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Pair excitation-deexcitation coherent states
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A class of coherent states de6ned in terms of the excitation and deexcitation of pairs of photons is
studied with reference to its nonclassical and other quantum-statistical properties. These states supple-
ment the other well-known two-mode states such as Caves-Schumaker states and pair cohereat states
and can be produced by dissipative processes involving emission and absorption of photons in pairs.

PACS number(s): 42.50.Dv, 03.65.Fd

I. INTRODUCTION

In nonlinear optics one deals very often with processes
where photons are either created or destroyed in pairs.
Such processes can generally be described by an effective
Hamiltonian of the type

H=gab+g'a b (1)

form elements of the SU(1,1) group

K+ =K, +iKz=atb, K =ab,

E3 =
—,'(ata+btb+1),

[K3,K + ]= TK+, [K, ,K2 ]= iK—3

(4)

where a and b are the annihilation operators for the two
modes. It is therefore natural to consider states produced
by this 8

The commutator (4) implies that for arbitrary states the
variances EK„EK2 in the two quadratures K„Kz obey
the inequality

/@) =exp[i(gab+/*a b )]/a, P), (hK, )(hK, ))-,'~&K, &~ . (5)

where ~a,P) is the coherent state associated with the two
modes. These states have been extensively studied [1-4]
and lead to a number of nonclassical properties of the un-
derling fields. There is, however, another class of nonclas-
sical states, called pair coherent states [5,6], equally im-
portant in problems involving pairs of photons. These are
de6ned to be the eigenstates of the pair destruction
operator ab subject to the condition that a a btb is-
conserved. Dissipative nonlinear optical processes give
rise to pair coherent states [7]. The connection between
(2) and pair coherent states is discussed in Refs. [8,9].
Note that the importance of the states associated with the
annihilation operator [10]a and the linear combination of
a and a is well known [3,11]. Both arequite useful. Itis
thus natural to ask, What are the eigenstates of the
operator that is a linear combination [11—13] of annihila-
tion and creation operators for pairs of photonsT Thus in
this paper we examine the solutions of the eigenvalue
problem

In view of (5) the SU(1,1) squeezing is defined by [14]

(6)

We consider a class of states
~ t/r ) for which the equality in

in (5) holds, i.e.,

(7)

The pair coherent states [5] correspond to the special
case of the condition (7), given by

(8)

i.e., pair coherent states are the minimum-uncertainty
states with equal uncertainties in the two quadratures of
X . From general consideration of the equality sign in
(7) it follows that ~ltd) should satisfy the eigenvalue prob-
lem

(pab+va b )~f) =g~f) (3)

and we study in detail various quantum-statistical proper-
ties of fields in such states. We will call these states "pair
excitation-deexcitation coherent states. " The present
study, in a sense, exhausts the possible two-mode
coherent states.

II. EIGENVALUE PROBLEM

Let us consider pair creation and annihilation opera-
tors ab and a~b~ of the two-mode field. These operators

1.e.)

[K (1+q)+K+(1—g)]ly& =2aly& (10)

Thus the states ~1b) are the eigenstates of an operator
that is a linear combination of the excitation (K+ ) and
the deexcitation (K ) operators of the SU(1,1) group.
The limit g~l corresponds to the pair coherent state
case mentioned above. We call these states ~f) pair
excitation-deexcitation coherent states.
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III. SOLUTION TO THE EIGENVALUE PROBLEM (9)
IN THK COHERENT STATE RKPRKSKNTATION

0"+—0'+ —0=
Z P PZ

(23)

Let us rewrite the eigenvalue problem (9) as

(pab+va b )Ig) =/If), p —v =1,
where we have imposed the additional condition on the
real parameters p, v. These states are degenerate. The
degeneracy can be lifted by assuming that the pairs are ei-
ther created or destroyed together. So we consider the
conservation law

(a'a b'b—) I y) =0 . (12)

We use the coherent state representation to solve the ei-
genvalue problem (11). Let us define the projections of
1$) onto coherent states

where the prime denotes a derivative with respect to z.
Equation (23) has solutions [15] in terms of the degen-
erate hypergeometric functions. The result for P up to a
normalization constant is given by

P(aP) =e ' " ~,F, —+,I;2&—v/paP
—&—v/ a

1 1

Hence the coherent state representation f(a,p) for 11t )
defined by (13) will be

z f exp[ lal —/2
I pl —/2 (v' —v/p—,ap)']1

, f it(a, P)la, P&d'ad'P, (13)
X )F) —+1

1,2(v' —v/p aP)*
2 2( v' —pv)'

x la, p&d'a d'p . (25)

In order to compute (14) it is useful to use the unnormal-
ized coherent state

I a,p) defined by
IV. QUASIDISTRIBUTION FOR THE FIELD

I a,p &
=exp(-,' la I'+ -,

'
I
pl')

I a, p &

and hence we work with the function

(15)

(16)
Q(,p)=, I &,pig& I', (26)

We consider the behavior of the quasiprobability distri-
bution Q(a, P) defined by

so that the required solutions g(a, p) are given by

1((a,P) =exp( —
—,
' la I

—
—,
'

IPI )P*(a,P) . (17)

i.e.,

Q(a, P) = e
—~~~' —~~~'Iy(aP) I'

~2
(27)

a2
abla, p&=apla, p&, a'b'la, p&=

~ ~
la, p&

We project (11)on la, p) to get

g*&yla, P&=&culpa'b'+vabla, P& .

Using (18) in (19), we get

(18)

The eigenvalue problem can be converted into a
differential equation by using the relations [10]

which on using (24) reduces to

Q(a, P)
—q

—I~I' —IPI'

X e '~" ~,F, —+,1,2V'v/paP
2 2V —pv

2

(28)

B2
g'p(a, p)=vapp(a, p)+p p(a, p) .

BaB
(20) The relation (28) is valid up to a normalization constant

that can be fixed by

In the coherent state representation the conservation law
(12) becomes f fQ(a, P)d ad P=1 . (29)

a P(a, P) —P P(a, P) =0 . (21) V. SPECIAL CASKS

p(a, p)=p(ap) . (22)

Equation (21) implies that P(a, P) must be a function of
the product aP, i.e.,

A. Photon pair excitation-deexcitation vacuum /=0

The vacuum state corresponds to the eigenvalue equa-
tion

Using (20) we can derive a second-order difFerential equa-
tion in terms of the complex variable z defined by

z =ap
with the result

(pab+va tbt)I@) =0 .

Solutions of (30) are given by Eq. (23) with /=0, i.e.,

P"+—P'+ —/=0, z=aP .1, v
Z P

(30)

(31)
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Solving this using standard methods [16), we obtain

p(ap) =Jo(V'v/pap), (32)

lg&=&g(& v—/I )*"Ik,k &, (42)

k

Jo being the Bessel function of first kind. Using this in
(13) we get the photon pair excitation-deexcitation vacu-
um state solution given by

where N is the normalization constant given by

%=&1—(v/p) . (43)

Thus, in the limit (39) our states reduce to the two-mode
squeezed vacuum.

2k 2 (33)

Thus the vacuum state is made of even photon numbers
with a fast converging probability distribution. The
states (33) resemble the direct product of the squeezed
vacuum states [3] for the modes a and b with the same
squeezing parameter provided in the direct product we
retain terms with equal number of photons in the modes
a and b.

B. Pair coherent states

In the limit v~O, the eigenvalue equation (23) in the
coherent state representation reduces to

VI. NUMERICAL RESULTS

The two-mode correlated states are characterized by
the strength and the nature of the correlations present in
them. Manifestations of these correlations are studied
through various quantities of experimental significance
such as squeezing, photon-number correlations, quadra-
ture correlations, photon-number distribution, Cauchy-
Schwarz inequality, Q parameter, and quadrature distri-
butions.

We use a direct numerical method to get insight into
the nonclassical nature of these states. We expand the
state

I g & in terms of the Fock states as

10"+—0"=—
40

' (34) ll(&= y c„ ln, m & .
n, m

(44)

where we have introduced a new complex variable g

(35)

However, the conservation law (12) suggests that C„=O
unless n =m, i.e., C„=C„5„.Thus we rewrite (44) as

Equation (34) has solutions [17]given by
ll(&= pc„ln, n &, (45)

4
p(ap) =Io ap

p

1/2

(36)
where C„'s satisfy the recurrence relation

p(n+1)C„+,+vnC„, —gc„=O, n =0, 1, . . . . (46)

On substituting (36) in (13) and on integration we retrieve
the pair coherent state solutions [5] given by

The parameters p, v, and g are to be such that the series
converges. For g'=0 and C& =0 this leads to

lf&pcs=& X „t

1
n

In, n &, (37) ly&=pc, .l2n 2n&, /=0, (47)

where N is the normalization constant given by

&= [1o(2lg/p I ) ]

in agreement with the analytical solution (33). For
nonzero g the recursion relations are solved numerically.
The coefficient Co is fixed by the renormalization condi-
tion

C. Special values of g (48)

Using (39) in (24) and using the relation [18]

&F, (a,a,z) =e' (40)

we get

@(a,p) =exp[ —la I'/2
I
pl'/2+(& v/p) "a*p*] . —

(41)

On using (41) and (13) and on simplifications we get

We next consider a special class of eigensolutions cor-
responding to

(39)
A. Photon statistics

Photon-number distributions I'„=
I C„(g,v) I

are plot-
ted in Fig. 1 for a range of g values. For a given g, they
display oscillatory behavior similar to that reported ear-
lier in the literature [19]. Photon-number distributions
are sensitive to the phase of the field. The average pho-
ton number is clearly seen to be a phase-dependent quan-
tity. In Fig. 2 we plot the average photon number as a
function of g and v for 8=0. The average photon num-
ber for the vacuum state is also plotted in Fig. 2 (inset)
and is seen to saturate with increasing v.
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FIG. 4. Superposition mode squeezing S as a function of I/I
and v.

FICx. 5. SU(1,1) squeezing as a function of I(I and v.

C. SU(1,1) squeezing [(bt b2) (at a 2) )(/2

I&atab b)I
(58)

We next consider SU(1,1) squeezing defined by (6). In-
stead of considering the variances in E

&
or E2 we can use

E& defined by

K&=(e'~atbt+e '~ab)/2 . (55)

It was discussed in Ref. [5] that the violations of (57) can
be directly measured in a two-photon experiment. Con-
sider the field obtained by the superposition of the two
modes. The field at a point rz is given by

The SU(1,1) squeezing condition now reads s'+'= [a exp(iP )+b exp(ig )] . (59)

(bK~) —
—,'(N, +Ns+1) (0 . (56)

The operators K+,Ks are bilinear in terms of the opera-
tors a and b. So SU(1,1) squeezing can be detected in a
nonlinear process in which the output field is a product of
the input geld modes Clearly . this can be achieved in
sum-frequency generation. The interaction comes about
through the second-order polarizability of the nonlinear
medium. Squeezing in the quadrature E& of the input
field can be observed by studying the usual quadratures of
the output field. In Fig. 5 we plot SU(1,1) squeezing
given by the expression on the left-hand side of Eq. (56)
for /=0. For large g and v these states are highly
SU(1,1) squeezed. Also the vacuum states display a con-
siderable amount of SU(1,1) squeezing.

P —(s( —)e( —)s(+)e(+) )2 ~& ~2 ~2 (60)

0+2 ~ $ 0

The joint probability P2 of detecting one photon at r&

and another at r2 is given by the fourth-order correlation
function

D. Pair excitation-deexcitation coherent states
in bvo-photon interferometry

Degree of fourth-order coherence [20] of light is an iin-
portant measurable quantity that very often has been
used to distinguish the predictions of quantum theory
from its classical counterparts. These states show viola-
tions of the quantum analog of the Cauchy-Schwarz in-
equality [5] defined as

-o.e-

-0 0;
O.D 1.0

Io ~0,
where

(57)

FICs. 6. Io, defined by Eq. (58), as a function of I/I and v.
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and the modulation index o. is given by

2(atbtab )
[(a a )+(b b )+2(a ab b)]

(63)

For the states obeying the conservation law (12), we have

1

2+Io (64)

Thus any violation of the Cauchy-Schwarz inequality
gives rise to the modulation index greater than 0.5. For

For the superposed field (59), P2 is given by

P2=I(at a )+(b b )+2(atabtb)J(1+a cosg),

(61)

where

(62)

large ~g~ these states show violations of the Cauch-
Schwarz inequality with increasing values of the parame-
ter v as shown in the Fig. 6. Thus it is possible to achieve
a relatively large depth of modulation with a source in
the pair excitation-deexcitation coherent state.

K. Quadrature distributions

Quadrature distributions in both coordinate and
momentum spaces, i.e., ~hatt(x, y)l and ltb(p„,p~)l, a«
plotted for two different values of v in Figs. 7—10. These
distributions show oscillatory behavior. Oscillations are
more pronounced at large values of v. Thus the contribu-
tion from the pair creation part of the eigenvalue prob-
lem gives rise to the interference effects.

It is believed that the present study exhausts the possi-
ble coherent states associated with two-mode systems.
These states should be of interest in problems that in-
volve both creation and annihilation of photons in pairs.
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