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Einstein-Podolsky-Rosen paradox for continuous variables using radiation fields
in the pair-coherent state
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%'e show how the Einstein-Podolsky-Rosen paradox for continuous variables can be tested using the
quadrature amplitudes of a radiation field in the pair-coherent state. Correlated pairs of photons are
produced by two competing nonlinear processes —four-wave mixing and two-photon absorption.
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I. INTRODUCTION

Einstein-Podolsky-Rosen [I] (EPR) argued that a
quantum-mechanical description of a physical system is
incomplete. Their argument is based on three assump-
tions or premises. One is realism, the doctrine that regu-
larities in the observed phenomena are caused by some
physical reality whose existence is independent of human
observers, i.e., "ifwithout in any way disturbing a system
we can predict with certainty (with probability equal to
unity) the value of a physical quantity, then there exists
an element of physical reality corresponding to this phys-
ical quantity. " The second assumption says that induc-
tive inference is a valid mode of reasoning. The third
premise states that no inhuence of any kind can propa-
gate faster than the speed of light, i.e., there is no action
at a distance, which means that when a measurement is
performed, it is done in such a way that measurement on
the first system does not disturb the second system.

The system which EPR considered consists of two spa-
tially separated particles. These particles show a high de-
gree of correlation between their positions as well as their
momenta. This implies that by measuring the position of
particle 1, one can predict with certainty what value of
position will particle 2 possess in case it is measured im-
mediately. According to the third premise, the predic-
tion for the position of particle 2 is made without in any
way disturbing the particle. This led EPR to infer that
the position of particle 2 has a definite preassigned value.
Since the momenta of the two particles are also correlat-
ed by an analogous argument, one may predict the value
of the momentum of particle 2 by measuring the momen-
tum of particle 1. Thus one can infer that the momentum
of particle 2 has a definite preassigned value. Thus, to
quote EPR, "in accordance with our criterion of reality,
in the first case we must consider the quantity Q (i.e., po-
sition) as being an element of reality; in the second case
the quantity P (i.e., momentum) is an element of reality.
But, as we have seen, both wave functions gk and P„be-
long to the same reality. "

The EPR argument deals with continuous variables.
Bohm [2] later presented spin versions of the EPR para-
dox. Bell [3] derived a set of inequalities which should be
obeyed if the assumption of local realism holds. Much of
the experimental and theoretical work has been done

with quantum correlations between spins or photons.
Reid [4] in an important paper pointed out that EPR's
original example involving the positions and momenta of
two correlated particles can be realized by using the
quadratures of the fields produced in the down-
conversion process in a cavity. Here an input photon is
converted into correlated signal (a mode) nd idler (b
mode) photons. Initially there are no photons in either
the signal or the idler mode. For the down-conversion
process, there are strong correlations between the signal
and the idler quadratures (X„Y,) and (X;, Y, ). The
strong correlation (the degree of which depends on the
cavity parameters, pump amplitudes, etc. ), for example,
can be used to infer the quadrature X, from knowledge of
the quadrature X;. Reid and co-workers discussed in

quantitative terms the EPR paradox for continuous vari-
ables based on local realism. This is di8'erent from the
work of Bohm, Bell, and others [5—8] which concentrates
on discrete variables. Ou et al. [9] verified that there is
indeed violation of the inequality which one would estab-
lish on the basis of local realism. It ~ould be useful to
find other examples where the EPR hypothesis of local
realism for continuous variables can be tested. This is the
purpose of this paper. Here we consider a pair of corre-
lated photons produced by the competing nonlinear pro-
cesses such as four-wave mixing and two-photon absorp-
tion. The outline of the paper is as follows: In Sec. II we
introduce the characteristics of the system which is to be
used for the study of the EPR paradox. Following Reid
and Ou et al. , we present the mathematical criteria
which can be used to test the EPR paradox. In Sec. III
we derive explicit results for the violations of the predic-
tions based on the EPR hypothesis of local realism. In
Sec. IV we give numerical results. The results for the
correlations in the pair-coherent state compare quite
favorably with those produced in down conversion.

II. EPR PARADOX IN TERMS
DF CDRRELATED QUADRATURE AMPLITUDES

OF THE TWO-MODE RADIATION FIELD

Here we consider a situation where the roles of the po-
sition and momentum of the particles are played by the
highly correlated quadrature amplitudes of the two-mode
radiation field. Consider quantized radiation fields X',
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2, =C[&e '"'+8 e'"']

2 =C [be ' '+b e' ']

(2.1)

(2.2)

and Pb of frequency co, and cob, respectively .These fields
can be written in terms of bosonic operators & and b as

ferred to the highest possible accuracy. The deviation of
the estimated amplitudes [as given b the Eqs. (2.10) and
(2.11)] from the true amplitudes X„aredetermined by
taking the difference (X', —X', ) and ( z

—5'z), respective-
ly. The average errors of the inferences are then given by

where C, taken to be equal for both the modes, is a con-
stant which has all the spatial factors. The quadrature
amplitudes of the above fields are defined as

X', =ee "+ate" (2.3)

='be '~+b e'~ (2.4)

The following special cases will be useful:

5', =t,=u+u',

22 =X„&2= (&—&t)ji,
0, =$0=b+b

9,= $'.„=(I"I ')—yi .

(2.5)

(2.6)

(2.7)

This leads to the Heisenberg uncertainty principle

(bX, ) (Wz) ~1, (h$, ) (h$'2) ~1 . (2.8)

Now we consider that the fields are prepared in such a
way that there exists a strong correlation between quad-
rature amplitudes X,gz and P, , fz The. correlation
coefficient C&& is defined as

&5,$;&
(gz)( $2) 1/2

assuming that (X's) =( f'&) =0. The correlation for
some values of 8 and P is said to be perfect (100%) if
~Cs&~=l. Because of this correlation, the quadrature
amplitude 5's can be inferred by measuring the corre-
sponding amplitude 9& or vice versa. In an ideal case,
there should be perfect (100%) correlation between X's

and the corresponding 9& In a re.alistic experimental sit-
uation, the correlation will not be perfect because of
losses and finite detector efficiencies. We can only esti-
mate X's with certain accuracy. Thus the amplitudes Xs
can be inferred by appropriate scale of the amplitudes
$ &. Thus the estimated amplitudes X

& gz are given by

2;=g, $', ,

2;=g, $', .

(2.10)

(2.11)

This is fairly standard procedure, known as regression
analysis [10] in statistical inference theory. Note that the
commutation relations in (2.10) and (2.11) can be
preserved only by adding the appropriate combinations
of Ps for, e.g., Xz in (2.10).

One can choose the scaling parameters g& and g2 and
the angle P such that the amplitudes X„X'2can be in-

The commutation relations between X'„X'2 and f„9'2

which follow from [8,&t]=1=[b,bt] are

[2„22]=[&„$2]=2i.

(2.12)

(2.13)

The values of g&,g2 are chosen by setting

z)'

dgz

From Eqs. (2.12) and (2.13), one sees that

( &2~)

&X'2$', &

& &', )

(2.14)

(2.15)

(2.16)

Ht=ifuc(&~b~ &b) . — (2.18)

The term a (taken to be real) describes the nonlinear cou-
pling coefficient proportional to the nonlinear susceptibil-
ity. The operators & (& ) and b (b ) are the boson annihi-
lation (creation) operators for the signal and the idler
mode, respectively. The evolution operator
&=exp( iHltlA) is found f—rom Eq. (2.18) to be

at(S b Sb)— (2.19)

Using the above equation, the quadrature amplitude Xe
given by Eq. (2.5) after an interaction time r=L A with
the medium is found to be

The value of the angle P is decided by Eq. (2.9). It is the
value for which the correlation coefficients C&& and C2&
are maximum. Thus by the measurements of g, 9b and

gzf&, the values of X'& and 5'2 are inferred with uncer-
tainty 6;„p,and 5;,pz, respectively. According to

~

~

~

~

uantum mechanics, the quadrature amplitude operators

&
and 22 are noncommuting and hence they both can-

not be specified simultaneously with accuracy greater
than that allowed by the uncertainty relation given by
Eq. (2.8). Now the EPR paradox occurs when [4,9]

(a,„g,)'& a,„P,)'&1. (2.17)

Reid has provided an example of the EPR paradox by
considering the correlations between the quadrature am-
plitudes of the signal and the idler modes of a nondegen-
erate parametric amplifier. The nondegenerate paramet-
ric amplifier can be modeled by an interaction Hamiltoni-
an,
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2, (L ) =X', (0)coshr + $, (0)sinhr,

X'z(L) =X~(0)coshr —$ z(0)sinhr,

$ &(L)= $ &(0)coshr+X'&(0)sinhr,

$ z(L) = $'z(0)coshr —Xz(0)sinhr,

(2.20)

(cosh2r)
(2.21)

where r =~t. They calculate the correlation coefficient as
given by Eq. (2.9} and show that the quadrature ampli-
tudes X& and $

&
and Xz and —$ z are strongly correlat-

ed. They infer the signal amplitudes X', and X'z by mak-
ing measurements on $, and —$ z of the idler amplitudes
and calculate the error b, ,„g,and b, ;„rX'z, in the infer-
ence. They found that

&a'a&=&b'b&=g '

Io(2$)
i3.6)

On using (3.6) in (3.5) the correlation coefficient Cs& turns
out to be

2gcos( 8+P )

2([I,(2g) /Io(2() ]+1

To examine the degree of the correlation C&&, we first
consider the asymptotic limit for large g. Using the ex-
pansion of Bessel function [12]

g[e
—i(8+/)+ +i(0+/)]

C
[(2&et& &+1)(2&btb &*1)]'"

Here we take g to be real. The average photon number in
a and b modes is found to be [11]

The EPR paradox occurs for the values of r for which

( b.;„P, )'( b,;„,X', )' ( 1 .

This has been experimentally verified by Ou et al. They
observed in their experiment that

eXI„(x)=
21Tx

Eq. (3.7) reduces to

(4n 1)—1—
8x

(3.8)

(b,;„P))(b;„P~)=0.70+0.01 . Ce& =cos(8+/) 1— (3.9)

III. EPR PARADOX WITH A TWO-MODE FIELD
IN A PAIR-COHERENT STATE

Here we consider a two-mode radiation field in the
pair-coherent state and show that the conjugate quadra-
ture amplitudes of both 8 and b modes are strongly corre-
lated. The pair-coherent state is defined by the solution
of the eigenvalue problem [11]

~bi(& =Cl(&,
(3.1)

(&t& —btb)lg& =0 .

The two photons are either created together or annihilat-
ed together, leading to correlations between the two. The
radiation fields in the pair-coherent state are shown to ex-
hibit quantum features such as sub-Poissonian photon
statistics, correlation in the photon number fluctuations
in the two modes, squeezing and violations of quantum
versions of Cauchy-Schwarz inequalities, etc. The solu-
tion to the eigenvalue problem (3.1}is

lg&=BIO(2() g, ln, n &,
Onf

where I„(x)is the modified Bessel function given by [12]

2$
2[Ii(2$)/Io(2()]+1

(3.10)

—2g
2[I,(2()/Io(2()]+ 1

(3.1 1)

The error in inferring the values X'& and Xz as given by
Eqs. (2.12) and (2.13) is then obtained by substituting the
values of g& and g2 as obtained above. The final result
can be written as

(~,„g,)'=&(~, —g, &, )'&

This implies that for large g, there exists perfect correla-
tion for 8+/=0, i.e., for 8=0, /=0, perfect correlation
exists between J& and $'&, for 8=m/2, P= —n. /2, perfect
correlation exists between X'z and —$z. Thus, by per-
forming measurements on f, and 'Pz, one can infer the
values of X'& and 5'z. We calculate the scaling parameter

g& and gz as given by Eqs. (2.15) and (2.16) which allows
for the greatest accuracy in the determination of 5'& and

2'

(x/2)"+ '
I„(x)=

0 r!(n+r)! (3.3)

(3.4)

from Eqs. (3.1), (2.3), and (2.4) we see that

%e calculate the correlation coefficient as given by Eq.
(2.9) for the radiation field in the pair coherent state.

Cg =
[(g2 &( P2

&
]1/2

(~,„p,)'= ((&,—g, t, )'&

(&', &

where

4', 3.12)
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Ii(2 )A=2 /+1.
Io(2$)

(3.14)
Using Eq. (3.2) and the fact that &X~n & is
oscilla

a n is a harmonic-

nomials as
ator wave function given in terms of Hs o ermite poly-

From Eqs. (3.12) and (3.13), we find that

A

The EPR paradox occurs when

(6;Q, ) (5;„Pt)&1,
i.e., when

A' 1 — ~ &l.
A

In Seec. IV we present the numerical results.

(3.15)

(3.16)

(3.17)

&X~n & =[2"n!&7r] ' H (X)

the joint probability is found to be

I(X,, Y, )=l,(2g) y ~, &X, ~a&&r, ~n&
n=o n'

g"H„(x,)H„(Y, )
0 2 71n! v'~2"

Xexp[ —(X, + Yi )/2]

(4.2)

(4.3)

In Fig. 2(a) we plot the joint probability distribution

IV. NUMERICAL RESULTS

Let C sta
cos(8+ =1. In

C stand for the correlation coeffi
' t (3 7)cien . with

P) =1. In Fig. 1(a) we plot the quantity (1—C )

as a function of ~. This uquantity decreases monotonically
with g and tends to zero for large values of the parameter

In Fig. 1(b) we plot the quantity &2 &
= A

ion o g. The parameter A is related to the mean pho-
ton number which increases with g I f f

~g, as shown in Fig. 1(b). It should be noted that
the correlation coefiicient represents the second-order
statistical property of the field. It would b
examine the hi her-

wou e interesting to

fact on
ine e ig er-order correlation characteristics. I'cs. n

P X F
, one can calculate the joint prob b'1't d'a i i y istribution

( „r,) for the quadratures X and Y . Thi d'is istribu-

a0 "

o.o g

~(x„r,)= ( &x„r,~g& ('. (4.1)
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FIG. 1. (a) Plot of (1—C ) as a function
i y is t e correlation coeKcient as given b ~~ '3

with cos(8+ )=1. For
n y~. (.7)

zero, im l 'n that
or large g values, this quantit t d'y en sto

p yi g a the perfect correlation exists between Xe
and r& (b) Plot of. the quantity &2 & or &2 &=
tion of . No
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. Note that this quantity is related t ha e o t e mean photon

FIG. 2. (a) The) joint probability distribution P(X„Y&) [Eq.
(4.3)] as a function of X, and r, for /=0. 75. For this value of
the error in inferring the values X d X
beseeninFi. 4. T

ues I an 2 is minimum, as can

tion I' (X for
g. . T e inset shows the unconditio l d' t 'b

( I ) for the Geld in the pair-coherent state (solid line) and
the squeezed vacuum state (dashed line). (b) The ine . e joint probabili-

r =0.46.
4.4 or the squeezed vacuum stat 'thsae wit
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P(Xi Yi ) for g=O 75
~ valalue is about 4O%

e ~mount off squeezing for this

squeezjn
e find that the s

a i ity distribution p(X
ig 2(b) the joint

in the
~

parametric amplifi f
eld producedi Yi ) for the

ion is given by

=O.46. This dist 'bu-

I'&X' i Yi)= —ex ~2XP[ i Y, sinh2r —(X2+ Y2
I ] )cosh2r ]

It should be bornorne in mind that the
' '

b
' f h

'
hair-co erent state

'
is-

d' pl he unconditional
the field in the air-cpair-coherent state an

or

'g 2(a) T 'sF'
ain

'
ing t e joint rp obabihty di ri

(X) fo
squeezed vacuum st

or the field in th
s ate turns out to be

'n e

(4.4)

0.5-

~0$-
0.

0, )'

0, 0

P(X, )=
—X)

exp
m cosh2r cosh2r

(4.5)

and P (X, ) for the field in the
to be

e e in the pair-coherent stata eis ound

P(X, )= Io(2() - jgj'"jH„(X,)j'

n )32PJ
(4.6)

The value of the u
X i.e.

e uncertainty in the ua r

wl

q ature amplitud
e o taine

the

g
xjmum of thjs djstr

o ditio 1 d t'b
ca cu ate (~2 )2.

7

e know from Sec. III that the ua p
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'' M
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P(YI)

(4.7)
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y distribution P(X /Y
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s ate, respective-

fore. In F 1h o squeezin a
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, ) (6;, 2) is les th

EPR paradox. We

~
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values
g o g 0e see from Fi . 4
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th (1—C). h
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M

is can be seen from
g 2 and (1—C2 ~ for large values
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urs w en this
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s product is less than 1.
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of g. From Fig. 4 we see that at /=0. 75, the product
(5;„Pi) (6;„@2)is minimum, -0.49. As mentioned
before, the amount of squeezing for this g value is about
40%%uo. We find that the same amount of squeezing can be
produced for r =0.46 in the parametric amplifier [13].
For this r the product (6;„P,) (b,;,Pz) turns out to be
-0.47, which is quite comparable to that calculated us-

ing the field in the pair-coherent state. In conclusion, we
have pointed out that the EPR argument of local realism

for continuous variables can be tested via the correlation
in quadrature amplitudes of the field in the pair-coherent
state.
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