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The fluorescence emitted by atoms whose excited states have Zeeman structure is stu-
died for the case of excitation by partially coherent optical sources whose amplitudes are
weakly modulated at a low frequency ). The temporal fluctuations in lasers are taken
into account exactly by using the phase-diffusion model of the laser. Analytical results
for the modulated fluorescence are presented for the case of weak fields. It is shown that
the shape of the fluorescent signal is extremely sensitive to the bandwidth of the field; for
example, one gets resonances at a Larmor frequency equal to s =+ /2(0, + Q) for broad-
band (monochromatic) fields. Various limiting cases are treated, and in the limit of very
broadband fields, results reduce to those of Corney and Series. The fluorescence is stu-
died both as a function of the modulation frequency and as a function of the magnetic
field. Numerical studies of the modulated Hanle signals in intense fields reveal resonant
structures in the modulation-frequency scan at Q=0, +a,, +2ag(ad=s2+2a?) due to the
dynamical Stark splitting of the various energy levels, with the strength of the resonances

depending on the direction of detection.

I. INTRODUCTION

In the 1920’s the resonance effects that appear
when light is scattered by atoms in a magnetic
field were studied in great detail by Hanle! who
showed that the observed fluorescence exhibits
resonant behavior as the static magnetic field is
varied, the width of the resonance curve being
determined by the natural lifetime of the atoms in
the excited state. These techniques (also known as
zero-magnetic-field level-crossing experiments)
have also been used to study Zeeman and hyperfine
structure of excited and ground levels of atoms, to-
gether with measurements of radiative and intera-
tomic collisional relaxation rates.’ Recently, an
optical analog of the Hanle effect was proposed.* ¢
In this method suitably polarized radiation pro-
duces dynamic Stark shifts of the energy levels
coupled by the field, thus lifting the degeneracy of
the coupled excited state and replacing the external
magnetic field in the usual Hanle effect. Once this
is achieved the properties of the magnetic sublevels
can be investigated by using another laser field
coupling the shifted energy levels, the fluorescence
signals now being observed as a function of the in-
tensity or frequency of the initial radiation field
used to produce the light shifts. The resonances in
the optical Hanle effect were found to occur in the
same manner as those observed in the zero-
magnetic-field level-crossing experiments. Yet

another important and useful variation of the usual
Hanle effect consists of the excitation of atoms by
light whose intensity is periodically modulated in
time, the degeneracy of the energy levels having
been lifted by a static magnetic field as before.”®
The intensity of the fluorescent light is itself modu-
lated at the same frequency as the exciting light
while the amplitude of modulation exhibits
resonant structures when the frequency of modula-
tion is equal to the Zeeman splitting between the
levels. The width of these resonances was once
again determined by the natural lifetime of atoms
in the excited state when the source used for
preparing the atoms in a coherent superposition of
the Zeeman sublevels was a weak, broadband
source.

In this paper we study in detail the problem of
the Hanle effect excited by an intensity modulated
source of arbitrary bandwidth. For weak fields the
shape as well as the linewidth of the resonances ob-
served in the magnetic scan of the modulated sig-
nals is shown to be critically dependent on the
bandwidth of the exciting source and its frequency
of modulation. The results of a previous study of
the problem”® using a weak, incoherent broadband
pump are obtained as a limiting case of our general
theory, while excitation by a truly monochromatic
laser leads to entirely new results. We also study
the experimentally equivalent possibility of scan-
ning the modulated fluorescence by tuning the fre-
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quency of modulation of the exciting source at a
fixed strength of the static magnetic field, produc-
ing the Zeeman splitting of the excited state.
Well-defined resonances in the amplitude of modu-
lation are obtained when the frequency of modula-
tion is equal to the Larmor precessional frequency
of the atoms in the magnetic field (monochromatic
source), or when the frequency of modulation is
zero or equal to twice the Larmor frequency
(broadband source). Section II contains the
mathematical formulation of the problem valid for
arbitrary strength and bandwidth of the exciting
field. In Sec. III analytical expressions are ob-
tained for the signals in weak, partially coherent
laser beams. Various limiting cases in laser
bandwidth are explicitly studied with numerical
plots for the general case. The modulated Hanle
signals in a partially coherent laser beam of arbi-
trary intensity are studied numerically using the
formulation of Sec. II. Similar studies of modulat-
ed fluorescence from a single two-level atom have
revealed the presence of resonances in the ampli-
tude of modulation when the frequency of modula-
tion of the exciting source was equal to the Rabi
frequency of the atom in the intense, resonant laser
beam.’~!2 The modulated fluorescence in an opti-
cal double-resonance experiment'® also exhibits res-
onances corresponding to the dynamic Stark split-
ting of the various energy levels of the composite
system consisting of the atom and the intense,
coherent laser field. We show that the
modulation-frequency scans of the Hanle signals in
intense laser beams contain similar information,
there being resonances at =0, +ay, +2a,,.

II. FORMULATION OF PROBLEM

We consider here the typical atomic beam
Hanle-type experiment,'* shown in Fig. 1(a)—an
atomic beam travels along the Z axis and a con-
stant magnetic field H is applied in the same direc-
tion. The atoms are irradiated by a fluctuating
laser beam (whose intensity is time modulated) pro-
pagating along the Y direction and having a linear
polarization X parallel to the X axis. We can
detect the fluorescence emitted along the Z axis
with a linear polarization X [=L (X )] or the
fluorescence emitted along the X axis with a linear
polarization Y[ =L ( ?)]. For simplicity we re-
strict our study of the Hanle effect to transitions
between levels with angular momentum J =0 and
J =1. The static magnetic field H splits the latter
into three Zeeman sublevels with m;=0,+1.
However, the plane-polarized laser beam for our

geometry couples the nondegenerate ground state
|J =0,m;=0) to the m;=+1 sublevels of the ex-
cited state (J =1) only, the laser being near reso-
nance with the atomic transition |J =0,m;=0)
< |J =1,m;=0) which is forbidden. Thus we
can neglect the existence of m; =0 excited sublev-
els in further consideration and the relevant atomic
levels are shown in Figure 1(b) where the labels 1,
2, and 3 refer, respectively, to the |J=1,m;=1),
|J=1,my=—1), and |J =0,m;=0) levels, s is
the Zeeman splitting or Larmor frequency of the
excited state and 6 is the detuning of the laser
beam of mean frequency w; from the atomic tran-
sition

|J =0,m;=0)«>|J=1,m;=0) .

Taking #i=1, the energy of the atomic states | 1),
|2), and |3) are w;3(=w; +s—9),
wy3( =w; —s—38), and zero, respectively.

In order to take into account the temporal fluc-
tuations present in the laser, we treat the laser elec-
tric field E(¢) as a classical random variable. For a
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FIG. 1. (a) Schematic representation of experimental
geometry. (b) Schematic representation of the relevant
energy levels.
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laser well above threshold E(r) can be written as

E(t): % goe—i[mLt-Hb(t)]

+c.c., (2.1)
where w; is the mean frequency and ®(¢) is the
phase, and the laser field is assumed to be very
well stabilized in amplitude. For the fluctuations
of the field we adopt the phase-diffusion model for
the laser fluctuations. As for this model the corre-
lation functions of the electric field are known to
all orders. For this model the amplitude of the
laser beam is a deterministic variable independent
of time, as in expression (2.1), while the phase un-
dergoes diffusion

D(1)=p(1), ®(0)=,, (2.2a)

where @, is uniformly distributed between O and
27 and u(t) is a §-correlated Gaussian random pro-
cess with

(,lt(t)> =0 ’
(2.2b)

(pltulty)) =2y.8(t; —1t,) -

Here the angular brackets denote the ensemble
average with respect to the distribution of random
process () and .~ is the correlation time for
laser amplitude fluctuations. The electric field of
the fluctuating laser whose intensity and hence,
amplitude are time modulated at low frequencies
can be written as

E(t)= 7 & o(1+4a cosQtle ~iloyt+®®)]
+c.c., 2.3)

where () is the modulating frequency and a the in-
dex of modulation. The modulation of the exciting
source is assumed to be weak, i.e., a << 1. Thus,g

the incident field is comprised of three frequencies,
viz., o;, oy +Q, and w; — Q. The amplitude of
the latter two components is %a times that of the
central component and hence, is much smaller.
For a monochromatic laser (y,—0) the three com-
ponents will be well separated, this being also true
for a source with a bandwidth much smaller than
the modulation frequency (y,./Q << 1). If

¥¢ /1 >> 1 there will be considerable overlap be-
tween the three components. In the absence of
laser detuning (=0) and s =, the shifted com-
ponents w; + ) and w; — () are exactly resonant
with the | 1)<«>|3) and |2)<>|3) transitions,
respectively, while the central component w; is on
resonance with the

|J =0,m;=0)—|J =1,m;=0)

transition [refer to Fig. 1(b)]. The average intensi-
ty produced by such a source will be

I()=+5&3(1+a cos)?
z%f%( 14 2a cosQlt) ,

since the modulation index a is considered to be
weak. Throughout this paper we will ignore the
terms of order a2. It is to be noted that as long as
one continues to ignore the terms of the order of a?
the modulation of the intensity and the amplitude
are equivalent. In the dipole approximation the
Hamiltonian for the interaction between the atom
and the external field is

H. (t)=—d-E(1), 2.4)

where d is the atomic dipole moment operator
having only off-diagonal elements. The equations
for the evolution of the diagonal and off-diagonal
matrix elements are easily obtained as

%
—g:—1=—2y1511+[ia1(t)(1+a cosQ)py; +c.c.],

aﬁn .y~ . ~ P ~

a5 = —(V1+7Y2+2is)pp+ia(t)14a cosQt)ps, —iaz (1)(1+a cosQt)pyy ,

P13 . . ~ o~ . ~
e —[v1+i(6—8)1p13+ia;(t)(1+a cosQt) (P33 —p1;) —iay(t)(1+a cosQt)py, ,
9P - . -

5 = —2ypn+[ia)t)(1+a cosQt)ps,+c.c.],

P23 . ~ . ~ . ~
—5t——=—-[72—1(.¢+8)]p23+1a2(t)(1+a cosQ)(p33—Pan) —ia(t)(1+a cosQt)py, ,
P33

Y

27111 +2vPn+ial()(1+a cosQt)p 3 +ia3 (t)(1+a cosQt)py+c.c.],
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where the incoherent terms correspond to spon-
taneous emission,'® and where the oscillations at
optical frequencies have been removed by
transforming to the slowly varying quantities

~ ~ iopt
Pii =Pii> P13=P13€ ,
. (2.6)
~ ~ la)Lt
P12=pP12, P23=pP23€ )
and neglecting terms with eHeLt [rotating-wave
approximation (RWA)]. The parameters a,(?),
a,(t) are defined by

2a1(t)= 313' ?oe"m” y
(2.7

202([)“’——‘ 323' S?Oe‘m“) ,

and 2y, (2y,) represents the transition probability
per unit time for spontaneously emitting a photon
in the transition |1)—|3) (|2)—|3)). Equa-
tion (2.5) involves the phase ®(¢) in a nonlinear
fashion. By a redefinition of the variables the
equations may be written as a linearized set of
equations. On introducing the variables

o1=p11, 02=P12,

03=513ei¢(”7 0’4=0'; ’
(2.8)
|
—2n 0 —ia} 0
0 —YN—Y2—2is —ia} 0
—2ia, —io —¥1—i(s—8) 0
0 0 0 —]/1—7/2+2ié
~im 0 0 —ia,
2i ;
11 .0‘ 0 +ialy
ia; ia) 0 0
By3;=Bg=—B7;=—Bg=—1,
(2.11)

Ci=0, Cj=4;,

the remaining elements of B being zero. Equation
(2.9) has the form of the standard equation of the
multiplicative stochastic processes discussed in de-
tail in Ref. (16) from which it follows that the
average of o over the distribution of @ satisfies the
exact equation

(6Y=A(o)—v.Alo)+I
+acosQt(C(o)+1I),
Aii=1 for l.=3’6’7’8‘1

(2.12)
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Os=Pn, Os=pae'®?,

07=ﬁ3le_i¢(t)9 08202 ’

and the normalization condition 4Py +p33=1,
the coupled Eq. (2.5) may be written in matrix
form as

o(t)=[A4 —iu(t)Blo(t)+1

+a cosQt[Co(t)+1], (2.9

where o(¢) and I are the following column matrices
of order 8:

oy(t) 0
03(t) ia1
o= 201 1=| o | 2.10)
0'6(t) iaZ‘
0'7(t) '—ial
Ug(t) _a;

while 4, B, and C are the following square (8 X 8)
matrices:

0 0 ia, 0

0 0 0 ia1
—ia, 0 0 0

0 —ia} ia, ,0 ,
-2y, —ia} 0 ia;
—2ia; —y,+i(s+9) 0 0

iaf 0 —Yi+i(5—8) 0
2[(1; 0 0 ——‘)/2—!(J+8)

l

the remaining elements of A being zero. Thus, the
diagonal elements of the density matrix are unaf-
fected by the phase fluctuations present in the laser
beam, while the effect on the off-diagonal elements
is to alter the decay rates as

Yi—="i+Ye,
(2.13)

Yo=Y t+vYe -
This is an example of the substitution rule which

has been emphasized in the context of optical reso-

nance.'”"!8
We are interested in the shape of the detection
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signals L(X) and L(Y) obtained when one mea-
sures the total intensity of the modulated fluores-
cence along the Z and X directions with linear po-
larizations X and ¥, respectively. These can be
easily related!* to the populations of the Zeeman
sublevels | 1), |2), and the Zeeman coherence be-
tween these two levels

L{§} <pi1+pnt2Repyy, (2.14)

where we have made use of the following relation-
ship (phases of wave functions properly chosen) for
the dipole matrix elements between a Zeeman sub-
level and the ground state

(2.15)

The ensemble-averaged signals will then be
L{f} < (o)) +(as)+2Re(a,) ,
(2.16)

where we have made use of Eq. (2.8). Thus, in or-
der to study the detection signals we must obtain
the solutions of Eq. (2.12). These equations consti-
tute a set of eight coupled equations for the
ensemble-averaged quantities (o) and can be
solved by straightforward Laplace transform tech-
niques. However, for general values of the parame-
ters occurring in the problem the solutions will re-
quire the inversion of 8 X 8 matrices which is
cumbersome. We will obtain analytical expressions
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for the intensity of the modulated fluorescence at
steady states for weak laser fields, studying limiting
cases in laser bandwidth in detail with numerical
plots for sources of arbitrary bandwidth. The case
of the fields with arbitrary intensity and bandwidth
will be studied numerically.

ITII. MODULATED HANLE SIGNALS IN
PARTIALLY COHERENT FIELDS

A. Weak fields

In this subsection we consider the optical source
used to prepare the atom in a coherent superposi-
tion of the Zeeman sublevels as a weak, partially
coherent one. Since the depth of modulation of the
exciting source is assumed to be very weak
(a << 1), the solutions of the coupled Egs. (2.12)
may be studied within the framework of a pertur-
bation theory. Thus, we may expand the ensemble
averaged (o) in a power series with a as the ex-
pansion parameter

(0)=(a)V+(a)"+(a)?+

We further assume the exciting source to be weak
(a/y << 1), and study the signals which are linear
in the laser intensity, i.e., to second order in a.
Within these approximations we obtain the follow-
ing results for the required density-matrix elements
[the subscript (superscript) denotes the order with
respect to the field (modulation)]:

(3.1

a_ aa® e 1 1 1
(p1(x)))= » + ; + -
2 2y+iQ | Y+Y.+i(3—=8)  y+y.—i(6—8) y+vy.+i[Q+(s-8)]
+ ! +c.c (3.2)
Y4y +i[Q—(5—-8)] o '
(B o0)) V)= L 1 N 1 N 1
Pz D72 2y4iQ | Ve +i48) | Yy —i(648) | Y4y +i[Q+(5+8)]
+ 1 +c.c (3.3)
Y+Ye+i[Q—(5+8)] o '
1y aa? o' 1 1
(plz(oo ) 2= N . + .
4 y+i+Q/2) | y+ye+i(348)  y+y.+i(Q+s+8)
+aa2 e it 1 4 1
4 YHiG—072) | y+7.410+8) | ytretiro—o) |7 (3.4)
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where the ellipses represent terms with 8——38.
The fluorescent light will thus be modulated at
the same frequency as the exciting light, while the
amplitude of modulation will exhibit resonances.
The modulated fluorescence may be observed with
a phase-sensitive detector, which enables the cosine
and sine component of the fluorescence to be stu-
died separately. The resonances in the amplitude
of the sine or cosine component may be studied by
varying the magnetic field (hence the Larmor fre-
quency or Zeeman splitting of the excited state) for
a fixed frequency of modulation, or by changing
the modulation frequency of the exciting source for
a fixed strength of the static magnetic field. In
general, the magnetic-field scan of the modulated
fluorescence will exhibit resonances whenever the
Zeeman splitting has the values s =+8,Q+9,
—0+8, +Q/2. The resonance at 5=+ /2 has a
width y, while the width of the remaining reso-
nances is dependent on the laser bandwidth and is
given by y+7,.. The shape of these resonances
may be absorption or dispersion with considerable

&y Y
424+0 T a2 02

L g} = 2aa?®cosQt

Q 0
42+ T a2

overlap depending on the magnitude of the param-
eters Q, 8, 7, ¥.. The resonances at s =8, +{Q+8
(—8,+0Q—38) correspond to the matching of the
atomic energy level |J=1,m;=1)

(|J =1,my=—1)) with the three frequencies
present in the exciting light. The resonances at
3=+Q/2 arise due to the interference between the
probability amplitudes of the photon emissions in
the transitions

|J=1,m;=1)<>|J =0,m;=0)
and
|J=1,mj=—1)«|J=0,m;=0) .

We first study the conventional magnetic-field scan
of the modulated Hanle signals.

1. Magnetic-field scan of signals

Further simplification of (3.4) for the case of
resonant excitation (8§=0) yields

2y,

(ZL1+25)

2y
42+ a2 2

(gl*gz)i #‘(334'&?4)
4y +0?

. 20 20 Q Q
+2aa?sinQt + Lo+ T (L 1+ L)
42402 4240 |70 42402 T 4241 02 1+=<3
2y 27, 47c
T (D — D)+ ———(D3—D,) |,
P+ @ Taker | T T Tyl T T ]
(3.5)
where
_ Y+Ye 3 = Y+7Ye 240
0*( 2, 2 J0= 2, 2° 1= 2 27 1= 2 20
Y+ve) 4o (Y4+ye ) +2 (Y+7 ) +(+Q) (Y+7 ) +(+Q)
Y+Ye P s—0 P Y _ s+8Q/2
= ’ = ’ 3= ’ =TS 5
T P+ 6—02 " T (4P (-0 P46+0272" 7T P2 16+0/2)
—Q/2
K% =___L’ D ____"—.__.._ X (3.6)
T r6—022" T P02y

Thus, there are resonances in the amplitude of
the sine and cosine component of the modulated
fluorescence at field values (»=gH)

[

H =0,+0/2g,+Q /g where g is the gyromagnetic
ratio. The width of the resonances at field values
0,+€ /g is affected by the bandwidth of the fluc-



tuating laser beam, the laser bandwidth (y,) simply
adding to half the radiative bandwidth (y) to give
the width (y+7,) of these resonances. However,
the resonances obtained when the modulation fre-
quency is equal to the separation between the Zee-
man sublevels (= +2) have a width y associated
with the spontaneous decay of the excited state
only. As may be seen from (3.5), the weight factor
of each resonant structure depends critically on the
bandwidth of the exciting source besides its fre-
quency of modulation. It should be borne in mind
that one expects additional resonances in higher or-
ders of perturbation theory, i.e., terms of order
higher than a. The resonances in the modulated
signals could be understood as follows—the reso-
nances at s = +{) essentially arise due to the ab-
sorption of photon with frequency w; +{2. Note
that the intensity of emission has contributions

J
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from the populations p;; and p,, of the excited
states and the population of the excited states is
given by the absorption line shape which is known
to have a width (y+7,) in the limit of weak fields
[cf. the damping term in the {(o3) Eq. (2.12)].
Therefore, the modulated signals at s = +() have
absorptive and dispersive type of contributions
with width (y+7v.). The resonances at s=+/2
arise due to the interference term Rep, in the in-
tensity of fluorescence where Rep,, represents the
optical coherence between the two magnetic sublev-
els induced by the exciting field. In the rotating
frame Rep,, has the oscillation frequency 25 and
the damping parameter associated with p; is 2y.
Therefore, this leads to extra resonances at
s=1/2 with width y. We now consider the fol-
lowing limiting cases explicitly.

i. Broadband excitation. If the optical source used to prepare the atoms in a coherent superposition of the
Zeeman sublevel is a weak, incoherent broadband lamp such as a discharge tube (y,— o such that a/y.
remains a constant equal to say f3), then (3.5) reduces to

|

£ 4y 1 Y Y
L = 4acos{)t +—= +
7] B 240172 | P+06+027  P+06-072)
. 20 1 s+Q/2 s—Q/2
4afBsinQt +— —
+4ap 4240272 [ P+06+Q/27  P46-0/2)?

which agrees with the results of Corney and Series’
for signals detected perpendicular to H [which cor-
responds to the latter choice of sign in expression
(3.7)], the incident light being linearly polarized at
right angles to the magnetic field direction. The
result was later verified experimentally by Corney.®
Thus, as the magnetic field is scanned around zero
value resonances appear in the amplitude of modu-
lation for field values H =+ /2g, the shape of
these resonances being Lorentzian (dispersionlike)
for the cosine (sine) component of the fluorescence,
the width being determined by the natural width of
the excited state. In general, for small frequencies
of modulation the resonances at s=+{/2 in the

I

-

amplitude of the cosine or sine component overlap.
Use of higher frequency of modulation of the excit-
ing source (/y=10, as in Figs. 2—35) results in
well-defined Lorentzian (dispersion) shaped reso-
nances at s=+{/2=+5 for the cosine (sine) com-
ponent of the fluorescence detected parallel or per-
pendicular to the magnetic field when y./y>> 1
(see the dot-dash curves of Figs. 2—5 which corre-
spond to ¥, =5y). The signals detected along the
two directions are similar in shape but inverted
about the horizontal axis (compare Fig. 2 with Fig.
4, Fig. 3 with Fig. 5), as may also be seen from
(3.7), this result having been confirmed experimen-
tally by Corney.®

|
ii. Monochromatic excitation. For a strictly monochromatic laser beam (y, =0), expression (3.5) simplifies
to
£ 2 4y 2y Q 1
L{3%}=2aa*cos{}t Lo+ (L1\+ L)) — | ——= 57 |(2,—Z,)
{?} 472+QZ 0 4’}’2+02 1 2 4*}/2+02+Q 1 2
. 2Q 2 1 2y
+2aatsinQt | |———+= | Lot |———=F= [(L1+ L))+ (9,—2,) | .
T i L e REY )
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FIG. 2. Magnetic-field scan of the amplitude of the
cosine component of the modulated fluorescence detected
parallel to H for Q/y=10 and for the following values
of the bandwidth parameter: (a) s Ye=0; (b) ----- ,
Ye=Y;(C)---- » Ye=5Y.

Hence, in contrast to the broadband excitation, we
expect resonances in the magnetic field scan of the
modulated fluorescence whenever s=0,+{. The
physical origin of these resonances may be under-
stood as follows: At §=0 the relevant magnetic
sublevels of the J =1 state have the energies w; +.
The three components of the exciting light are

o ,0; +8. Thus, the central component excites
the atoms resonantly when s =0 while the shifted
components are off resonance. At s=+( the
shifted components are in resonance with the
|1)<>|3), | 2)<>|3) transitions, respectively, but
w; is off resonance. The resonance at s=+1/2
disappears since for monochromatic excitation
none of these components is at resonance. In fact,
as discussed earlier, this resonance arises from
Rep ), in the intensity of the fluorescence light and
is a measure of the optical coherence between two
magnetic sublevels. This coherence can be shown
to be directly proportional to the bandwidth of the
exciting field and hence, vanishes in the mono-

|
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FIG. 3. Magnetic-field scan of the amplitude of the
sine component of the modulated fluorescence detected
parallel to H for the same values of the parameters as in
Fig. 2.

chromatic case. Of course, if one allows for the de-
tuning of the applied field and if this is set at say
/2, then it follows from the discussion following
(3.4) that the magnetic field scan will reveal reso-
nances at s =+ /2= +8 even in the mono-
chromatic case. The resonance at s =0 is Lorentzi-
an while the resonances at s = +{) have both
Lorentzian and dispersion parts with different
weight factors. When Q/y=10 (Figs. 2—5) the
resonances are clearly resolved. Use of a higher
value of modulation frequency also has the added
advantage of making the weight factors of the
Lorentzian and dispersion shaped parts of the reso-
nances at s = +{) very different from each other so
that either one of them is predominantly present at
3=+, thus making the interpretation of results
easy. The signals detected along and perpendicular
to the magnetic field are no longer similar in shape
for a particular component of the modulated
fluorescence. For instance, the resonance at s =)
in the amplitude of the cosine component is a
Lorentzian for L (X) (solid curve of Fig. 2) and is
predominantly dispersion shaped for L () (solid
curve of Fig. 4), as may also be verified from (3.8).

iii. Intermediate case. For an optical source with bandwidth of the same order of magnitude as the radia-
tive width of the excited state (. ~7), the expressions (3.5) for the signals simplify to

40

L (%)« cos@t——(#4+ #,)+sinQ
+

L(Y)x cosQt

4+

+Sith 2(!1+f2

2Q)
4’4+ Q

——8%[Jo+%(.]1+_72)—%(f3+14)]—

4y
A 4y2+(22(

5]1—92—@3+9/4)

Lo+
W+ O 4 ?

4y (@3_94)] ,

20

Thus, for signals detected along the magnetic-field direction the amplitude of the cosine component has a
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Lorentzian shaped resonance at =+ /2 (broken curve of Fig. 2), while for the sine component there are
resonances at »=0, +{)/2, the weight of the Lorentzian peak at s=0 (broken curve of Fig. 3) being much
greater than the dispersion shaped resonance at s =+ /2 for large frequencies of modulation. Magnetic-
field scan of fluorescence detected perpendicular to H reveals resonant structures corresponding to
»=0,+0Q/2,+Q with considerable overlap even for (}/y=10, as may be seen from the broken curves of

Figs. 4 and S.

2. Modulation-frequency scan of signals

We have seen that when atoms whose excited states have Zeeman structures are excited by light whose in-
tensity is modulated in time, then the fluorescent light modulated at the same frequency exhibits resonances.
These resonances may also be studied by tuning the modulation frequency of the exciting source for a fixed
strength of the static magnetic field. Simplification of Egs. (3.2) —(3.4) for the case of resonant excitation

yields
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FIG. 4. Magnetic-field scan of the amplitude of the FIG. 5. Magnetic-field scan of the amplitude of the
cosine component of the modulated fluorescence detected sine component of the modulated fluorescence detected
perpendicular to H for the same values of the parame- perpendicular to H for the same values of the parame-

ters as in Fig. 2. ters in Fig. 2.
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where
2 9
a0’ T g
=L, 21=2,,
33232, gé=—,@2, (3.11)
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f3=7j3, @3:—2-93’
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f4=7j4, 94=—7.@4.

Hence, there are resonances in the amplitude of
modulation of the fluorescent light whenever the
frequency of modulation is zero or equal to the
Larmor precessional frequency or twice of it, i.e.,
at 0=0,+s,+2s. The bandwidth of the fluctuat-
ing laser beam effects the width of the resonance at
Q= +5 only, the remaining resonances having a
width determined by the lifetime of the excited
state only. The shape of the detected signals is
critically dependent on the relative magnitude of
the Larmor frequency and the decay constants.
For small strengths of the magnetic field so that
the separation between the Zeeman sublevels is of
the same order as the natural width (s/y~1),
there is considerable overlap of the resonances. At
higher magnetic-field strengths the resonances are
clearly resolved and the effect of source bandwidth
more pronounced, as will be shown by the study of
the following limiting cases.

i. Broadband excitation. The signals (3.10)
reduce to

L(X)x cosQt(2.L+ L5+ L)
+sinQt(2D o+ D5+ 2D4)
L(Y)« cosQ(2.Ly— L5 — L)
+sinQt(2Do— D3 — D) .
Thus, when the optical source used to excite the
atoms is a weak, incoherent broadband one the

modulated fluorescence exhibits resonances at
0 =0, +25 of width 2y. These resonances are

(3.12)
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FIG. 6. Modulation-frequency scan of the amplitude
of the cosine component of the modulated fluorescence
detected parallel to H for s /y=35 and for the following
values of the bandwidth parameter: (a) , Ye=0; (b)

----- s Ye=V;(C) -+ -, ¥ =5Y.

Lorentzian (dispersion) shaped for the amplitude of
the cosine (sine) component of the modulated
fluorescence. The plot of the amplitude of the
cosine component (which is chosen for illustrating
the main features) detected parallel and perpendic-
ular to H is shown in Figs. 6 and 7, respectively.
The dot-dash curves of Figs. 6 and 7 correspond to
Y. =5y when the magnetic field is held constant at
s/y=35.

ii. Monochromatic excitation. The detection sig-
nals are

L(X) < cosQt (L) +L5)+sinQt( D)+ Z5) ,
~ (3.13)
L(Y)xcosQt(Z|—D5)+sinQt (L5 — L) .

In contrast to (i) [Eqgs. (3.12)], resonances are now
obtained at Q= +s of width v, the two detection
signals being entirely different for a particular
component of the fluorescence as may be seen
from the solid curves of Figs. 6 and 7 correspond-
ing to ¥, =0.

iii. Intermediate case. For an optical source of
bandwidth of the same order as the width of the
excited state (y, ~7), the detection signals are no
longer so simple:

L (X) < cosQt —H—(Zfb+f§+,f;)+‘—iﬁ—(@§—@;)
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Thus, for detection along the magnetic-field direc-
tion there are resonances at 1=0,+2s. The reso-
nance at =0 is Lorentzian (dispersion) in shape
for the cosine (sine) component of the fluorescence,
while the resonances at )= +2, have both
Lorentzian and dispersion parts with different
weight factors such that either one predominates
when s >> ¥ (broken curve of Fig. 6 corresponds to
the amplitude of the cosine component). The
modulated fluorescence detected perpendicular to
the magnetic-field direction exhibits resonances at
0 =0, +s,+2s so that for the case studied (s /y=5)
there is considerable overlap of these resonances
(broken curve of Fig. 7).

Intense fields

It is no longer possible to carry out the above
procedure for intense laser beams of arbitrary
bandwidth so that we have the general solutions
from (2.12) to first order in a (the depth of modula-
tion of the exciting laser is always assumed to be
weak),

(o oo ))‘”=%[ (IQ—A+y.A)" e
+ (—iQ—A +7.A)" e ™)

X[C{o(e))V+1I]. (3.15)

In order to obtain analytical expressions for the
signals we would have to invert 8 X 8 matrices and
find their products, which though possible in prin-
ciple is extremely cumbersome and would yield
complicated expressions which lend no insight into
the problem. Hence, we study the modulated
Hanle signals in intense laser beams numerically.
For intense laser fields (a >> 7,7,,4,6) one expects
the resonances in the amplitude of modulation to

FIG. 7. Modulation-frequency scan of the amplitude
of the cosine component of the modulated fluorescence
detected perpendicular to H for the same values of the
parameters as in Fig. 6.

yield the energy spectra of the composite system
consisting of the atom and the coherent laser field,
i.e., resonances are expected in the modulated
fluorescence corresponding to the dynamical stark
splitting of the various energy levels. An idea of
the position of the resonant components may be
obtained by finding the eigenvalues of the resonant
part of the Hamiltonian (without the damping
term), which now requires dealing with 3 X 3 ma-
trix. The resonant Hamiltonian may be written as

s—0 0 —a
H=|0 —-—s—-86 —a (3.16)
—a —a 0

and the secular equation | H —kT| =0 yields the
following cubic equation for the eigenvalues:

AMA+5+8)A—s+8)—2a%(A+8)=0.
(3.17)

For arbitrary values of the detuning there are no
simple factorizations of the cubic equation and the
roots have a complicated form. In the special case
of the saturating laser field being resonant with the
atomic transition |J =0,m;=0)— |J =1,m;=0)
(6=0), the eigenvalues have the simple form

A=0,+ay ai=s2+2a>. (3.18)

In the magnetic-field scan of the signals we ex-
pect the correspoding resonances to show up at
Larmor frequency equal to s = +(Q%/4—2a%)172,
+(0%—2a%)%, If Q/a << 1 the modulated signals
are similar in shape to the weak-field case so that
the modulation frequency must be fixed at a much

FIG. 8. Same as in Fig. 6 but for a/y=10.
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FIG. 9. Same as in Fig. 7 but for a/y=10.

higher value than the Rabi frequency for these
peaks to be well resolved. When the modulated
fluorescence is scanned as a function of the modu-

lation frequency (some typical scans shown in Figs.

8 and 9), resonances are expected at 0,+a,, +2a,
provided of course their weight is not zero. The

resonances at =0, +a,, +2a, are the analogs of
the resonances at =0, +s,+2s in the weak fields.
The weight factors of these lines can be calculated
using secular approximation as was done in Ref.
(13) and yields the results in agreement with nu-
merical computations shown in Figs. 8 and 9.

The signal detected perpendicular to the direc-
tion of the magnetic field exhibits well-defined
resonant structures at ) = +a,, +2a,, while the
fluorescence detected along the magnetic field exhi-
bits sharp resonances at )= +2a;, only as shown
in Figs. 8 and 9. These resonances are found to be
Lorentzian (dispersion) in shape for the sine
(cosine) component of the modulated fluorescence
in both the directions. The effect of laser
bandwidth is to alter the peak height as well as the
width of the resonances.
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