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The spectral filtering of a field with strong quantum correlations is studied. The changes in the corre-
lation characteristics of a field, produced by a down converter, passing through a strongly dispersive ele-
ment like a Fabry-Pérot cavity, are calculated. In the special case when the central frequency of the
idler and signal photons coincides with the resonance frequency of the cavity, there is a cancellation of
the dispersive effects of the cavity. Detailed numerical results for the two-photon joint counting rate are
presented. The effects of the absorption in the medium on the two-photon correlations are also dis-

cussed.

PACS number(s): 42.50.Dv, 42.50.Ar

I. INTRODUCTION

In recent years one has discovered many interesting
features of spectral filtering. For example, the spectrum
of light passing through a filter can change in a number
of ways depending on the spectral characteristics of the
filter itself as can be seen from the following simple con-
sideration. Let T(w) be the spectral response of the filter.
Then the spectrum S, () of the output is related to the
spectrum S, (@) of the input via

So(0)=T()S;; (@) . (1)

If both T(w) and S, (w) are Gaussians centered at
different frequencies, then S () is also Gaussian but
shifted in frequency [1]. The shift depends on the two
central frequencies and the two widths. The output spec-
trum can also be a multiline spectrum (2] even if the in-
put is a single line. This depends on the resonant charac-
ter of T(w). Note that the spectrum represents a
second-order statistical property of the field and a rela-
tion like (1) sheds no light on the higher-order statistical
properties of the output field. The situation is rather sim-
ple if the input field is described by a Gaussian stochastic
process. In such a case the output field is also described
by a Gaussian stochastic process. Then this fact coupled
with Eq. (1) is enough to derive all the statistical proper-
ties of the output field. Woerdman and co-workers found
a very interesting result [3] for the case of an input field
described by the phase diffusion model. They showed
that if the filter bandwidth is very narrow compared to
the width of the input beam, then the intensity-intensity
correlation of the output beam behaves the same way as
the intensity-intensity correlation of a chaotic light beam.
Thus the higher-order statistical characteristics of the
output beam are very sensitive to the statistics of the in-
put beam. While all this is based on the classical treat-
ment of light beams, which is quite adequate for many
situations, there are however situations which require a
quantized field treatment. This is particularly the case if
the input light is produced by down converting [4,5] a
pump beam of frequency 2() into two photons of frequen-
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cies (Q+v) and (Q—v) with the allowed values of v
determined by the phase-matching considerations. The
quantum correlations between two photons of the pair
(Q+v,Q—v) are extremely large and produce a number
of important effects. For example, Franson [6] has
discovered an unusual property of the two-photon corre-
lated source with a wave function of the form

)~ [¢nQ+v,0—v)dv . 2)

He found that if the two photons of the pair travel
through a dispersive medium, then under certain condi-
tions there is cancellation of the dispersive effects in the
two-photon detection probability. Franson assumed
weak dispersion, i.e., a dispersion relation of the form

k(Q+v)=ky+vk, +vk, 3)

was used. Clearly the issue of the effects of absorption
and dispersion on the two-photon correlations is wide
open.

In this paper we examine the changes in the photon
correlations if the signal and idler beams are filtered by a
resonant structure like a Fabry-Pérot interferometer. The
correlated nature of the signal and idler beams lead to the
rather remarkable result—the two-photon detection
probability is independent of the presence of the Fabry-
Pérot interferometer provided the Fabry-Pérot inter-
ferometer is tuned so that its resonance frequency coin-
cides with Q. Thus, under the condition, the resonant
dispersive effects of the filter (cavity) cancel as far as the
two-photon detection probability is concerned though the
transmission of each beam itself is affected by the disper-
sive characteristics of the filter.

II. CALCULATION OF THE TWO-PHOTON
COINCIDENCE PROBABILITY

Consider the filtering of the two-photon correlations as
shown schematically in Fig. 1. Let the idler and the sig-
nal beams produced in down conversion be incident on
the two sides of the Fabry-Pérot interferometer. The
Fabry-Pérot interferometer may in addition be filled by a
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FIG. 1. Schematic illustration of the interference arrange-
ment.

dispersive or absorptive medium. Let the photons at the
detectors D, and D, be detected in coincidence. Let
64 and 6§ be the amplitudes associated with the idler
and the signal fields. In quantum theory these represent
the positive frequency components of the electric-field
operators. The fields at the detectors D, and D, are then
given by

6= [dwe (060 (0)
+15(0)65], @)

EP=[doe " r(0)65 @)
+1,(0)6P(0)], ()

where z, and z, give the position of the detectors and
k,= %cose . (6)

In Eq. 4), r(w) and t(w) represent, respectively, the
reflection and transmission amplitudes of the Fabry-Pérot
interferometer. The subscript S (I) refers to the signal
(idler wave). For a lossless Fabry-Pérot interferometer
the matrix

tgy(w) ri(w)
)]

should be unitary. Let y(w) be the susceptibility of the
medium inside the Fabry-Pérot interferometer. Then the
theory [7] of the Fabry-Pérot (FP) interferometer leads to

— (1- 2.'1121)
rs(@)=r;(w)=VR —ew— ) ®)
(1—Re™ 7)
ilk,
Te *
ts(w)=t,(co)= 2k’ (9)
1—Re *
2
k=2 [1+47my(w)]—sin?8), R+T=1. (10)

C2

where R (T) are the reflectivity (transmissivity) of the FP

mirrors. Using (8)-(10) the unitarity of U can be proved
for the case when y(w) is real.

The input state of the field is given by the relation (2)
with the function ¢(v) having the form

_ % v
d(v)= maexp‘ 202]. (11

The joint probability of detecting a photon at the detec-
tor 1 at time ¢ and a photon at the detector 2 at time ¢ +7
is given by [4]

P(1)=(¢|6\ ()6 (e +1)65 e + 16 M (0)|y) , (12)

where we assume that the two detectors are located such
that z, =z,. This probability P, can be calculated using
(2), (4), and (5). One should remember that the structure
of the wave function is such that both signal and idler
photons are present simultaneously. The calculations
show that

Py(n)=| [dve M O()[rg(Q+vIr(Q—v)
+ts(Q_V)t1(Q+‘V)]|2 . (13)

The measured coincidence probability will be obtained by
integrating over the resolving time Tz of the detector [4]

1 TR/

2
=7,R— P,(t)dT . (14)

Py
—Tp/2

The Eq. (14) gives the final results for the two-photon
joint detection probability. On using Egs. (2) and (4) the
probability of detecting a photon at the detector 1 will be

Py =(4|6;7 ()6 (1))
=fdwl¢(w)]2[|r,(w)|2+|t5(a))|2] (15)
which for a lossless medium reduces to
P,= [dolg(w)]?=|¢, . (16)

The result for the detection of the single events is indepen-
dent of the Fabry-Pérot interferometer. This is in con-
trast to the result (1). The very special nature of the
two-photon source leads to (16).

III. EFFECTS OF FABRY-PEROT DISPERSION
ON TWO-PHOTON COINCIDENCE DETECTION

In this section we present explicit results for P,. We
show its dependence on the Fabry-Péroy parameters. We
assume that there is no medium between the two plates of
the Fabry-Pérot (FP) interferometer. Let w, be the reso-
nance frequency of the FP interferometer for a given an-
gle of incidence 6. We define

A=0—o,; 8=—A:l-cos9, 8v=%lcos9. 17

Then on using (8)-(10) and (17) we can prove that
rs(Q+v)r (Q—v)+t(Q—v)t, (Q+v)

T[T +(Re?®—¢~2%))

=1+ - - .
(e ""®®*—Re'®)2+4Rsin%s,

(18)
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From Eq. (18) we see that
re(QH VI (Q—v)+ (=)t (Q+v)=1if =0 (19)
and hence

Pyn)=|[dve () if Q=0, . (20)

We have thus shown that the Fabry-Pérot dispersion does
not affect the two-photon coincidence probability if the
central frequency of the idler and signal photons matches
the resonance frequency w, of the Fabry-Pérot cavity.
There is a cancellation of the effects of the FP dispersion.
This is so in spite of the fact that the FP transmission and
reflection characteristics exhibit resonant behavior.
Above result holds irrespective of the width of the FP rel-
ative to the width of the signal or idler photons.

We next discuss the behavior of P, as a function of the
parameter A, i.e., P, as the Fabry-Pérot interferometer is
scanned across its resonance frequency. We show the nu-
merical results in Fig. 2 where P, is plotted as a function
of the parameter (qA /o) for a detector resolution time
0Txr =50 and for different values of the FP reflectivity
parameter R. The parameter g [=o cos(8)! /c] was taken
to be equal to 0.15. The peak height is independent of
the FP reflectivity as expected from our general result
(19). For gA/o of the order of the FP linewidth, the
joint probability developes minima. The minimum grows
deeper as the reflectivity R goes down. For A greater
than the width of the FP Airy resonances, the joint detec-
tion probability grows, since in that case it is almost like
having no FP dispersion. In order to understand the
minima in the joint probability P, we have investigated
P,(7) as a function of dimensionless time o7 (see Fig. 3)
for various values of gA/o. We have calculated P,(r)
for values of gA /o corresponding to the minimum (.e.,
gA/0=0.1) and for two other values, namely, gA /o =0
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FIG. 2. Joint detection probability P, as a function of gA /0.

Curves labeled by 1, 2, 3 are for R =0.5, 0.9 and 0.99. Other
parameters are as follows: ¢ =0.15, 0Tz =50.
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FIG. 3. The time dependence of the joint detection probabili-
ty for an empty cavity for ¢ =0.15, R =0.9 and for different
values of gA/o, namely, 0.0 (curve 1), 0.1 (curve 2) and 0.3
(curve 3).

and 0.3. It is clear that at resonance (i.e., Q=w,), where
dispersion gets nullified, the area under the curve P,(7)
gets maximized. Due to destructive interference the area
under P, (7) reduces to a minimum for gA/o==%0.1,
whereas, for larger values of gA /o, the FP signature is
erased and there is a growth in the joint counting proba-
bility.
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FIG. 4. Joint detection probability P, as a function of gA/o.
The curve labelled by 0 is for the empty cavity, whereas, 1, 2, 3
are for a FP cavity with atoms with gA,/0 given by 0.02, 0.2,
and 1.0, respectively. Other parameters are as follows, ¢ =0.15,
0T =50, v /0o=10"* (@, /we)*=107%, R=0.9.
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IV. COMBINED EFFECTS OF
THE FABRY-PEROT DISPERSION
AND ATOMIC MEDIUM DISPERSION
ON JOINT COUNTING RATE

Recently the work of Franson to a frequency region
where the absorption of the medium is important, has
been generalized [8]. In particular, the absorption of the
medium affects the joint counting rate significantly. In
this section we examine the combined effects of absorp-
tion and dispersion. This is done by including a resonant
medium within the FP interferometer. We write the sus-
ceptibility of the resonant medium as

(0} /o))
dmx()= - , @1
1— |2 ;e
‘ w(z) @y @o

where o, is the resonant frequency of the medium and y
gives the absorption in the medium. The computed nu-
merical results using Eq. (13) are shown in Fig. 4. We
have plotted P, as a function of gA /o for various values
of gAy/0 where Ay=Q—w, We have shown the curves
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for only positive values of A, since for negative values of
A,, they are symmetric with respect to A=0. For com-
parison we have also shown the case of an empty FP cavi-
ty. It is clear from Fig. 4 that absorption and dispersion
introduced by the atoms lead to a suppression and a shift
of the peaks and dips of the joint counting probability.
The effect of absorption is dominant for zero detuning.
Positive A leads to a pulling of the features to the right.
However, for large Ay, when the atoms are far detuned
their effect becomes negligible and we recover the case
for the empty FP cavity.

In summary, we have examined the filtering of the ra-
diation produced by a two-photon correlated source. The
filter is a dispersive element like a Fabry-Pérot cavity.
We show that under certain conditions, the two-photon
detection probability becomes independent of the pres-
ence of the optical cavity. We have also examined the
effect of an absorbing medium inside the cavity.
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