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Ray theory, for the construction of the successive positions of a wavefront governed by linear
hyperbolic equations, is a method which had its origin from the work of Fermat (and is related
to Huygen’s method). However, for a nonlinear wavefront governed by a hyperbolic system of
quasilinear equations, the ray equations are coupled to a transport equation for an amplitude
of the intensity of the wave on the wavefront and some progress has been made by us in its
derivation and use. We have also derived some purely differential geometric results on a moving
curve in a plane (surface IR?), these kinematical conservation laws are intimately related to
the ray theory. In this article, we review these recent results, derive same new results and
highlight their applications, specially to a challenging problem: sonic boom produced by a
maneuvering aerofoil.
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1. RAY EQUATIONS AND FERMAT’ S PRINCIPLE

Waves involve transfer of energy from one part of a medium to another part, usually without transfer
of material particles [5]. When we take such a general definition of waves, we may not be in position
to identify some special propagating surfaces which we shall like to call wavefronts (propagating
with finite speeds). Identification of a wavefront requires an approximation: there is a more rapid
change in the state of the medium as we cross the wavefront transversely compared to more gradual
changes in the state, which is already present prior to the onset of the wave, or when we move
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along the wave front (PR3.21).. Thus, when we encounter a wave we can see a short wavelength
variation in the state of the system at a given time or a high frequency variation with respect to
time at a fixed point. Let us denote a wavefront at a given ftirng Q);, then as time change<?;
occupies different positions ifx)-space. Identification of a wavefrof¥ implies finite speed’ of
propagation of2;. LetQ); be represented by

Qi :p(x,t) =0, xe Rt IR (1.1)
then

C=—&/|vo|. (1.2)

Evolution of); is given with the help of a ray velocity and this ray velocity can be obtained
only when the nature of the cur¢g is known i.e., by the dynamics of the curve. For example when
Q; is a crest line of a curved solitary wave on shallow wageis given by water wave equations
and boundary conditions on the surface of the water and the bottom surface [1].

Position of the surfac®; can be obtained frofy,, (¢t > () as the locus of the tip® of rays

starting from points% on€2;, and moving with the ray velocity i.e., dit{ = x (see equation (1.6a)
below). The ray velocity at any pointk of ), depends also on the unit normabf 2, atx. Thus
X = x(x,t,n). The velocityC' of €2, is the normal component of i.e.,

Using (1.2) and (1.3) we get the eikonal equation
b+ (x, V9) =0 (1.4)

which is a first order nonlinear partial differential equation giving successive positiéhsaaftime
evolves.

Theoreml1 — In order that the vectox (x, t,n) = (x1, x2, - - - ,» Xm ) qualifies to be a ray veloc-
ity, it must satisfy a consistency conditif22]

na—— _
ﬁ@na

ngny ( 0 nO‘@ig) Xy =0, foreacha=1,2,---,m (1.5)

Note: A repeated Greek index implies sum over the rége - - , m). Laterwe shall encounter
repeated subscripts j, k for which the range of summation will §&,2; - -, n).

PrRoOOF Derivation of this condition is simple when we note that the left hand side of (1.5)
appears as an additional term on the right hand side of (1.6a) below. This additional term is in-
consistent with the statement thats the ray velocity and hence must vanish. More explicitly the
eikonal equation (1.4) is a first order nonlinear equatipni (x(x,t, Vy/ | Ve |), V) = 0 for

1We shall frequently refer to various sections of the book [21] by PP followed by a hyphen and the section number.
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the functiong(x, t). This equation is a Hamilton-Jacobi equation. The Charpit equations of this first
order equation reduce to Hamilton’s canonical equations, which when writtendodn instead

of x andV give (1.6a,b) with the additional term on the right hand side of (1.6a). The theorem is
proved.

Thus when condition (1.5) is satisfied, we have also derived the ray equations from the eikonal
(1.4) in the form

dz,,
dat Xas (1.6a)
dnyg, 0
= — —_— = Yo, 1.
dt nEMy (8773) Xy = Ya, say (1.60)
where
0 0 0

— =Ng— — Ny 1.7
877% nﬁ@xa " Oxg (3.7)

o 0 . L
The denvatlve% represent tangential derivatives on the surfageWe may be tempted to

ask a question: does a ray defined by (16a,b) starting from one Bgir¢ IR™ to another point

Py € IR™ chooses a path such that the time of transit is stationary with respect to small variations in
the path? What we are asking is equivalence of rays given by (16a,b) to the rays satisfying Fermat's
Principle. It is easy to see this equivalence (PB:2.5) for an isotropic propagation of a wavefront

Q;, in which case

x=nC (1.8)

where(C is independent oh. In this case (1.5) is automatically satisfied. It will be interesting to
prove this equivalence for a general ray velogitgatisfying (1.5).

An important class of waves, called hyperbolic waves, appear in a medium governed by a hy-
perbolic system of partial differential equations. In this case every signal in the medium propagates
with finite speed in a very strict sense: if the state of the system is perturbed at any time in a closed
bounded domain, then the effect of the perturbation at any later time is not felt outside another
closed bounded domain. The signal in such a domain may travel with a shock ray vgleditgn
the governing hyperbolic system is derived from a system of conservation laws. In the case of a
curved solitary wave mentioned above, the crest line does represent a wave front propagating with a
finite speed but the solitary wave is not a hyperbolic wave [5]. It is governed by the KdV equation.

Consider a hyperbolic systemofirst order partial differential equationsin+ 1 independent
variables(x, t):

A(u,x, )y + B (u,x, t)u,, + Clu,x,t) =0 (1.9)
whereu € R", A € R™", B ¢ R™" andC € IR". Then the velocityC' of a wavefront

Q,, across whictu is continuous, is equal to an eigenvaluef (1.9) and(2, is the projection on
x-space of a section of the characteristic surfadsy at = constant plane. Note th&tis a surface
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in space time i.€x,¢) - space. This follows from the high frequency approximation (872 ,

§4.3) without the small amplitude assumption. Thus, we substituteu(x, t, o(x,?) ), Wwheree is

a small quantity, in the equation (1.9) and equate the leading order terms i.e. other terms of the order
1/e equal to zero. This gives the characteristics partial differential equation of (1.9) as the eikonal
equation and the result follows. The ray velocity compongntsorresponding to the eigenvalue

are given by the lemma on bicharacteristics [7]

OR
Xa = “?Ar (1.10)

wherel andr are left and right null vectors satisfying
1(na B —cA) =0, (neB® —cA)r=0 (1.11)
and

O:C:naxa = % (112)

Theorem2 — If x be a given by1.10)the compatibility conditio{1.5) is satisfied and the
rays are given by

dz,,

dt
dna 1 OB 0A
W = *ml {'I’LB <n7877(5 — Caﬁg) } r = wa, say. (114)

Further, the systen(l.9) implies a compatibility condition on a characteristic surfaQeof
hyperbolic system in the form
du ou

du () _ ou _
LS+ 1B = xad) g = 410 = 0. (1.15)

Note: The theorem in this form was first stated1i@], see alsadPP-§ 2.4). We give here a
complete proof

= (1B“™r)/(14r) = xq (1.13)

PROOFE Post (pre) multiplying the first (second) resultin (1.11)t¥) and using: = —¢;/| V¢ |
andn = 7¢/| V¢ |, we get the eikonal equation (1.4) , wheyés given by (1.10).

We note thal andr (and hencey) depend om but A and B(®) do not. Hence
oy _ o, 0 (1BOr
Ty ong Ty Ong 1Ar
- b [n <8(1)> {(Bwr) (14r) — (Ar) (lB(V)r)}}
(14r)? [ 7 \Ona
ny ™) _ RN
N {{ (1B )(lAr) (14) <1B r)} ( o (r)ﬂ

= o (g ©) (18 —ea) 1 (18 —cd) (55 0) | -
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Replacinga by G , we also gem%x7 = 0. Therefore, the condition (1.5) is satisfied and
(1.13) is proved .

In the equation (1.6b), the derivativ% and henceai operate ony, , which is a very
n La

complicated expression ik andn . In the original Charpit equations from which (1.6b) has been
derived involves differentiation with respectiq keepingg; and</¢ fixed i.e.,n fixed in (1.6b).

We use this information to simplify the right hand of (1.6b) in such a way that derivggesappear
Loy

only onA andB(™ . To do this we follow the producer of differentiation in (1.16), now with respect
to z,, instead ofh,, and finally we get

oBM) HA

OX~ 1 L 0B 04
7 Oz, 0z

This leads to (1.14). A proof of the third parti.e., (1.15) of the theorem is available j2RP-
The derivatives in the compatibility condition (1.15) on a characteristics surface so grouped

: L .. d 0 0
that each group represents a tangential derivativ@.ofhe derlvatlve% = 5 + Xag — along

aray is the time derivative along a bicharacteristics i.e., tangentfal tbcan also be shown (PP-

§ 2.4) that each of the derivativ@ =Y (Bi(f) — XaAl-j> Gi (j = 1,2,---,n) operating on

u; in the second term represents tangential derivatives notoérﬂ?/knnt also onf);. We note that

| no | = 0 so that onlym — 1 components ofi are independent and we can show that only- 1
equations in (1.14) are independent. For a linear hyperbolic system, the ray equations (1.13) and
(1.14) decouple from (1.15) and hence can be solved to give rays. For a quasilinear system (1.9), the

matrices4 and B(®) depend o and hence the terms on the right sides of (1.13) and (1.14), when
ou

5o
n, u is an under-determined un?e?ss: 1. Therefore, this system is of limited use for> 1 unless

high frequency approximation is made leading to the weakly nonlinear ray theory (WNLRT) or the
shock ray theory discussed in the next two sections. However, one important use is in development
of numerical methods, namely characteristic Galerkin method [12], a topic of very active research
today.

evaluated, would contain and In this case the system (1.13)-(1.15Rim + n quantitiesx,

2. A WEAKLY NONLINEAR RAY THEORY (WNLRT)

The high frequency approximation, mentioned in the end of the last section, when applied to a
hyperbolic system of partial differential equations, gives (PP - Chapter 4) a representation of the
solution in terms of a wave amplitudeand a phase functiop. The high frequency approximation
further implies that

(i) the functiong satisfies an eikonal equation, with the help of which we can define rays,

(ii) all components of the state variabiesf the system are expressed in terms of the an ampli-
tudew and the unit normah of the wavefront; : ¢(x,¢) = constant, and in addition
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(iii) when the expression far in terms ofw is substituted in (1.15) we get a transport equation
for the amplitudaw along the rays.

Thus, the high frequency approximation reduces the problems of finding the successive posi-
tions of a wavefront and the amplitude distribution on it to the integration of a closed system of
equations consisting of the ray equations and a transport equation. The ray equations and the trans-
port equations are decoupled for a linear hyperbolic system and coupled for a quasi-linear system.
When the amplitude of the wave is a small perturbation over a knowmsjiatee relation between
u — ug andw is linear. This leads to a simple weekly nonlinear ray theory (WNLRT) in which the
equations can be integrated numerically, at least in theory. We review these important results below.

The high frequency approximation was first applied in 1911 [26] to the wave equation

m g2

utt—a%Au:O, A:Z
a=1

o (2.1)

whereaqy is the constant sound velocity in the uniform medium. We shall briefly review the results

of high frequency approximation for the most general case as given in [PP - chapter 4], but in order
that the theory is clear we shall first present here the simplest case i.e. the case of the wave equation
(2.1). Small amplitude high frequency approximation of a perturbation of a constant basic state
u = 0 consists of assuming a solution of (2.1) in the form

u = euy (x,t,0) + uy(x,t,0) + - - (2.2)

wheree is small, )
0 == d(x,1) (2.3)

€

and¢ is the phase function. Substituting (2.2) in (2.1) and equating the first two order teerns in
both sides, we get

(67 — ap| v ¢*)ure0 = 0 (2.4)
and
(67 — ad| 7 ¢|*)u2ep + 2(Prurte — a§Pryt12,0) + (D1t — ADuors )u16 = 0 (2.5)

For a nonzero perturbation of orderui199 # 0 so that (2.4) gives the eikonal equation
¢ — ag| Vel =0 (2.6)

and consequently the ray equations

dx dn
E = 1nay, E =0 (27)

(2.7) shows that the set of all rays of the wave equation from a gbistarting at time are straight
lines emanating fronx™;

x=x"+n(t—1ty), n|=1 (2.8)
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wheren is constant. Time rate of change along a bicharecteristic or ray is given by

d _ 9 dw 9 0 00
dt ot dt oz, ot O"hg
1 o 4. 0
_ 9 249 2.9
s (‘%t a2 &,U) (2.9)

using¢; = —ag | V¢ | for a wave moving in the direction ef. There are two important quantities,
which frequently appear in the propagation of a curved wavetipnirhey are the mean curvature
2 (not to be confused with the characteristic surf@¢evhich is not in italics) and the ray tube area
A (PP< 2.2.3) related to the divergence of the unit normalf Q2; and the derivatives af by

1 dA 1
o _ _ Loaa_ 1.
SagA dr ~ 2t
= L (6n - av?) (2.10)
243V " ‘ |

Using (2.6), (2.9) and (2.10), we deduce from (2.5) the transport equatiengor

duig 1 dA
— = qp{? = ———uyyg. 2.11
dt aosctie 2A dt o ( )

We integrate this equation with respect to the fast varidlaled assuming that the amplitude is
non-zero only in ar neighbourhood o = 0 (i.e. # = 0), so that in this integration we may treat
Q and A to be constant, we get

%761”7 1 dA
gr - Gottur =

showing that the amplitude, satisfies

Uy = ulo/Al/z, U109 = constant. (2.13)

This is an example of a linear theory of wave propagation where the high frequency approxi-
mation (geometrical optics) gives a value of the leading tefnof the amplitude which tends to
infinity as A — 0 i.e., as a focus or a caustic is approached. The small amplitude approximation
implied in the expansion (2.2) breaks downAs— 0. In reality, the amplitude of the wave when
evaluated more accurately does remain finite [6, 11]. We shall see later that the genuine nonlinear-
ity present in the mode of propagation in consideration would prevent even the leading;tefm
perturbation to remain finite and of the same order as the order of its initial value. This is because
the nonlinearity avoids formation of a caustic, which is replaced by a new type of singularity called
kink (PP<$ 3.3.3). The WNLRT remains valid in the caustic region of the linear theory.

The basis of the weekly nonlinear ray theory applied to the system (1.9) for a wave in a mode
having genuine nonlinearity is to capture the wave amplitade u; of (2.2)) in the eikonal equa-
tion itself. One way to achieve this is to modify the expansion (2.3) bys@®-or [20]).
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qb (X7 t’ 6)

u(x,t,e) =ug + ev(x,t,
€

,€) (2.14)

V(x,t,0,¢) =Vo(x,t,0,¢) + ev(x,t,0,¢), 0= ¢ (2.15)
€
for a perturbation of a basic solutiam = ug of (1.9). It is possible to derive the WNLRT for
the general hyperbolic system (1.9), but in order to keep the derivation simpler, we consider the
reducible system (PP - p77)

A(u)u, + B (u)u,, =0. (2.16)

Now we substitute (2.14) and (2.15) in it and go through a long mathematical step§ &8 -
carefully collecting terms up to ordef. This leads to a derivation of equations of WNLRT with
long expressions of terms in the ray and transport equations. We write these equations for the Euler
equations of a polytropic gas

pt +{(aq,V)p+p(V,q) =0 (2.17)

1
q: + (q, V)q + ;Vp =0 (2.18)
pe+(q, V)p+ pa*(V,q) =0 (2.19)

whereu = (p,q = (¢1, g2, Q3),p)T is a vector whose components are mass depsituid velocity
q and gas pressuge anda is the local sound velocity

a® =yp/e. (2.20)

We take the basic constant solution to be a constant equilibriumsgate (pp,q = 0, po),
then the leading order perturbati®g is given by,

10 = p — po = €521, (20, T30, Da0) = enw, Tso =p — po = €poaoW - (2.21)

The ray equations and the transport equation of the WNLRT are given by

dx vy4+1 . dn v+ 1_
E = <a0 + € 9 w> n, E = GTL w (222)
and dw 0 +1
do _ [0 1. b = Qi
o= {Bt + (ap + € w)(n, V>} W = Ragw (2.23)
where
L=V —-n(n,V) (2.24)

and {2 is now the mean curvature of the nonlinear wavefi@nt Note that the symbol&,; and {?
represents respectively a surfacditi’ (herem= 3) and mean curvature 6f;. The components of
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the operatoll. represents tangential derivatives on the surfacel,, can be expressed as a linear
o 0
combination of the operato% (PP - p73).
"3
The equation (2.23) is a true generalization of the one dimensional Burgers’ equation
uug, = 0 to multidimensions. This can be seen from the fact that in one dimemsien(1, 0, 0)

1 L
vt zb)aa and then (3.23) reduces to the Burger’s equation in
v+1

d 0
sothatQ_O,a—aJr(aonLe

(¢, ') coordinateg¢’ = = — apt,t’ = t) for the variableu = ¢ w. The coupled system of

6 equations (2.22) and (2.23) (note that only two component afe independent) describe com-
pletely a new property (not observed before WNLRT was formulated): interaction of three indepen-
dent phenomenon (i) stretching of rays due to nonlinearity, (ii) diffraction of rays due to the gradient
of the wave amplitude on the wavefront and (iii) geometric amplification due to convergence of rays
(PP-pages 206-7).

T

3. SHOCK RAY THEORY (SRT)

When the moving surfac@, is a shockfront, special care is required in the definition of a shock ray
[16]. The shock ray velocity in a gas is unambiguously defined by

whereq; is the fluid velocity ahead of the shodK, the unit normal to the shock front antlis the
normal speed of the shock relative to the gas ahead of it. If we represent the shockQuehaay
time by s(x,t) = 0, then the eikonal equation or what we call a shock manifold partial differential
equation (SME), appropriately interpreted in [16], is
st + (dr, V)s + A|Vs| = 0. (3.2)
When we try to derive (3.2) from the jump relations or Rankine-Hugoniot (RH) conditions,
we run into difficulty. There are many other jump relations, which can be derived from the RH

conditions and each one of them would lead to an SME. For example, the well known Prandtl
relation for a curved shock, when expressed in terms

{st + (@i, V)s} {st + (ar, V)s} — aZ[Vs|> = 0 (3.3)
wherea, is the common critical speed on the two sides of the shock
al = (pr—p)/ (pr = p1) - (3.4)

The ray velocity obtained from (3.3) gives a different expression for the shock ray vejacity
The question arises: "are the shock ray velocities (or more precisely, shock ray equations) obtained
from different SMEs the same?”

The concept of a SME and their equivalence in the above sense was first discussed in [16].
Making further use of the RH conditions, it was shown that the shock ray equations given by the
two SMEs (3.2) and (3.3) are equivalent. This result was generalized in [24] for almost all SMEs.
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Since the high frequency approximation is satisfied exactly on a shock front, the derivation of
the eikonal equation and definition of a shock ray does not require any approximation. The next step
i.e., the derivation of the compatibility condition along a shock ray was done in 1978 independently
by Grinfeld [8] and Maslov [13]. The compatibility conditions form an infinite system and their
derivation involves extremely difficult mathematical steps. Hence we first write down these com-
patibility conditions in the case of one space dimensional problem and that too for a conservation
law from Burgers’ equation

ug + <;u2> =0. (3.5)
Consider a shock along a curée: = X (¢) in (x, t)-plane, then
dx(t) 1 B
~% 3 (u; +u,) = C, say (3.6)

wherew; andu, are states on the left and right of the shock. The state an X (¢) satisfies
u; + uu, = 0which we write as,

ut—l—%(u—i—u?«) Uy = —% (u — up) ug. (3.7)
Taking the limitz — X (¢)—, we get
duy 1 d o 1 0
I 32 (ug — ur) (ug)r, i a"—i(ul"—ur) o (3.8)
Differentiatingu; + uu, = 0 with respect tar we get,
(uz); + u(us), = _“;Qr
which we write as
1 1
(uz); + ) (u+ur) (uz), = ) (u—ur) (uz), — “325 (3.9)
and taking the limit ag — X (¢)—, we get
Cl(ux)l o 1 2
a2 (w — ur) (ugsz); — ((uz)r) (3.10)
where again
d 0 0
72 +C g (3.11)

represents the rate of change as we move with the shock. This way, an infinite system of compati-
bility conditions can be derived.

We define the limiting value of the ith derivative ofon the left of the shock divided by by
V; (t) i.e.,
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vi(t) = ! lim O'u

S, i=1,2,3,- - 3.12
7: :L'—>X(t)— axz7 4 ) 9y ) ( )

and introducey(t) = u;(t). The equation (3.6) and the infinite system of compatibility conditions
alongQ2 are (PP§ 7.1)

dX 1
_ 1 ) 1
7 5 (UO +u ) (3.13)
du 1
—dto = -5 (up — uy) vy (3.14)
dv; i+1 i+1« .
— = = (up — uy) Vg1 — E Vjvi—j41, ©=1,2,3,--- (3.15)
dt 2 2 =

Given an initial valueu(z,0) = ¢(x) for (3.5) with a single shock aX,, we can derive initial
values ofX (t), uo(t), v;i(t), i =1,2,3,-- - in the form

X(O) = Xo, UO(O) = U,

. (3.16)
’UZ(O) = Vi, t = 172737 o

However, we face new problems (PF7-2):

e The solution of an infinite dimensional problem (3.13) - (3.16) is more difficult than the
Cauchy problem for the original conservation law (3.5).

e For an analytic initial valueé(z) for (3.5) in a neighbourhood af = X, the analytic solution
of the problem (3.13)—(3.16) is unique and give a functién, t) by

o0

u(z,t) =uo(t) + Y _vi(t)(x — X(8))' (3.17)
=1

which tends in a neighbourhood of = X (¢) to the analytic solution of the initial value
problem for (3.5) for small time.

e For a more general non-analytic initial data, the solution of initial value problem (3.13)—(3.16)
iS non-unique.

Ravindran and Prasad [24] proposed a new theory of shock dynamics by segtting= 0 in
the nth equation in (3.15) so that the first- 1 equations in (3.14) and (3.15) form a closed system.
Then the first (n+2) equations in (3.13)-(3.15) form a system of ordinary differential equations,
which can be easily integrated numerically with initial data (the first 2 in (3.16)). The new
theory of shock dynamic gives excellent results for the case when > 0 behind the shock at
x = Xg. There are many open mathematical questions to be answered but this method has been
very successful for many practical problems in multi-dimensions - we shall mention these later on.
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Derivation of the compatibility conditions from Euler's equations (2.17)—(2.19) along a shock
ray given by the shock ray velocity (3.1) requires extremely complex calculations (in fact it is
complex even in one-dimension) (PP8.2). Hence we present a derivation for a weak shock from
the equations (2.22)—(2.23) of the WNLRT (PR10.1 or [14]) - this was first proposed in 1993
[17]. For such a shock we have a theorem, first stated in [16] in 1982 (Theorem 9.2.1, PP - p267),
which states

Theorem3 — For a weak shock, the shock ray velocity components are equal to the mean of the
bicharacteristic velocity components just ahead and just behind the the shock, provided we take the
wavefronts generating the characteristic surface ahead and behind to be instantaneously coincident
with the shock surface. Similarly, the rate of turning of the shock front is also equal to the mean of
the rates of turning of such wavefronts just ahead and just behind the.shock

Consider a shock front propagating into a polytropic gas at rest ahead of it. Then the shock will
be followed by a one parameter family of nonlinear wavefronts belonging to the same characteristic
field (or mode). Each one of these wavefronts will catch up with the shock, interact with it and
then disappear. A nonlinear wavefront, while interacting with the shock will be instantaneously
coincident with it due to the short wave assumption. The ray equations of the WNLRT in three-
space-dimensions for a particular nonlinear wavefront are (2.22). We denote the unit normal to the
shock front byN. For the linear wavefront just ahead of the shock and instantaneously coincident
with it (this is actually a linear wavefront moving with the ray velocity: multiplied by the local
sound velocityng), w = 0 and the bicharacteristic velocitySaq. For the nonlinear wavefront just
behind the shock and instantaneously coincident with it, we denote the amplitogde, .. Then
e is a non-dimensional shock amplitude of the weak shock under consideration. Using the above
theorem and the results (2.22) with= N, we find that a poinK on the shock ray satisfies

dX 1 y+1 v+1

— = = N+ N 1 =N 1 A1
aT 2{00 + ao< +e€ 5 M>} ao< +e 1 u) (3.18)
AN 1 v+1 _ y+1

T - "3 {O—I-e aOLu} = —¢ aoLip (3.19)

whereT is the time measured while moving along a shock ray. We takea,; andn = N in
(2.23) and write it as

dp 0 vy+1
T = {m—kao(l—ke 1 u)(N,V)}u

+1

1
= —500(V. Nju — el —u(N, V) (3.20)
where we note that since is defined only on the shock front (and also on the instantaneously
coincident nonlinear wavefront behind it but not on the other members of the one parameter family
of wavefronts following it), the normal derivatiV@N, V) dose not make sense. We introduce new



RAY THEORIES FOR HYPERBOLIC WAVES, KINEMATICAL CONSERVATION LAWS 479

variables, defined on the shock front:

V =€ {<N7 v>w} |ShOCk front ,U’Q = 62 {(N; v>2/lD} |Sh0Ck front (321)

where powers of appears to make bofli and ., of O(1) since variation ofv with respect to the
fast variabled (introduced in (2.15)) is of the order @fand hence< N,V > w = O <1) and

€

<N, V>2w=0 <2) The equation (3.20) leads to the first compatibility condition along a
€

shock ray
dup v+1
a7 = ap 21t 1 uVv (3.22)
where
1
s = —§<V,N> (3.23)

is the value of the mean curvature of the shock. To find the second compatibility condition along a
shock, we differentiate (2.23) in the directionmwbut on the length scale over whiéhvaries. On
this length scalen is constant and we get, after rearranging some terms,

{gt + (ao + JI 1@) (n, v>} (n, V) b = —%ao<V,n><n, V)w

v+1
4

{(n, V)w}? — e——

e V)2 . (3.24)

—€
Writing this equation on the wavefront instantaneously coincident with the shock, multiplying
it by € we get

d 1 1
W oy =1Ly ot

2
T 1 T (3.25)

which is the second compatibility condition along shock rays given by (3.18) and (3.19). Similarly,
higher order compatibility conditions can be derived.

Thus, for the Euler’s equations, we have derived the infinite system of compatibility conditions
for a weak shock just from the dominant terms of WNLRT. As we have already mentioned, the
shock ray theory is an exact theory (weak shock assumption is another independent assumption)
but since there are infinite number of compatibility conditions on it, it is impossible to use it for
computing shock propagation. We now use the new theory of shock dynamics (NTSD) according
to which the system of equations (3.18), (3.19), (3.22) and (3.25) can be closed by dropping the
term containingus in the equation (3.25). This step is justified in the cise- 0, which occurs
very frequently in a applications such as a blast wave. But for multidimensional problems, dropping
o gives excellent results in all cases [3]. When we consider propagation of even stronger shocks
in gas dynamics, the results of [PP - chapter 8] shows that neglecting the:terin the second
compatibility condition gives good results for one space dimensions not only Wher but also
whenV < 0 (as exemplified by the accelerating piston problem after an initial push of the piston).
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4. KINEMATICAL CONSERVATIONLAWS IN TWO SPACE DIMENSIONS

Kinematical conservation laws (KCL) are equations of evolution of a moffimg- 1)-dimensional
surfacef); in IR™. These equations are in conservation form in a special coordinate system, namely
the ray coordinate systef, &2....6m—1,t). Since we have been able to make many important
applications of KCL only in two space dimensions, we restrict our discussion only to two space
dimensions. We denote the spatial coordinates bypdy. The unit normalny, ny) is expressed in
terms off by ny = cos 6, no = sin 6. Let us assume that the motionf is governed by its points

moving along rays according to
dx dy

g el 4.1
o XL g =X (4.1)

where the ray velocity fielgyk depends on the nature 8f. We define a ray coordinate systeén)
such thatt = constant is a ray ang: constant is the wavefrof?; at timet¢. Let g be the metric
associated witlj i.e., gd¢ is an element of length alori@;, then

0 0 0
—_ 2.2 I
g =\/T+yg and ¢ < sin 98:5 + cos 98y> . (4.2)

The normal and tangential componentg@fdenoted by andT respectively, are
C =nix1+naxe, T = —na2x1+nixe. (4.3)

If P(z,y) be a point orf); andQ(x + dz,y + dy) be an arbitrary point of, 4, then we can
reach@ from P by moving along the ray({dt¢ along the normal té2, from P and7'dt along the
tangent ta2;, 4;) and then moving alon@,, 4 by gd ¢ (see [19] and PP §3.3.2). This gives the
differential relation betweenif, dy) and (¢, dt) from which we can derive,

re x \ [ —gsinf Ccosf —Tsinf (4.4)
Ye Yt B gcos Csinf+Tcosh |~ '
For a smooth curv€); and smooth ray velocity, the resultsy; = ;¢ andye; = ¢ give the
required pair of kinematical conservation laws:
(gsinf); + (Ccos 0 — T'sin 0)¢ =0 (4.5)

(gcos 0); — (Csin 0 4 Tcos 0)¢ = 0. (4.6)

In two dimensions, the ray equations (1.6) reduce to

dx dy de 1 ( xa 8)@) @.7)

E:Xb EZX& az—g n1 ¢ —I—TLQ(%

Theorem4 — Let x be a smooth function of, y, ¢t and n, and satisfy(1.5). Then the ray
equationg4.7)for the propagation of a smooth cur¢g are equivalent to the KC[4.5)and (4.6).
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PrRoOOF The proof that the ray equations imply KCL is too simple. Giges a function of
z,y,t and@d, and an arbitrarily prescribed,, we can construct the rays and the family of curves
;. Then we choose a variabfeand construct the ray coordinate syst&t). g is given by (4.2).

As long as a singularity does not appear(an the mapping fron{x, y) plane to(¢, t) - plane for
a given(); is well defined and one to one. Now we can derive KCL in just few steps (as shown
above). Alternately, we shall show that it is simple to deduce the differential from of KCL

1 1
0; = —505 + ETH& gt = COc + T (4.8)

from the ray equations (4.7). Using = n1C — nT andys = n2C + nyT and noting thatl/dt
become®) /ot in (&, t)-plane, we find that the third equation in (4.7) reduces to the first equation in
(4.8). We now differentiate the relatigff = 7 + 7 with respect to and usen; = y¢/g, no =
—x¢/g and also use; = x1, Y+ = x2 to get the second equation in (4.8).
To prove the converse, we note that (4.5) and (4.6) imply existence of two funetiong, y(&, t)
satisfying (4.4). The mapping frog, ¢) to (x, y)-plane is one to one as long as the Jacobian
Oz, y)
9(&,1)
does not vanish and remain finite. Image of a line- constant in(¢, t)-plane is a curve, let us
denote it byt);, along which¢-varies. The first column of (4.4) givag = —gsinf, y¢ = gcos0,
which show thay is the metric associated withand the normal t62; makes an anglé with the
x-axis. Propagation of the cun£; in (z,y)-plane is governed according to the second column
of (4.4) with a ray velocityx = (x1,x2) := (Ccosf — T'sinf,C'sinf + T cosf). This shows
thatC andT satisfy (4.3) and so they are the normal and tangential components of the ray velocity
x- Using this relation betweef, x2) and (C,T) we get the third equation in (4.7) from the
first equation in (4.8). Thus, we have derived the ray equations from KCL. However, the quantities
C andT appearing in KCL must satisfy the consistency condition (1.5) througand ys. This
completes the proof of the theorem.

We note that KCL is equivalent to the ray equations only for smooth filant$lowever, when
we numerically integrate the equations of WNLRJ, ceases to be smooth after sotne> o even
though{2, is smooth. After the time,., the differential equations of the WNLRT 2 cease to be
valid. It was this situation, when we were forced to look for conservation forms of the ray equations
and we discovered KCL for the case wheis orthogonal td2; [15]. The KCL gives a new type of
singularity on{2;, namely kinks (PR-3.33). It turned out KCL represent conservation of distance
in two independent directions for non-smooth solutions and hence are physically realistic.

5. CONSERVATION FORMS OFTWO RAY THEORIES WEAKLY NONLINEAR RAY THEORY
(WNLRT) AND SHOCK RAY THEORY (SRT)IN A POLYTROPIC GAS

KCL, being only two equations in four quantitigsd, C andT, is an under determined system.
This is expected as KCL is a purely mathematical result and the dynamics of a particular moving
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curve has not been taken into account in their derivation. We describe here two sets of closure
equations. Both of these belong to the case of an isotropic wave, Wheré i.e., the rays are
normal to the front. When a small amplitude curved wave front (across which the physical variables
are continuous) or a shock front propagates into a medium at rest and in equilibrium with density
p = po, fluid velocity g = 0 and gas pressuge = pyg, the perturbation on the wavefront or behind

the shock front is given by (2.21), whefiehas dimension of velocity.

Non-Dimesionalizatior— In this and the subsequent sections we shall use non-dimensional
form of space and time coordinateg: = x/L, andt = ag t/L, whereL is an appropriate
length scale. After making the non-dimensionalization, we remove bar f@nd¢ so that the
non-dimensional variables are denotedxbgnd¢. The Mach numbers: of a weakly nonlinear

wavefront and M of a shock front are given by
v+ 1lew

| e
m=1+——,M:1+i€w|s
2 ag 4 ag

(5.1)

wherew|; is the value ofo on a suitable side of the shock (behind a shock for a shock propagating
in to the constant statgy, q = 0, pp) and ahead of a shock which joins a constant state behind it
to the disturbed state ahead of it). The non-dimensional valdeiof(4.3) ism or M as the case
may be.

The KCL of Q; when it is a weakly nonlinear wavefront, are
(gsin®); + (mcosf)e =0, (gcosf), — (msinh)e = 0. (5.2)

The closure equation of this under-determined system is obtained from (2.23), where we note
that the rate of change % along a ray becomes the partial derivatggein ray coordinates¢, t).

. . . . . 1
An expression for the non-dimensional mean curvataiia 2-D is 2 = — (6, sinf — 6, cos ) =
—(1/2g)6¢. Now itis simple to deduce (following the derivation of the equation (6.19) in &1,
the following conservation form of the equation (2.23)

{g(m —1)? ez(mfl)}t =0 (5.3)

A general procedure for the derivation of a conservation form of a transport equation is avail-
able in [3]. (5.2) and (5.3) form the equations of the weakly nonlinear ray theory (WNLRT). The
mapping from(¢, t)-plane to(z, y)-plane is given by the equations (4.4), saydy= mcos¥,

Y = msin6.

Next we choosé€); to be a shock front. By taking the shock to be weak and by truncating the in-
finite system (i.e., by dropping the last term on the right of (3.25)) we can construct an approximate
shock ray theory, which forms an efficient system of equations for calculation of successive posi-
tions of a curved shock front in two space dimensions [RE0-2]. We represent the unit normal to
the shock fronf2, in 2-D asN = (cos O, sin ©). A system of conservation form of the equations
for a weak shock),, are two KCL and two additional closure equations [3]:
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(Gsin®); + (M cosO)e =0, (GcosO); — (Msin®©)¢ =0, (5.4)
(G(M —1)22M=1)y, oM (M —1)2e2M-D@y =0, (5.5)
(GV22M=1), 4 GV (M +1)eMD =, (5.6)

whered is the metric associated with the variaélanddiT, defined by (3.20), becomes the patrtial

derivativeg in the ray coordinate systefq ¢). The normal derivativéN,V)w in (3.20) is first
obtained in the region behind the shock if the shock is moving into the undisturbed region and
then the limit is taken as we approach the shock. The mapping f¢oti-plane to(z, y)-plane

can be obtained by integrating the first part (3.18) of the shock ray equations i-e. M cos O,

Yy = M sin ©.

(5.4)—(5.6) form the equations of SRT, which is ideally suited in dealing with many practical
problems involving propagation of a curved shock since (i) it has been shown that it gives results
which agree well with known exact solutions and experimental results, [10], (ii) it gives sharp
geometry of the shock and many finer details of geometrical features of the shock ([10], [14] and
PP -§ 10), (iii) results obtained by it agree well with those obtained by numerical solutions of full
Euler's equations, [2] and [10], (iv) it takes considerably less computational time (say less than
10%) compared to the Euler’s numerical solution and (v) for a problem like sonic boom [4], where
it is difficult to get information in a long narrow region away from the aircraft by Euler’s numerical
solution, and SRT and WNLRT are most suited.

We mention two important results obtained by WNLRT and SRT: (i) the genuine nonlinearity
in the original system causes a strong nonlinear diffraction of the rays and does not allow rays from
a converging wavefront to form a caustic so that the caustic is resolved ([3], [14], [23], and PP -
86 and§10) and (ii) again the genuine nonlinearity significantly accelerates a non-circular shock to
evolve into a circular shock [3].

This article will remain incomplete unless we present a nontrivial application of WNLRT and
SRT. Therefore, in the next section we take up their application to a new formulation of a very
interesting physical problem: finding geometry and signature of a sonic boom, which is a very
difficult problem for a maneuvering aircraft.

6. FORMULATION OF THE PROBLEM OF SONIC BOOM BY A MANEUVERING AEROFOIL AS A
ONE PARAMETER FAMILY OF CAUCHY PROBLEMS

For details of the results in this section, please refer to [4]. Consider a two dimensional unsteady
flow produced by a thin maneuvering aerofoil moving with a supersonic velocity along a curved
path. The aerofoil moves in a uniform polytropic gas at rest. We are interested in calculating the
sonic boom produced by the aerofoil, the point of observation being far away, say at a distance
L, from the aerofoil. We use coordinatesy and timet nondimensionalized by, and the sound
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velocity ag in the ambient medium. In a local rectangular coordinate sy$tény’) with origin O’
at the nose of the aerofoil an@'z’ axis tangential to the path of the nose, which moves along a
curve(Xo(t),Yy(t)), let the upper and lower surfaces of the aerofoil be given by

(z' = ¢y =bu(C) and (2" =(,y' = bi(()), —d < (<0 (6.1)

respectively. Herd is the non-dimensional camber length. We assumebthét-d) > 0, v/, (0) <
0,¥';(—d) < 0 andd’;(0) > 0, so that the nose and the tail of the aerofoil are not blunt. We further
assume that

- o0 msco(©)

ey

= 0 {ma‘x—d<<2°(_bl<o) } — O(e) 6.2)

wheree is a small positive number. Then the nondimensional amplitude ew/a of the pertur-
bation in the sonic boom also satisfies= O(e).

In Fig. 1, we show the geometry of the aerofoil and the sonic boom produced by it at a time
t. The sonic boom produced either by the upper or lower surface consists of a leading shock LS:
ng) and a trailing shock T32§*d> and (since high frequency approximation is satisfied by the flow
between the two shocks) a one parameter family of nonlinear waveméﬂ(&d <(<0,( #QG)
originating from the point$’; on the aerofoil in between the two shocks. The nonlinear wavefronts
produced from points on the front part of the aerofoil start interacting with th@ﬁ?éand those
from the points near the trailing edge do so with theﬂﬁSd), and after the interaction they keep
on disappearing continuously from the flow. These two sets, one interacting with LS and another
interacting with TS are separated by a linear Waveflfoﬁ), which originates from a poinPg
where the functiom,, (&) (b;(£)) is maximum (minimum). Fig. 2 shows an enlarged version of the
upper part of the Fig. 1 near the aerofoil. This is simply an enlarged version of Fig. 1, the high
frequency approximation is not valid near the aerofoil.

Let us introduce a ray coordinate systégnt) for QEO. The frontQﬁQ at a given time can be
obtained as locus of the tip of the rays (at time t ) in (x,y)-plane starting from all positigh®f
P attimesn < t shown in Fig. 3. Therefore, a value of n < ¢ identifies a ray and we choose

E=—n n<t 6.3)

for QEC) from the upper surface (for lower surface we shall ch@osen, n < t).

When¢ = —n = —t, the pointsA, B andC in the Fig. 3 coincide. Hence the base padiatof
fo), which lies on the upper surface of the aerofoil, corresponds to a point on thefine= 0 in
the (¢, t)-plane.

The nonlinear wavefrorﬂzfto,(—d < (< 0,¢ # Q) satisfies the system (5.2)—(5.3). The Cauchy
data on¢ 4 ¢t = 0 for our sonic boom problem can be determined from the inviscid flow condition
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(O(L/Ly=0(1)) L

FiG. 1: Sonic boom produced by the upper and lower surfages: b, (z') andy’ = b;(z') respectively.
The boom produced by either surface consists of a one parameter family of nonlinear wavefronts bounded
by leading and trailing shocks.

on the surface of the aerofoil. Retaining only the leading order terms, this is [4]

(v + (X5 + Y31, (§)

m(&, — = m =1- 6.
(66 = mol®=1-T 2 (6.4)
9~ = g(6) = (X§+¥5 ~1)2 (6.5)
66 —€) = 60(&) = 5+ —sin {1/(X3 +¥7)?) (6.6)

wherey = tan™* {YO/XO}. Sinceb/,(¢) < 0for G < ¢ < 0andd,(¢) > 0for —d < ¢ < G,
mo > 1onP: forG < ( <0andmgy < 1onPF; for —d < { < G. This can be used to argue that

m>1on Q9 for G < (<0 and m<1lon Q9 for—d<(¢<GaG. (6.7)
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T8

y"buh!J 'DG

y==d xYd<6 x'=G e

FIG. 2: An enlarged version of the upper part of the Figure 1 near the aerofoil.

FiG. 3: A formulation of the ray coordinate systeg () for Q§<>. AB represents the path of a fixed poifit
on the aerofoil. A and B are the positionsiaf at timesn andt respectivelyy < t.

Since the eigenvalues of the system (5.2)—(5.3) are
M =—V(m—=1)/(2¢?), Ad=0, A3=+/(m—1)/(2¢%) (6.8)

we get a Cauchy problem for a hyperbolic system (5.2)—(5.35?@6} for each( satisfyingG <
¢ < 0 and an elliptic system foﬂgO for each( satisfying—d < ¢ < G (we call it elliptic even
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though\y = 0 is real).

The derivation of the Cauchy data émt = 0 for the system (5.4)—(5.6) governing the evolution
of the leading and trailing shock fronts is far more complex. We quote from [4] the leading order
terms in this Cauchy data f@tgfd)

(v + D(XG + Y51, (€)

ey - —1_ 6.9
ME—8) = Mol = 1= o (6.9)
G(€,~€6) = Gol6) = (XZ+YZ 1) (6.10)
(6, ~8) = ©o(§) == 3 +v —sin ' {1/(X] +¥7)?} (6.11)
VE~8) = Vo(©) = LI wo(€) ~ F(~d,1) (6.12)

wherewy () is related taM(€) by My(€) = 1+ 2wy (€),

Q= (XoXo + YoYo) Xo¥p — YoXo
T 200(XG +YP)(XE 4 YF - 1)1 90 X3
’ (X2 + Y3 —1)1/2 (XE+YF—1)32 :

X = Xogcosy + Ypsin.

AgainM > 1on ng) andM < 1on Qg_d) so that the two eigenvalués = /(M — 1)/2G?,
Ay = —/(M —1)/2G? of (5.4)(5.6) are real fon!”) and purely imaginary fof2{~?. The other
two eigenvalues ard;; = 0, A;o = 0. Thus, for the LS we get a Cauchy problem for a system
which is hyperbolic and for the TS we get it for a system which has elliptic nature.

We have numerically solved the system (5.2)—(5.3) for a nonlinear wavefront with Cauchy data
(6.4)-(6.6) for¢ = 0 for two cases. This nonlinear wavefront from the leading edge is immediately
annihilated by the shocﬂgo). The first case is for an accelerating aerofoil in a straight path and
the second one is for an aerofoil moving with a constant speed but on a curved path. We have also
solved the system (5.4)—(5.6) with data (6.9)—(6.12) for the same paths and same geometry of the
aerofoil. We present some results in Fig. 4 and Fig. 5.

For an accelerating aerofoil along a straight line we note that the linear wavefront from the nose
develops fold in the caustic region but the nonlinear wavefront does not fold and instead has a pair of
kinks. For a supersonic aerofoil moving on a highly curved path (curved downwards), the nonlinear
wavefront from the upper surface is smooth but from the lower surface has a pair of kinks. The most
interesting result seen from our new formulation of the sonic boom problem is the elliptic nature of
the equations governir@ifd). This implies that whatever may be the flight path and acceleration
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=20

FIG. 4: Sonic boom wavefront @t= 2 from the leading edge of an accelerating aerofoil moving in a
straight path. Kinks on the nonlinear wavefront are shown by dots. The initial Mach number is 1.8 and the
acceleration is 10 in the time interval (0,1/2) ad0) = —0.01.

15

t=4.5
Linear wavefron

Linear wavefront

FIG. 5: Successive position of the nonlinear wavefront from the leading edge of an aerofoil moving with a
constant Mach number 5 along a path concave downwardsh{jith = —0.01
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of the aerofoil, the trailing shocﬂ%g_d) must be free from kinks. All these features, which we obtain
from our theory are seen in the Euler’s numerical solution in [9], discussed also in [4].

We also have some results for the leading shock LS from the SRT (see a paper by Baskar and
Prasad in the Proc. International Symposium on Nonlinear Acoustics including International Sonic
Boom Forum, Pennsylvania State University, 18-22 July, 2005). We find that though the geometric
shape of nonlinear wavefront is not only topologically same as th&ﬁ%t it is very close to it.

Hence the nonlinear wavefront from the leading edge gives valuable information about the shape

and the position oﬂgo).
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