Y) \) we then have \(\text{Gal}(\hat{\Phi}, k(X, T)) = \text{Sp}(2m, q) \) regarded as acting on the entire vector space \(\text{GF}(q)^{2m} \).

2. Again here we regard \(\text{GSp}(2m, q) \) as acting on nonzero vectors. For the vectorial associate \(\hat{\Phi}(Y) = Y^q\Phi(Y) \) we then have \(\text{Gal}(\hat{\Phi}, k(X, S, T)) = \text{GSp}(2m, q) \) regarded as acting on the entire vector space \(\text{GF}(q)^{2m} \).

©1998 American Mathematical Society
[A05] and [A07] respectively, involved very intricate factorizations for some multivariate polynomials. At the end of [A08] these factorizations were codified into a Mantra. By invoking this Mantra, we shall give here a very short and transparent derivation for the factorization of [A06] and its generalizations needed for the GSp equations.

As a by-product of the present modified proof, we shall show that the above results about the Galois groups of Φ and F continue to hold when we replace the assumption of k being algebraically closed by the weaker assumption that $\text{GF}(q) \subset k$. As another by-product of the present modified proof, we shall show that if $\text{GF}(q) \subset k$, then, for every divisor d of $q-1$, upon letting $\Phi(d)$ be obtained by substituting S^d for S in Φ^d, we have $\text{Gal}(\Phi(d), k(X,S,T)) = \text{GSp}^d(2m,q)$ where we define $\text{GSp}^d(2m,q)$ by the condition that $\text{Sp}(2m,q)\triangleleft \text{GSp}^d(2m,q)\triangleleft \text{GSp}(2m,q)$ with $\text{GSp}(2m,q)/\text{GSp}^d(2m,q) = \mathbb{Z}_d$, and upon letting $F(d)$ be obtained by substituting S^d for S in F^d, we have $\text{Gal}(F(d), k(X,S,T)) = \text{PGSp}^d(2m,q)$ where we define $\text{PGSp}^d(2m,q) = \text{image of GSp}^d(2m,q)$ under the canonical epimorphism of $\text{GL}(2m,q)$ onto $\text{PGL}(2m,q)$, and we note that then $\text{PGSp}^d(2m,q) = \text{PSp}(2m,q)$ or $\text{PGSp}(2m,q)$ according as d is even or odd. As noted in [A06], the polynomials Φ and F are specializations of more general polynomials ϕ_e and f_e whose Galois groups are $\text{Sp}(2m,q)$ and $\text{PSp}(2m,q)$ respectively, and which are special cases of the families of polynomials giving unramified coverings of the affine line in characteristic p written down in [A02]. In Section 2 we shall formulate the corresponding more general deformations $\phi_e^d, \phi_e(d), f_e^d, f_e(d)$ whose Galois groups, under certain conditions, will turn out to be $\text{GSp}(2m,q)$, $\text{GSp}^d(2m,q)$, $\text{PGSp}(2m,q)$, $\text{PGSp}^d(2m,q)$ respectively, and which may be regarded as giving unramified coverings of the once punctured affine line.

In addition to factorization, as in [A03] to [A07], here the basic techniques of calculating Galois groups will be MTR (= the Method of Throwing away Roots) and RTG (= Recognition Theorems for Groups). On the RTG side we shall again use Kantor’s characterization of Rank 3 groups in terms of their subdegrees [Kan], supplemented by the Cameron-Kantor Theorem IV [CaK] on antiflag transitive collineation groups. Note that Kantor’s Rank 3 characterization depends on the Buekenhout-Shult characterization of polar spaces [BuS] which itself depends on Tits’ classification of spherical buildings [Tit]. Recall that the Rank of a transitive permutation group is the number of orbits of its 1-point stabilizer and the sizes of these orbits are called subdegrees. It is a pleasure to thank Nick Inglis and Ganesh Sundaram for stimulating conversations concerning the material of this paper.

2. Notation and outline

Let k_p be a field of characteristic $p > 0$, let $q > 1$ be any power of p, and let $m > 0$ be any integer. To abbreviate frequently occurring expressions, for every

3Since $\text{Sp}(2m,q)\triangleleft \text{GSp}(2m,q)$ with $\text{GSp}(2m,q)/\text{Sp}(2m,q) = \mathbb{Z}_{q-1}$ (see 2.1.2, 2.1.B and 2.1.C of [KLi]), this uniquely characterizes the intermediate group $\text{GSp}^d(2m,q)$. Note that, as usual, \triangleleft and \triangleleft denote subgroup and normal subgroup respectively, and \mathbb{Z}_d denotes a cyclic group of order d.

4In view of the previous footnote, this follows from the fact that $\text{PGSp}(2m,q)/\text{PSp}(2m,q) = \mathbb{Z}_2$ or \mathbb{Z}_1 according as q is odd or even (see 2.1.D of [KLi]). Note that if q is even, then $\text{PSp}(2m,q) = \text{PGSp}(2m,q)$.

5In the Abstract and the Introduction we assumed $m > 2$. But in the rest of the paper, unless stated otherwise, we only assume $m > 0$.
integer $i \geq -1$ we put

$$\langle i \rangle = 1 + q + q^2 + \cdots + q^i \quad (\text{convention: } \langle 0 \rangle = 1 \text{ and } \langle -1 \rangle = 0).$$

Let

$$f^\flat = f^\flat(Y) = S^r(Y) XY^{\langle m-1 \rangle} + \sum_{i=1}^{m} \left(S^r(Y) Y^{\langle m-i \rangle} T_i + S^r(Y) Y^{\langle m-i \rangle} t_i \right),$$

where $r = (r(0), \ldots, r(2m))$ is a sequence of nonnegative integers with (*)

$$r(2m) = 0$$

such that for some nonnegative integer t we have

(**)

$$q^i r(m-i) = r(m+i) + t q^i (m-i) \quad \text{for } 0 \leq i \leq m$$

and note that then f^\flat is a polynomial of degree $\langle 2m-1 \rangle = 1 + q + q^2 + \cdots + q^{2m-1}$ in Y with coefficients in the polynomial ring $k_p[X, S, T_1, \ldots, T_m]$ and in it the coefficient of the highest Y-degree term is T_m. Let $\hat{\phi}^\flat$ and $\hat{\phi}^\flat$ be the subvectorial and vectorial associates of f^\flat respectively, i.e., let

$$\hat{\phi}^\flat = \hat{\phi}^\flat(Y) = f^\flat(Y^{\langle r \rangle})$$

$$= S^r(Y) XY^{q^m-1} + \sum_{i=1}^{m} \left(S^r(Y) Y^{q^m+i-1} + S^r(Y) Y^{q^m+i-1} \right)$$

and

$$\hat{\phi}^\flat = \hat{\phi}^\flat(Y) = Y^\flat f^\flat(Y)$$

$$= S^r(Y) XY^{q^m} + \sum_{i=1}^{m} \left(S^r(Y) Y^{q^m+i} + S^r(Y) Y^{q^m+i} \right).$$

For $0 \leq e \leq m - 1$, let f_e^\flat be obtained by putting $T_m = 1$ and $T_i = 0$ for $e < i < m$ in f^\flat, i.e., let

$$f_e^\flat = f_e^\flat(Y) = Y^{\langle 2m-1 \rangle) + S^r(Y) + S^r(Y) X Y^{\langle m-1 \rangle}$$

$$+ \sum_{i=1}^{e} \left(S^r(Y) Y^{\langle m-i \rangle} T_i + S^r(Y) Y^{\langle m-i \rangle} T_i \right)$$

and note that then f_e^\flat is a monic polynomial of degree $\langle 2m-1 \rangle = 1 + q + q^2 + \cdots + q^{2m-1}$ in Y with coefficients in the polynomial ring $k_p[X, S, T_1, \ldots, T_e]$. Now the constant term of f_e^\flat is $S^r(0)$ and the Y-exponent of every other term in f_e^\flat is 1 modulo p, and hence $f_e^\flat - Y f_e^\flat Y = S^r(0)$ where $f_e^\flat Y$ is the Y-derivative of f_e^\flat. Therefore\(^6\) $\text{Disc}_Y(f_e^\flat) = S^r(0)(q^{2m-2})$ where $\text{Disc}_Y(f_e^\flat)$ is the Y-discriminant of f_e^\flat, and hence the Galois group $\text{Gal}(f_e^\flat, k_p(X, S, T_1, \ldots, T_e))$ is well-defined as a subgroup of the symmetric group $\text{Sym}_{2(m-1)}$, and the equation $f_e^\flat = 0$ gives an unramified covering of the once punctured affine line over $k_p(X, T_1, \ldots, T_e)$. Since f_e^\flat is linear in X, by the Gauss Lemma it follows that f_e^\flat is irreducible in $k_p(X, S, T_1, \ldots, T_e)[Y]$, and

\(^6\)See the formulas on page 104 of [A03]. As a misprint correction, in line 13 of page 2979 of [A06] $\text{Disc}_Y(\phi) = \text{Disc}_Y(\phi_e) = 1$ should be changed to $\text{Disc}_Y(\phi) = \text{Disc}_Y(\phi_e) = (-1)^{q^{2m-1}}$.\)
hence its Galois group is transitive. Let \(\phi^e_c \) and \(\overline{\phi}^e_c \) be obtained by putting \(T_m = 1 \) and \(T_1 = 0 \) for \(e < i < m \) in \(\phi^e \) and \(\overline{\phi}^e \) respectively, and note that then

\[
\phi^e_c = \phi^e_c(Y) = f^e_c(Y^{q-1}) = Yq^{2m-1} + S^{(0)} + S^{(r)}XYq^{m-1} + \sum_{i=1}^{e} \left(S^{(m+i)}T_i Yq^{m+i-1} + S^{(m-i)}T_i Yq^{m-1} \right)
\]

and

\[
\overline{\phi}^e_c = \overline{\phi}^e_c(Y) = Y \phi^e_c(Y) = Yq^{2m} + S^{(0)}Y + S^{(m)}XYq^m + \sum_{i=1}^{e} \left(S^{(m+i)}T_i Yq^{m+i} + S^{(m-i)}T_i Yq^{m-1} \right)
\]

are the subvectorial and vectorial associates of \(f^e_c \) respectively. By a similar calculation, \(Disc_Y(\phi^e_c) = (-1)^{q^m-1}S^{(0)(q^m-2)} \) and \(Disc_Y(\overline{\phi}^e_c) = S^{(0)q^2m} \), and hence the Galois groups \(\text{Gal}(\phi^e_c, k_p(X, S, T_1, \ldots, T_e)) \) and \(\text{Gal}(\overline{\phi}^e_c, k_p(X, S, T_1, \ldots, T_e)) \) are well-defined as subgroups of the symmetric groups on \(q^{2m} - 1 \) and \(q^{2m} \) letters respectively, and the equations \(\phi^e_c = 0 \) and \(\overline{\phi}^e_c = 0 \) give unramified coverings of the once punctured affine line over \(k_p(X, T_1, \ldots, T_e) \).

For every divisor \(d \) of \(q - 1 \), let \(\phi^{d(e)}_c, \phi^{d(e)}_c, \overline{\phi}^{d(e)}_c \) be obtained by substituting \(S^d \) for \(S \) in \(f^e_c, \phi^e_c, \overline{\phi}^e_c \) respectively and note that then, as above, the Galois group \(\text{Gal}(f^{(d)}_c, k_p(X, S, T_1, \ldots, T_e)) \) is a well-defined transitive subgroup of \(\text{Sym}(2m-1) \), the Galois groups

\[
\text{Gal}(\phi^{(d)}_c, k_p(X, S, T_1, \ldots, T_e)) \quad \text{and} \quad \text{Gal}(\overline{\phi}^{(d)}_c, k_p(X, S, T_1, \ldots, T_e))
\]

are well-defined subgroups of the symmetric groups on \(q^{2m} - 1 \) and \(q^{2m} \) letters respectively, and the equations \(f^{(d)}_c = 0, \phi^{(d)}_c = 0, \overline{\phi}^{(d)}_c = 0 \) give unramified coverings of the once punctured affine line over \(k_p(X, T_1, \ldots, T_e) \).

For \(0 \leq e \leq m - 1 \), let \(\phi^e_c \) and \(f^e_c \) be obtained by putting \(S = 1 \) in \(\phi^e_c \) and \(f^e_c \) respectively. Note that, for \(1 \leq e \leq m - 1 \), these \(\phi^e_c \) and \(f^e_c \) are the same as those considered in [A06], and if \(m > 1 \), then \(\phi^{m-1}_c \) and \(f^{m-1} \) respectively coincide with \(\phi \) and \(f \) of [A06]. For \(0 \leq e \leq m - 1 \), let \(K_c = k_p(X, T_1, \ldots, T_e) \), let \(G_c \) and \(PG_c \) be the Galois groups of \(\phi^e_c \) and \(f^e_c \) over \(K_c \), respectively, and let \(G^{d(e)}_c \) and \(PG^{d(e)}_c \) be the Galois groups of \(\phi^{d(e)}_c \) and \(f^{d(e)}_c \) over \(K_c(S) \) respectively. Likewise, for \(0 \leq e \leq m - 1 \), and for every divisor \(d \) of \(q - 1 \), let \(G^{(d)}_c \) and \(PG^{(d)}_c \) be the Galois groups of \(\phi^{(d)}_c \) and \(f^{(d)}_c \) over \(K_c(S) \) respectively.

In Section 3, we apply the Mantra of [A08] to the twisted derivative of \(f^g \) and thereby we prove the Symplectic Rank Theorem (3.6) which says that \(PG^{d}_c \) is a Rank 3 group with subdegrees 1, \(q(2m-3) \) and \(q^{2m-1} \). By again applying the Mantra of [A08] in the Root Extraction Theorem (3.12) of Section 3 we show that, for \(0 \leq e \leq m - 1 \), the splitting field of \(\phi^e_c \) over \(K_c(S) \) contains a \((q - 1) \)-th root of its modified constant term \(S^{q^e} \); this is an analogue of the \((q - 1) \)-th root extraction trick given in (2.5)(iii) of [A04] which was used there to go from an SL (= special linear group) covering to a GL (= general linear group) covering. In Section 4, from Theorems (3.6) and (3.12) we deduce Theorem (4.2), which says that if \(m > 2 \) and \(GF(q) \subset k_p \) and \(\text{GCD}(t, q - 1) = 1 \), then, for \(1 \leq e \leq m - 1 \) and for every divisor \(d \) of \(q - 1 \), in a natural manner we have \(\text{Sp}(2m, q) = G_c \circ GSp^{(d)}(2m, q) = G^{(d)}_c \circ G^{d}_c = GSp(2m, q) \)
and \(\text{PSp}(2m, q) = \text{PG} \triangleleft \text{PGSp}^{(d)}(2m, q) = \text{PG}^{(d)} \triangleleft \text{PGSp}(2m, q) \). Note that

\[
\begin{dcases}
\text{if } r(i) = (2m - 1) - (i - 1) \text{ for } 0 \leq i \leq 2m, \\
\text{then conditions } (*) \text{ and } (**) \text{ are satisfied with } t = q^m + 1
\end{dcases}
\]

and

\[
\begin{dcases}
\text{if } r(m + i) = 0 \text{ and } r(m - i) = q^{m-i}(i - 1) \text{ for } 0 \leq i \leq m, \\
\text{then conditions } (*) \text{ and } (**) \text{ are satisfied with } t = 1.
\end{dcases}
\]

Case (') arises when we homogenize \(f_e \), i.e., when we put \(f_e^2(Y) = S^{(2m-1)}f_e(Y/S) \), and so we may call it the \textit{homogeneous case}; we shall deal with this in greater detail elsewhere. By analogy, case ("') may be called the \textit{twisted homogeneous case}. In the twisted homogeneous case ("'), if \(m > 2 \) and \(\text{GF}(q) \subset k_p \), then by taking \(k = k_p \) and \(T_1 = T \in \phi_1^* \) and \(f_1^* \) we get \(\Phi^d \) and \(F^d \) respectively, and hence by the above result we have \(\text{Gal}(\Phi^d, k(X, S, T)) = \text{GSp}(2m, q) \) and \(\text{Gal}(F^d, k(X, S, T)) = \text{PGSp}(2m, q) \), and for every divisor \(d \) of \(q - 1 \) we have \(\text{Gal}(\Phi^{(d)}, k(X, S, T)) = \text{GSp}^{(d)}(2m, q) \) and \(\text{Gal}(F^{(d)}, k(X, S, T)) = \text{PGSp}^{(d)}(2m, q) \). By applying the above result to case ("') we also see that if \(m > 2 \) and \(\text{GF}(q) \subset k_p \), then for \(1 \leq c \leq m - 1 \) we have \(G_e = \text{Sp}(2m, q) \) and \(\text{PG} = \text{PSp}(2m, q) \) which shows that the results of [A06] remain valid without assuming \(k_p \) algebraically closed.

3. Twisted derivative and its factorization

Solving the equation \(f^x = 0 \) we get

\[
S^{r(m)}X = \sum_{i=1}^{m} \left(S^{r(m+i)}T_i^* Y^{m-1+i} + S^{r(m-i)}T_i Y^{m-1-i} \right)
\]

and substituting this in \(\frac{f^x(Z) - f^x(Y)}{Z - Y} \) we get

\[
f^{rb}(Y, Z) = \frac{f^x(Z) - f^x(Y)}{Z - Y} \quad \text{(def of the twisted derivative } f^{rb} \text{ of } f^x) \\
= \sum_{i=1}^{m} \left(S^{r(m+i)}T_i^* Y^{m-1+i} + S^{r(m-i)}T_i Y^{m-1-i} \right)
\]

\[
\times \left(Z^{m-1} - Y^{m-1} \right)
\]

\[
+ \sum_{i=1}^{m} \left(S^{r(m+i)}T_i^* Z^{m-1+i} - Y^{m-1+i} \right)
\]

\[
+ S^{r(m-i)}T_i Z^{m-1-i} - Y^{m-1-i} \right)
\]
and therefore

\[g^b = g^b(Y, Z) = Y^{(2m-1)-1} f^b(1/Y, Z/Y) \]
(def of polynomial \(g^b \) obtained

by dividing roots of \(f^b \) by \(Y \) and then changing \(Y \) to \(1/Y \))

\[= \sum_{i=1}^{m} S^{r(m+i)}T_i^q \left(\frac{Z^{(m-1+i)} - Z^{(m-1)}}{Z - 1} \right) Y^{(2m-1) - (m-1+i)} \]

\[- \sum_{i=1}^{m} S^{r(m-i)}T_i \left(\frac{Z^{(m-1)} - Z^{(m-1-i)}}{Z - 1} \right) Y^{(2m-1) - (m-1-i)} \]

By simplifying \(g^b \) we get

\[g^b = \sum_{i=1}^{m} S^{r(m+i)}T_i^q \left(\frac{Z^{(m-1+i)} - Z^{(m-1)}}{Z - 1} \right) Y^{(2m-1) - (m-1+i)} \]

\[- \sum_{i=1}^{m} S^{r(m-i)}T_i \left(\frac{Z^{(m-1)} - Z^{(m-1-i)}}{Z - 1} \right) Y^{(2m-1) - (m-1-i)} \]

\[= \sum_{i=1}^{m} \frac{Z^{(m-1)} (Zq^{m(i-1)} - 1)}{Z - 1} Y q^{m+i(m-1-i)} S^{r(m+i)}T_i^q \]

\[- \sum_{i=1}^{m} \frac{Z^{(m-1-i)} (Zq^{m-i(i-1)} - 1)}{Z - 1} Y q^{m-i} S^{r(m-i)}T_i \]

\[= \sum_{i=1}^{m} \frac{G_i^{r(m-1-i)} H_i^q (Z(Z - 1)^{q-1})^{(i-1)} Y q^{m+i} S^{r(m+i)}T_i^q}{Y^{(1+q^m)}q^m (i-1)} \]

\[- \sum_{i=1}^{m} G_i^{r(m-1-i)} H_i Y q^{m-i} S^{r(m-i)}T_i \]

where for \(1 \leq i \leq m \) we have

\[G_i = Z \left(Z^{(i-1)} - 1 \right)^{q-1} \quad \text{and} \quad H_i = \frac{Z^{(i-1)} - 1}{Z - 1} = 1 + Z + Z^2 + \cdots + Z^{(i-1)-1}. \]

Hence in view of (***) we see that

\[g^b = \sum_{i=1}^{m} \left(A^{*(i-1)} B_i^{*q} - B_i^*\right) \quad \text{where} \quad A^* = \frac{Z(Z - 1)^{q-1}}{(Y q^{m+i} S^r)^q} \]

and for \(1 \leq i \leq m \) we have

\[B_i^* = G_i^{r(m-1-i)} H_i Y q^{m-i} S^{r(m-i)}T_i \]
and therefore by the Mantra on page 19 of \[A08\] we get
\[g^b = A^*\Gamma^q - \Gamma^* = \Gamma^*(A^*\Gamma^{q-1} - 1) \quad \text{where} \quad \Gamma^* = \sum_{i=1}^{m} \sum_{j=0}^{i-1} A^{(j-1)}B_i^{*q^j}. \]

Now, for \(0 \leq j < i \leq m\), we clearly have
\[G_i^{(m-1-i)}H_i^{q^i} (Z(Z - 1)^{q-1})^{(j-1)} = G_i^{(m-1-i+j)}H_i. \]
Hence upon letting
\[g^b = \frac{\Gamma^*}{(Y^{q^m+1}S^t)^{q^m-1}} \]
we get
\[g^b = \sum_{i=1}^{m} \sum_{j=0}^{i-1} G_i^{(m-1-i+j)}H_iY^{a(i,j)}S^{b(i,j)}T_i^q \]
where, for \(0 \leq j < i \leq m\), the integers \(a(i, j)\) and \(b(i, j)\) are given by
\[
\begin{align*}
 a(i, j) &= q^{m+j}(m - 2 - j) + q^{m-i+j}(i - j - 2) \\
 b(i, j) &= q^jr(m - i) - tq^m(j - 1) - tq^{m-1}
\end{align*}
\]
and out of these \(a(i, j)\) is obviously nonnegative and \(b(i, j)\) is also nonnegative because by (**) we have
\[b(i, j) = q^{j-i}r(m + i) + tq^{m+j-i}(i - j - 2) \geq 0. \]
It follows that
\[g^b \in GF(p)[Z, Y, S, T_1, \ldots, T_m] \]
and hence upon letting
\[g^b = Z(Z - 1)^{q-1}(g^b)^{q-1} - Y^{(q^m+1)q^{m-1}}S^{q^m-1} \]
we have
\[g^b \in GF(p)[Z, Y, S, T_1, \ldots, T_m] \]
and, in view of the defining equations of \(A\) and \(g^b\), by the factorization \(g^r = \Gamma(\Lambda^q - 1)\) we get the factorization
\[g^b = g^b g^b. \]
By the definitions of \(G_i\) and \(H_i\) we see that
\[\deg G_m^{(m-2)}H_m = q(2m - 3) > q(m - 2 + j) = \deg G_i^{(m-1-i+j)}H_i \]
for \(0 \leq j < i \leq m\) with \((i, j) \neq (m, m - 1)\), and also \(a(m, m - 1) = 0\), and by (*) and (**) we have \(b(m, m - 1) = 0\), and hence by the double summation expression for \(g^b\) we see that \(g^b\) is a polynomial of degree \(q(2m - 3)\) in \(Z\) with coefficients in \(GF(p)[Y, S, T_1, \ldots, T_m]\) and in it the coefficient of the highest \(Z\)-degree term is \(T_q^{q-1}\). By the definition of \(g^b\) it now follows that \(g^b\) is a polynomial of degree \(1+(q-1)+(q-1)q(2m-3) = q^{2m-1}\) in \(Z\) with coefficients in \(GF(p)[Y, S, T_1, \ldots, T_m]\) and in it the coefficient of the highest \(Z\)-degree term is \(T_{(q-1)q}^{q-1}\). Now, upon
letting g^e_x, g^m_x, g'^m_x be obtained by putting $T_m = 1$ and $T_i = 0$ for $e < i < m$ in g^b, g^b_y, g^b_s respectively, we see that

$$\begin{cases}
\text{for } 0 \leq e \leq m - 1 \text{ we have } \\
g^e_x = g^m_x g'E^m_x \quad \text{where } g^m_x \text{ and } g'^m_x \text{ are monic polynomials} \\
of \text{ degrees } q(2m - 3) \text{ and } q^{2m-1} \text{ in } Z \\
\text{with coefficients in } \text{GF}(p)[Y,S,T_1,\ldots,T_e].
\end{cases}
$$

(3.2)

By uniqueness the above factorizations must match with the factorization obtained in [A06].\(^7\) To get an explicit match, by splitting the first summation in the expression of g'^b into two pieces $1 \leq i \leq m - 1$ and $i = m$, and then putting $T_i = 0$ for $e < i < m$ in the first piece and putting $T_m = 1$ and $j = m - 1 - \mu$ in the negative of the second piece, we see that

$$\begin{cases}
\text{for } 0 \leq e \leq m - 1 \text{ we have } \\
g^e_x = E^e_x - N' \\
\text{where } E^e_x = \sum_{i=1}^e \sum_{j=0}^{i-1} G_{i}^j(m-1-i+j) H_i Y^{a(i,j)} S^{b(i,j)} T_i^{q^j} \\
\text{and } N' = -\sum_{\mu=0}^{m-1} G_m^{(m-2-\mu)} H_m Y^{a(m+1)-1-\mu} S^{b(m,m-1-\mu)}
\end{cases}
$$

(3.3)

Substituting g'^m_x and g^m_x for g'^b and g^b in the defining equation of $g'_{m,s}$ we see that

$$g'^m_x = Z (Z - 1) g^m_x Y^{-1} - Y^{q+m+1} S t q^{m-1}.$$

Upon letting $E''_x = (Z - 1) E^e_x$ and $N'' = (Z - 1) N' / (Z^{m-1} - 1)$, by the first equation in (3.3) we get $(Z - 1) g'^m_x = E''_x - (Z^{m-1} - 1) N''$, and hence by the above equation for g'^m_x we see that

$$g'^m_x = Z \left(E''_x - (Z^{m-1} - 1) N'' \right) q^{-1} - Y^{q+m+1} S t q^{m-1}.$$

Using the geometric series identity

$$(X - Y) q^{-1} = (X^q - Y^q) / (X - Y) = \sum_{t=1}^{q} Y^{t-1} X^{q-t}$$

with $X = E''_x$ and $Y = (Z^{m-1} - 1) N''$, by the above equation for g'^m_x and the equations for E''_x and N'' given in (3.3) we see that

$$\begin{cases}
\text{for } 0 \leq e \leq m - 1 \text{ we have } \\
g'^m_x = \left(\sum_{t=1}^{q} Z (Z^{m-1} - 1)^{t-1} N''^{t-1} E''_{t} q^{-t} \right) - Y^{q+m+1} S t q^{m-1} \\
\text{where } E''_t = \sum_{i=1}^e \sum_{j=0}^{i-1} G_{i}^j(m-1-i+j) (Z^{i-1} - 1) Y^{a(i,j)} S^{b(i,j)} T_i^{q^j} \\
\text{and } N'' = -\sum_{\mu=0}^{m-1} G_m^{(m-2-\mu)} Y^{q+m+1} S t q^{m-1} - Y^{q+m+1} S t q^{m-1}
\end{cases}
$$

(3.4)

If $m > 1$, then the values of g' and g'' given in (3.2) to (3.6) of [A06] visibly coincide with the values obtained by putting $e = m - 1$ and $S = 1$ in g^m_x and g'^m_x respectively. Since, for $1 \leq e \leq m - 1$, the polynomials g^e_x and g'^e_x of [A06] were obtained by putting $T_i = 0$ for $e < i < m$ in the polynomials g^b and g'^b respectively, it follows that g^e_x and g'^e_x can also be obtained by putting $S = 1$ in g^m_x and g'^m_x respectively.

\(^7\)As a misprint correction, in (3.3) on page 2985 of [A06] the exponent of $(Z^{m-1} - 1)$ should be changed from $q - 1$ to $l - 1$, and the exponent of Y should be changed from $(q^m + 1)(q^m - 1)$ to $(q^m + 1)q^{m-1}$.\(\)
Therefore by the irreducibility of \(g'_c \) and \(g''_c \) proved in (4.5) of [A06] we conclude that

\[
(3.5) \quad \begin{cases}
& \text{for } 1 \leq e \leq m - 1, \\
& \text{the polynomials } g'^e_c \text{ and } g''^e_c \text{ are irreducible in } k_p(Y, S, T_1, \ldots, T_e)[Z].
\end{cases}
\]

For \(1 \leq e \leq m - 1 \), as we have noted, \(f^e_c \) is irreducible in \(K_c(S)[Y] \) where \(K_c = k_p(X, T_1, \ldots, T_e) \), its twisted derivative is \(f'^e_c(Y, Z) \), and \(g''_c \) is obtained by dividing the \(Z \)-roots of \(f'^e_c(Y, Z) \) by \(Y \) and then changing \(Y \) to \(1/Y \); therefore by (3.2) and (3.5) we get the following:

Symplectic Rank Theorem (3.6). For \(1 \leq e \leq m - 1 \), the Galois group \(PG^e_c \) of \(f^e_c \) over \(K_c(S) \) is a transitive permutation group of Rank 3 with subdegrees 1, \(q(2m - 3) \) and \(q^{2m-1} \).

In view of Proposition (3.1) of [A04] we get the following:

Theorem (3.7). If \(GF(q) \subseteq k_p \), then, for \(0 \leq e \leq m - 1 \), for the respective Galois groups \(G^e_c \) and \(PG^e_c \) of \(f^e_c \) and \(f^e_c \) over \(K_c(S) \), in a natural manner we have \(G^e_c < GL(2m, q) \) and \(\Theta_{2m}(G^e_c) = PG^e_c < PGL(2m, q) \) where \(\Theta_{2m} \) is the canonical epimorphism of \(GL(2m, q) \) onto \(PGL(2m, q) \).

Recall that

\[
\phi^e(Y) = S^{r(m)}X Y q^m + \sum_{i=1}^{m} \left(S^{r(m+i)} T_i^q Y q^{m+i+1} + S^{r(m-i)} T_i Y q^{m-i} \right)
\]

is the vectorial associate of \(f^e(Y) \), and let

\[
\psi^e(Y, Z) = Y q^m \phi^e(Z) - Z q^m \phi^e(Y).
\]

Then in view of (**) we see that

\[
\psi^e(Y, Z) = \sum_{i=1}^{m} \left(A^i B^i(Y, Z) q^i - B^i(Y, Z) \right) \quad \text{where} \quad A^i = \frac{1}{S^{q(m)}}
\]

and for \(1 \leq i \leq m \) we have

\[
B^i(Y, Z) = \left(Z q^m Y q^{m-i} - Y q^m Z q^{m-i} \right) S^{r(m-i)} T_i.
\]

Therefore again by the Mantra on page 19 of [A08] we get

\[
\psi^e(Y, Z) = A^i \Gamma^e(Y, Z) q^i - \Gamma^e(Y, Z) \quad \text{where} \quad \Gamma^e(Y, Z) = \sum_{i=1}^{m} \sum_{j=0}^{i-1} A^i B^i(Y, Z) q^j.
\]

Substituting the values of \(A^i \) and \(B^i \) in the defining equation for \(\Gamma^e \) we get

\[
\Gamma^e(Y, Z) = \sum_{i=1}^{m} \sum_{j=0}^{i-1} \left(Z q^{m+i} Y q^{m-i+j} - Y q^{m+i} Z q^{m-i+j} \right) S^{q(m+i)} T_i
\]

and hence we see that \(\Gamma^e \) is a polynomial of degree \(q^{2m-1} \) in \(Z \) with coefficients in \(GF(p)[Y, S, T_1, \ldots, T_m] \) and in it the coefficient of the highest \(Z \)-degree term is \((YS^m T_m)^{q^{2m-1}} \).

Recall that, for \(0 \leq e \leq m - 1 \), the vectorial associate of \(f^e_c(Y) \) is \(\phi^e_c(Y) \) and let

\[
\psi^e_c(Y, Z) = Y q^m \phi^e_c(Z) - Z q^m \phi^e_c(Y).
\]
Then $\psi^e\phi^e$ can be obtained by putting $T_m = 1$ and $T_i = 0$ for $e < i < m$ in the defining equation of ψ^e, and hence by putting $T_m = 1$ and $T_i = 0$ for $e < i < m$ in the above expression of ψ^e in terms of Γ^e we get

$$
\psi^e(\hat{Y}, \hat{Z}) = S^{-tq^m} \Gamma^e(\hat{Y}, \hat{Z}) - \Gamma^e_s(\hat{Y}, \hat{Z})
$$

where

$$
\Gamma^e_s(\hat{Y}, \hat{Z}) = \sum_{i=1}^{m} \sum_{j=0}^{i-1} \left(Z^{q^m+j} Y^{q^{m-i+j}} - Y^{q^{m-i+j}} Z^{q^{m-j}} \right) S^{b(i,j)+tq^m-1} T_i^{q^j}
$$

Again, Γ^e_s is obtained by putting $T_m = 1$ and $T_i = 0$ for $e < i < m$ in Γ^e, and hence

$$
\Gamma^e_s
$$

is a polynomial of degree q^{2m-1} in Z

with coefficients in $GF(p)[Y, S, T_1, \ldots, T_e]$ and in it

the coefficient of the highest Z-degree term is $(YS^t)^{q^m-1}$.

For $0 \leq e \leq m - 1$, since $\deg \psi(\hat{Y}) = q^{2m}$ and $\Disc \psi(\hat{Y}) = S^{r(0)q^{2m}}$, in view of (3.8), (3.9) and (3.11), we see that there exists a nonzero root y_e of $\hat{\phi}^e(\hat{Y})$ in any splitting field \hat{L}_e^\prime of $\hat{\phi}^e(\hat{Y})$ over $K_e(S)$ where $K_e = k(X, T_1, \ldots, T_e)$, and given any such y_e there exists a root z_e of $\hat{\phi}^e(\hat{Y})$ in L_e^\prime such that $\Gamma^e_s(y_e, z_e) \neq 0$, and for every such z_e we have $\Gamma^e_s(y_e, z_e)q = S^{q^m}$. Clearly $\GCD(qm, q-1) = \GCD(t, q-1)$, and hence for any divisor d of $(q-1)/\GCD(q-1)$, we can find integers σ, τ with $\sigma tq^m + \tau(q-1) = (q-1)/d$, and for any such roots y_e, z_e and any such integers σ, τ,

upon letting $\Lambda_e = \Gamma^e_s(y_e, z_e)^{S^{\tau}}$ we see that $\Lambda_e^{q-1} = S^{(q-1)/d}$ with $\Lambda_e \in L^\prime_e$. If also $GF(q) \subset k_p$, then we can find $\lambda \in GF(q) \subset k_p$ such that upon letting $\Lambda_e = \lambda \Lambda_e$ we have $\Lambda_e^q = S^{\tau}$ and $\Lambda_e \in L^\prime_e$, and now, because L^\prime_e is also a splitting field of $\phi^e(\hat{Y})$ over $K_e(S)$, by the Substitution Principle on page 98 of [A03], for the Galois groups $G^{(d)}_e$ and $G^{(d)}_e$ of $\phi^{(d)}_e$ and $\phi^{(d)}_e$ over $K_e(S)$ respectively, in a natural manner we have $G^{(d)}_e = \Gal(\phi^e, K_e(\Lambda_e)) \subset G^{(d)}_e$ with $G^{(d)}_e/G^{(d)}_e = \Gal(K_e(\Lambda_e), K_e(S)) = Z_d$.

For $0 \leq e \leq m - 1$, let $R = k_p[X, S, T_1, \ldots, T_e]$ and $\overline{R} = k_p[X, T_1, \ldots, T_e]$, and let $\alpha : R \rightarrow \overline{R}$ be the unique \overline{R}-epimorphism which sends S to 1. Then $K_e(S)$ and K_e are the quotient fields of R and \overline{R} respectively, and for every divisor d of $q-1$ we have that $\phi^{(d)}_e$ is a monic polynomial in Y with coefficients in R, and by applying α to the coefficients of $\phi^{(d)}_e$ we get the polynomial ϕ_e which is such that $\Disc \phi_e \neq 0$, and therefore, for the Galois group G_e of ϕ_e over K_e in a natural manner we have $G_e < G^{(d)}_e$.
Thus we get the following Theorem which may be considered analogous to part (8) of the Composite Polynomial Lemma (2.4) on pages 13-14 of [A04].

Root Extraction Theorem (3.12). For $0 \leq e \leq m - 1$, there exists a nonzero root y_e of $\hat{\phi}_e(Y)$ in any splitting field L_e^1 of $\hat{\phi}_e(Y)$ over $K_e(S)$ where $K_e = k_p(X, T_1, \ldots, T_e)$, and given any such y_e there exists a root z_e of $\hat{\phi}_e(Y)$ in L_e^1 such that $\Gamma_e^2(y_e, z_e) \neq 0$, and for every such z_e we have $\Gamma_e^2(y_e, z_e)^{q-1} = S^{q^m}$ (note that for any $y_e \in L_e^1$ and $z_e \in L_e^1$ we obviously have $\Gamma_e^2(y_e, z_e) \in L_e^1$).

Moreover, for every divisor d of $(q - 1)/\gcd(t, q - 1)$, there exist integers σ, τ with $\sigma q^m + \tau(q - 1) = (q - 1)/d$, and if $\text{GF}(q) \subset k_p$, then, given any such roots y_e, z_e and any such integers σ, τ, there exists $\lambda \in \text{GF}(q) \subset k_p$, such that for $\Lambda_e = \lambda \Gamma_e^2(y_e, z_e)^{\sigma q^m}$ we have $\Lambda_e \in L_e^1$ with $\Lambda_e^d = S$, and for the respective Galois groups $G_e, G_e^{(d)}, G_e^d$ of $\phi_e, \phi_e^{(d)}, \phi_e^d$ over $K_e, K_e(S), K_e(S)$ respectively, in a natural manner we have $G_e < G_e^{(d)} < G_e^d$ with $G_e^d/G_e^{(d)} = Z_d$.

4. Galois groups

By 2.1.2, 2.1.B and 2.1.C of [KLi] we have

(4.0) $\text{Sp}(2m, q) \triangleleft \text{GSp}(2m, q)$ with $\text{GSp}(2m, q)/\text{Sp}(2m, q) = Z_{q-1}$

and hence in view of (4.6), (4.7), (5.1), (5.6) and (5.8) of [A06], by our Theorems (3.6), (3.7) and (3.12) we get the following:9

Theorem (4.1). If $m > 2$ and $\text{GF}(q) \subset k_p$, then, for $1 \leq e \leq m - 1$ and for every divisor d of $(q - 1)/\gcd(t, q - 1)$, in a natural manner we have

$$\text{Sp}(2m, q) \triangleleft G_e \triangleleft G_e^{(d)} < G_e^d \triangleleft \text{GSp}(2m, q)$$

and

$$\text{PSp}(2m, q) \triangleleft \text{PG}_e \triangleleft \text{PG}_e^{(d)} < \text{PG}_e^d \triangleleft \text{PGSp}(2m, q)$$

where we recall that $G_e, G_e^{(d)}, G_e^d, \text{PG}_e, \text{PG}_e^{(d)}, \text{PG}_e^d$ are the Galois groups of $\phi_e, \phi_e^{(d)}, \phi_e^d$ over $K_e, K_e(S), K_e(S)$ respectively with $K_e = k_p(X, T_1, \ldots, T_e)$.

In view of (3.7) and (4.0), by taking $d = q - 1$ in (4.1) we see that

\[
\begin{cases}
\text{if } m > 2 \text{ and } \text{GF}(q) \subset k_p \text{ and } \gcd(t, q - 1) = 1, \text{ then for } 1 \leq e \leq m - 1 \text{ we have} & \\
\text{Sp}(2m, q) = G_e \triangleleft G_e^d = \text{GSp}(2m, q) \text{ and } \text{PSp}(2m, q) = \text{PG}_e \triangleleft \text{PG}_e^d = \text{PGSp}(2m, q)
\end{cases}
\]

and therefore again by (4.1) we get the following:

Theorem (4.2). If $m > 2$ and $\text{GF}(q) \subset k_p$ and $\gcd(t, q - 1) = 1$, then, for $1 \leq e \leq m - 1$ and for every divisor d of $(q - 1)$, in a natural manner we have

$$\text{Sp}(2m, q) = G_e \triangleleft \text{GSp}^{(d)}(2m, q) = G_e^{(d)} < G_e^d = \text{GSp}(2m, q)$$

and

$$\text{PSp}(2m, q) = \text{PG}_e \triangleleft \text{PGSp}^{(d)}(2m, q) = \text{PG}_e^{(d)} \triangleleft \text{PG}_e^d = \text{PGSp}(2m, q)$$

9As a misprint correction, in (5.8) on page 2990 of [A06], $\text{PSp}(2m, q) \triangleleft \delta^{-1}G\delta$ should be changed to $\text{PSp}(2m, q) \triangleleft \delta^{-1}G\delta \triangleleft \text{PGSp}(2m, q)$. As another misprint correction, in (6.1) on page 2990 of [A06], $\text{Gal}(\phi, k_p(X, T_1, \ldots, T_e))$ and $\text{Gal}(f, k_p(X, T_1, \ldots, T_m))$ should be changed to $\text{Gal}(\phi, k_p(X, T_1, \ldots, T_{m-1}))$ and $\text{Gal}(f, k_p(X, T_1, \ldots, T_{m-1}))$ respectively.
where we recall that $G_e, G_e^{(d)}, G_e^1, PG_e, PG_e^{(d)}, PG_e^1$ are the Galois groups of $\phi_e, \phi_e^{(d)}, f_e, f_e^{(d)}, f_e^1$ over $K_e, K_e(S), K_e(S), K_e, K_e(S), K_e(S)$ respectively with $K_e = k_p(X, T_1,\ldots,T_e)$.

Remark (4.3). By applying (4.2) to case ("") we see that if $m > 2$ and $GF(q) \subset k_p$, then, for $1 \leq e \leq m - 1$, in a natural manner we have $\text{Gal}(\phi_e, k_p(X, T_1,\ldots,T_e)) = \text{Sp}(2m, q)$ and $\text{Gal}(f_e, k_p(X, T_1,\ldots,T_e)) = \text{PSp}(2m, q)$, which is an improvement on Theorem (6.2) of [A06] as we no longer need the condition that k_p is algebraically closed. We shall discuss the $m \leq 2$ case of (4.2) elsewhere.

References

[A01] S. S. Abhyankar, Local uniformization on algebraic surfaces over ground fields of characteristic $p \neq 0$, Annals of Mathematics 63 (1956), 491-526. MR 17:1134d

