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Abstract. In this paper we prove global univalence for C1 maps in Rn when the Jacobian 
matrix has its determinant of sign opposite to that of all its principal minors. 
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I N T R O D U C T I O N 

It is well known that non-vanishing of the Jacobian does not necessarily imply 
univalence of the mapping. Thus placing additional conditions on the Jacobian 
matrix to obtain global one-to-oneness has been a problem of interest for a long 
time. D. Gale and H. Nikaido in the celebrated paper [2] proved global univalence 
for maps F from a rectangular region from Rn into Rn for which the Jacobian 
matrix F\x) as a P-matrix for each x in the region; that is when all principal 
minors of the Jacobian matrix F'(x) are positive for each x in the region. In the 
same paper they stated the following 

Problem. Let F: Q -» Rn
9 where Q is a rectangular region of Rn, be continuously 

differentiate and assume the Jacobian matrix F\x) has all principal minors non-
vanishing on Q. Is F globally one-to-one? 

We present in this paper a contribution to the above problem in the sense that 
we are establishing univalence for two classes of differentiable maps F for which the 
Jacobian matrix F'(x) is almostP (almost N) everywhere; that is for every x in the 
domain of F all principal minors of£*(*) are positive (negative) except the de
terminant which is negative (positive). Our theorem extends a result of G. Ravindran 
[13] in which he proved the same but for n = 3. In fact he solved the Problem 
for n == 3 there, since in this dimension the non-vanishing.of principal minors 

165 



C. OLECH, T. PARTHASARATHY, G. RAVIND RAN 

reduces essentially to three different cases: for each x the Jacobian matrix F'{x) 
is either a P-matrix or an iV-matrix or almost P. A square matrix is called a P-matrix 
(an iV-matrix) if all its principal minors are positive (negative). 

For pther univalence results when the non-vanishing of principal minors is 
assumed see K. Inada [5], A. Mas-Colell [7], G. B. Garcia and W. I. Zangwill [3] 
and also T. Parthasarathy and G. Ravindran [11]. For n = 2 see C. Olech [9] 
and also a recent paper by G. H. Meisters and C. Olech [8]. 

In the next section we give a slightly modified version of the Gale — Nikaido 
result (see [2], Theorem 3) which we will use to prove our result in almost P case. 
We prove there also a property of almost P-matrices which is essential for our 
theorem. Another tool we use is a new version of KKM theorem which may be 
of interest by itself. This is Lemma 1 and will be given in section 3. Section 4 
containes the proof of the result for the almost P case, while in section 5 we discuss 
the almost N case. 

2. A M O D I F I C A T I O N OF GALE - N I K A I D O T H E O R E M 

If A is a P-matrix then Ax is non decreasing with respect to the order induced 
by Rn+; that is if x g y and Ax ^ Ay then x = y or equivalently if x S y and x 
different from y then Ay — Ax does not belong to Rn_. If Ax is non-decreasing 
with respect to each order induced by an orthant of Rn then A is a P-matrix. The 
main observation of Gale and Nikaido was that this property holds true for non
linear maps also; that is if all principal minors of F'(x) are positive for each x 
then for any order induced by an orthant of Rn the inequalities a ^ b and F(a) ^ 
^ F(b) can hold simultaneously only if a = b. Compare [2], Theorem 3. If we 
fix the order; that is if we fix an orthant in Rn then we can relax slightly the assump
tions. We have the following modification of the above result: 

Theorem 1 (Gale— Nikaido). Assume F is differentiate, the determinant of F\x) 
is different from zero for each x e Q = {x: a g x S b} and that 
(1) for each xe Q there is v > 0 such that F'(x) v > 0, 
where the order is fixed and induced by an orthant of Rn. Then F(x) is not decre
asing; that is the inequalities 
(*) F(x) ^ F(y) and a<>x<Ly <*b imply that x = y, 
provided the same implication holds if xt = ytfor at least one i == 1, . . . ,«. 

Proof This theorem can be proved exactly in the same way as Theorem 3 of 2. 
We will give here a proof which is direct. Assume that x S y are different. If 
Xi « yi for at least one i then the implication (*) holds by the assumption. Suppose 
that x < y. Then there is d such that x ^ d ^ y, dt = yt for at least one i and 
F{x) < F(d)t Itv in (1) is constant then putting x{i) = x + tvwc conclude from (1) 
that F(x(t)) is strictly increasing. Indeed, the derivative of the latter is F'(x(t)) v 
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hence positive by the assumption (1). Putting d = x(x) where x = max {t \'x(i) ^y} 
we get d satisfying the desired properties. In the general case when v in (1) depends 
on x9 F(x(t)) > F(x) foi 0 < t < a for some e > 0. In this case we can define, 
using the induction argument, a polygonal line x(t) which is increasing and such 
that F(x) (0) > F(x(cc)) if t > a where x(a) is any of the vertices of x(t). Again 
d = x(x) where x is defined as above and we conclude that F(x) < F{d). Either 
d = y and th$n F(x) < F(y) or by (*) the inequality Ft(d) < F,(y) holds for 
some of the coordinates. Therefore also F^x) < Ft(y) for the same i. Thus 
the inequality F(x) ^ F(y) does not hold in both cases, which proves (*). 

Remark. In the case of Gale —Nikaido F'(x) is assumed to be a P-matiix/ This 
implies (1) also for any principal submatrix of F'(x). If xf = yt for some / then (*) 
holds by the induction argument which is used there. 

If F\x) is an almost P matrix then the assumption (1) may not be satisfied. 
However in this case we have the following 

Proposition 1. If F\x) is a continuous almost P-matrix for x e Q then we have 
the following alternative, either (1) holds or 
(2) F\x)~lv g 0 for each xeQ and each v ^ 0. 

Proof. We notice first that F'(x)"1 is an AT-matrix. Each entry of an AT-matrix 
is different from zero. Indeed oii the diagonal all entries are negative. Take an 
off-diagonal entry and take the two by two principal minor containing it. It is 
negative and the diagonal entries of it are negative. This is possible only if the 
off-diagonal entries are both non zero. Thus continuity of F' implies that each 
entry of F^x)"1 has constant sign. Therefore we hawe the alternative: either all 
entries of F'(x)~x are negative for each x then (2) holds or there is an entry of F'(x)~~1 

which is positive for each x. In the latter case for each x there is a positive w > 0 
such that F\x)~1w > 0, also (see [10], Theorem 2 on page 9). Putting v = F,(x)"1w 

. we conclude that (1) holds true in this case. This completes the proof. 

3. A V E R S I O N O F K K M T H E O R E M 

Let S be a closed simplex in Rn with vertices pu . . . , /y , that is 

S = {x: x = iilpl + ... + finpn9 jui + ... + \in = 1, ji, § 0} 

and denote by Qt the face of S opposite to pt\ that is Qt is the simplex with vertices 
Pi> •••>JPi-u/?*+i> •••jPif The following result which we quote from Topology, 
vol. I by K. Kuratowski (see [6], Theorem 6 p. 311) is related closely to the KKM 
Theorem (compare [4]). KKM stands here for the abbreviation of three names; 
Knaster, Kuratowski and 'Mazurkiewicz. " ^ 
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Theorem 2. If A%9 ..., An are n closed sets such that 

(3) S = Ax u ... u ^„. 

(4) A%nQ% = 99 * = 1 , ...,n. 

/Aert ^ i n ... n ^n £y not empty. 
Moreover, the hypothesis that the sets At are closed can be replaced by the 

hypothesis that they are open in S. For our purpose we found useful! the following 
modification and an easy consequence of the above result. 

Lemma 1. If Al9 ..., AH are n closed sets such that (3) holds and 

(5) ( ft Aj) n ( 0 Qj) = 0 for each / c { l »}, 
jel' lei 

where V = {1, ..., n}\I9 then Ax n ... n An is not empty. 
Proof. Put Bt = At u Q{. The intersection of Bt and that of A{ are equaL 

Indeed, if xe n 2?j then either xe n A( or there is / c {1, ...,«} such that x is 
in the intersection on the left-hand side of (5). Since the latter is assumed to be 
empty, we conclude that n Bt c n At. The opposite inclusion being obvious we 
have equality. Suppose now that n jBf is empty. Then the union of Ct = S\Bt is 
equal S, Ct n <2f is empty fox each L, C( are open in S therefore we can apply 
Theorem 2 and there is x e Cx for i = 1, ..., w. Hence x does not belong to any Bt 

and therefore the union of Bt does not cover S opposite to what was assumed. Hence 
a contradiction, the intersection of B{ as well as that of At is not empty and the 
proof of the lemma is completed. 

4. THE MAIN RESULT 

We are ready to prove our main result which reads: 

Theorem 3. Assume that F: Rn -• Rn is of class C1 and that for each x theJacobian 
matrix F'(jc) is almost F. Then F is univalent on Rn. 

Remark. Theorem 3 remains true if the domain of F is any rectangular region 
instead of Rn. 

Proof of Theorem 3. Let a and b be such that F(a) = F(b). We have to prove 
that a = b. If one of the coordinate of a and b is the same, say an == bn = a then 
Jacobian matrix of G(y) « (Fx(yt, ..., yn„t, a) , . . . , Fn„ 1(yl,...,yn„t, a)) is 
a iVmatrix in i?n~\ since principal minors of G'(y) are equal to principal minors 
of J7' evaluated at x == (y, a) and they all are positive by the assumption that F'(x) 
is an almost P-matrix. Hence G'(y) is a P-matrix. Thus G is univalent by Gale— 
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Nikaido Theorem 1 and therefore the remaining coordinates of a and b are equal, 
too. Suppose now that each coordinate of a and b are different. Then there is an 
orthant in Rn which contains b — a in its interior. Without any loss of 
generality we may assume that it is R\, thus a < b. Now we apply Proposition 1. 
If (1) holds true then a = b by Theorem 1. Therefore only the case when (2) holds 
true remains. In what follows we assume without any loss of generality that F(a) =* 
= 0 = F(b). In this case we consider Wazewski's equation [14] 

(6) x' = Ffryh, x(0) = b, ve S, 

where S is the simplex {x: xt + ... + xn = 1, xt ^ 0} of dimension n — 1. We 
denote by x(t, v) the soluiion of (6). It exists and it has the property 

(7) F(x(t, v)) = F(b) + to = to. 

Indeed, the derivative of the left-hand side of (7) is constant equal v. Since F is 
locally a diffeomorphism, (7) defines x(t9 v) uniquely. Hence also from (7) it follows 
that x(t, v) is continuous in v. 

Because of (2) the right-hand side of (6) is negative, therefore x(t, v) is decreasing 
in t for each fixed v. Thus it follows that there is t(v) such that a < x(t9 v) < b if 
0 < t < t(v) and there is / such that xt(t(v)9 v) = at. Such t(v) is uniquely defined 
and continuous. Put 

Ax = {v: a{ = xit(v\ i;)}. 

Ai is closed for each i = 1, ..., n and (3) of Theorem 2 holds. We shall prove now 
that also (5) is satisfied. For this purpose let us fix 7 c {1, . . . ,«}. Suppose, the 
opposite is true that is the set in (5) is not empty and let v belongs to it. Then 
x(t(v), v) = XferxX/O), v) et + Yi^iaiei a n d v = Su/^^«, where et is i-th vector 
of the standard basis in Rn and / ' = {1, ..., n}\L The above and (7) implies that 

(8) Eier^W^)^))^ = 0. 

Consider the map G(y) = Sie/^Eie/y^i + Yji^iai€^ei from a proper subspace 
of Rn into itself. The Jacobian matrix G'(y) of G is a P-matrix since it is a proper 
principal submatrix of F(JC) .and the latter is almost P-matrix. Thus by Gale-
Nikaido theorem the map G is globally univalent and is equal zero only if yt = at 

for each i e / ' . Thus (8) implies that x(t(v), v) = a. Because of (7) this is possible 
only if t(v) = 0 and thus a = b. Therefore if a < b then (5) holds and we can 
apply Lemma 1. So there is v e A{ for each i which again means that x(t(v), v) **a 
and by (7) it implies that t(v) = 0 and a « b. This completes the proof. 
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5. T H E C A S E O F A L M O S T N - M A T R I X 

We will give now an analogue of Theorem 3 for the case when the Jacobian 
matrix is almost N. Before we will prove the following 

Proposition 2. Let n ^ 4. Assume that F'(x) is continuous almost N-matrix with 
some entries positive for each x from a rectangular region Q, then 

(i) the entries of F' are non-zero, the sign pattern of F' is symmetric and each 
row {column) contains at least one positive entry, 

(ii) either (1) holds or (2) holds. 
Proof, We notice first that the first two claims of (i) are true also if n ^ 3 since 

they follow from the assumption that each 2 by 2 principal minor is negative. 
Indeed the diagonal entries are negative thus off-diagonal entries have to be different 
from zero and of the same sign. The third part of (i) follows if we noticed that 
a 3 by 3 determinant with principal minors negative cannot be negative if only 
two of its entries are positive. This can be checked directly and on the other hand 
if there were one column thus also one row of F\x) with all entries negative then 
there would be a 3 b> 3 principal minor with only two positive entries. This would 
contradict the assumptions that F'(x) is almost JV and n ^ 4. Hence (i) is established. 

Because of (i) it is enough to prove the (ii) part of Proposition 2 for a fixed x 
in Q since if (2) holds for one x e Q it holds for each x by continuity and (i). 

Assume therefore that (1) does not hold for a fixed x\ that is there in no w ^ 0 
Such that F\x) w > 0. Then by one version of the theorem of alternatives we know 
(see for example Gale [1]) that there is a non-zero v ^ 0 such that vTF'{x) ^ 0 
Thus the set 

W = {w: w = -F'(x)Tv, v^O, M> ̂  0, w & 0} 

is not empty. We will show that W = #w\{0}. The latter set we denote by U. 
Clearly W is a subset of U and is closed in U. If w e W then the corresponding v 
is strictly positive. Indeed, suppose the opposite; that is one of the coordinates 
of v is zero, say vn = 0. Then yve have the following relation 

•v** (2,0), zeR»-\ -w = (GTz,gTz), 

where G is obtained from F'(x) by deleting the last column and the last row and g 
is the last column of F'(x) without the last coordinate. Since F\x) is an almost 
JV-matrix, therefore G is an iV-matrix. Suppose now that G is of the first kind (has 
.a positive entry), then by Theorem 1, page 7 of [10] we get that z = 0 which means 
w * 0, a contradiction. Suppose G is of the second kind; that is G < 0. Then by (i) 
g has all coordinates strictly positive. But gTz ^ 0 and z ^ 0, which is possible 
only if z '=* 0. A contradiction again, thus we proved that v = —{F'(x)~x}Tw is 
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strictly positive if w e W. But this implies that there is a neighbourhood in U of 
any weW contained in W. Hence W is also open in (7, thus W — U. Therefore 
v — — {F'{x)~^}T w ^ 0 for each w ^ 0 which is possible only if F'ix)"1 < 0. 
Hence (2) holds and the proof is completed. 

Remark. One can prove a stronger statement than (i) in Proposition 2. Namely, 
that there exists a signature matrix S such that SF'(x) S < 0 for each x (see [12]). 

Theorem 4. Assume that F: Rn -* Rn is of class Cl and that far eachx the Jacobian 
matrix F'(x) is almost N. Then F is univalent on Rn. 

Proof. Similarly as in the proof of Theorem 3 we can reduce the argument to 
the case that the following is not possible 

<9) a < b9 F(a) = F(b) = 0. 

The only difference is that instead of Gale — Nikaido, we need to refer to the result 
of K. Inada [5] where he proved univalence for the case the Jacobian matrix is 
an TV-matrix. 

The result is true for n = 2, since the non-vanishing of a principal minors itself 
is enough for the univalence (see [9]). For n — 3 it is contained in [13]. In which 
follows we assume n ^ 4. We notice that none of the entries of F'(x) can be equal 
zero if the latter is an almost iV-matrix. Consider first the case F'(x) < 0. In this 
case F(x) is strictly decreasing and hence (9) is not possible. 

Suppose now that F'{x) has positive entries. Then by Proposition 2 we have two 
cases: either (1) holds or (2) is satisfied. Suppose (1) holds. We shall apply 
Theorem 1. Thus we have to prove that the implication 

(10) F(a) ^ F(b), a^b implies a = b 

holds true if at = bt for an /. Without any loss of generality we assume that i = n 
and we put 

G(y) = (Ft(yl9 ..:,yH-l9 an\ ..., F ^ C P i , ...,}>„-!, 0n)). 

Condition (1) implies that each row of F\x) contains a positive entry. Hence by (i) 
of Proposition 2 each column of F\x) contains a positive entry also. G9(y) is 
obtained from F\x) by deleting the last column and the last row and putting the 
last coordinate of x constant equal an. Thus since F' is almost N, G\x) is an 
iV-matrix. If G'(y) contains a positive entry (an iV-matrix of the first kind) then 
Inada's result gives the implication (10). If G(y) < 0 (an iV-matrix of the second 
kind) then the first n - 1 entries of the last row of F\x) are positive. This means 
that the inequalities 

a ^ b, Fn(au.„yan^l9a„) £ Fn(bl9 ...,bn-l9att) 
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are possible only if a = b. Hence again the implication (10) holds true in this case 
and Theorem 1 implies that (9) is not possible also if F'(x) contains positive entries; 
and (1) holds. 

Suppose now that F'(x) contains some positive entries and (2) holds true. In this 
case we proceed the same way as in the proof of Theorem 3. Because of (2) solu
tions of Wazewski equation (6) are decreasing, t(v) and the cover {A^ can be 
defined similarly and condition (5) of Lemma 1 holds since F restricted to 
n {Qii i e /} is one-to-one due to the fact that the corresponding Jacobian matiix 
is an iV-matrix.* Thus Inada's result is applicable. In this way Lemma 1 completes 
the proof of Theorem 4. 
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