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Ray theory, for the construction of the successive positions of a wavefront governed by linear

hyperbolic equations, is a method which had its origin from the work of Fermat (and is related

to Huygen’s method). However, for a nonlinear wavefront governed by a hyperbolic system of

quasilinear equations, the ray equations are coupled to a transport equation for an amplitude

of the intensity of the wave on the wavefront and some progress has been made by us in its

derivation and use. We have also derived some purely differential geometric results on a moving

curve in a plane (surface∈ IR3), these kinematical conservation laws are intimately related to

the ray theory. In this article, we review these recent results, derive same new results and

highlight their applications, specially to a challenging problem: sonic boom produced by a

maneuvering aerofoil.
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1. RAY EQUATIONS AND FERMAT’ S PRINCIPLE

Waves involve transfer of energy from one part of a medium to another part, usually without transfer

of material particles [5]. When we take such a general definition of waves, we may not be in position

to identify some special propagating surfaces which we shall like to call wavefronts (propagating

with finite speeds). Identification of a wavefront requires an approximation: there is a more rapid

change in the state of the medium as we cross the wavefront transversely compared to more gradual

changes in the state, which is already present prior to the onset of the wave, or when we move
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along the wave front (PP -§3.21)1. Thus, when we encounter a wave we can see a short wavelength

variation in the state of the system at a given time or a high frequency variation with respect to

time at a fixed point. Let us denote a wavefront at a given timet by Ωt, then as timet changesΩt

occupies different positions in(x)-space. Identification of a wavefrontΩt implies finite speedC of

propagation ofΩt. Let Ωt be represented by

Ωt : φ(x, t) = 0, x ∈ IRm, t ∈ IR (1.1)

then

C = −φt/ | 5φ | . (1.2)

Evolution ofΩt is given with the help of a ray velocityχ and this ray velocity can be obtained

only when the nature of the curveΩt is known i.e., by the dynamics of the curve. For example when

Ωt is a crest line of a curved solitary wave on shallow water,χ is given by water wave equations

and boundary conditions on the surface of the water and the bottom surface [1].

Position of the surfaceΩt can be obtained fromΩt0 (t > t0) as the locus of the tipsP of rays

starting from pointsP0 onΩt0 and moving with the ray velocityχ i.e.,
dx
dt

= χ (see equation (1.6a)

below). The ray velocityχ at any pointx of Ωt depends also on the unit normaln of Ωt atx. Thus

χ = χ(x, t,n). The velocityC of Ωt is the normal component ofχ i.e.,

C = 〈n,χ〉, n = 5φ/ | 5φ |. (1.3)

Using (1.2) and (1.3) we get the eikonal equation

φt + 〈χ,5φ〉 = 0 (1.4)

which is a first order nonlinear partial differential equation giving successive positions ofΩt as time

evolves.

Theorem1 — In order that the vectorχ(x, t,n) = (χ1, χ2, . . . , χm) qualifies to be a ray veloc-

ity, it must satisfy a consistency condition[22]

nβnγ

(
nβ

∂

∂nα
− nα

∂

∂nβ

)
χγ = 0, for each α = 1, 2, · · · ,m (1.5)

Note: A repeated Greek index implies sum over the range(1,2,· · · ,m). Laterwe shall encounter

repeated subscriptsi, j, k for which the range of summation will be(1,2,· · · , n).

PROOF: Derivation of this condition is simple when we note that the left hand side of (1.5)

appears as an additional term on the right hand side of (1.6a) below. This additional term is in-

consistent with the statement thatχ is the ray velocity and hence must vanish. More explicitly the

eikonal equation (1.4) is a first order nonlinear equation:ϕt + 〈χ(x, t,∇ϕ/ | ∇ϕ |),∇ϕ〉 = 0 for

1We shall frequently refer to various sections of the book [21] by PP followed by a hyphen and the section number.
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the functionφ(x, t). This equation is a Hamilton-Jacobi equation. The Charpit equations of this first

order equation reduce to Hamilton’s canonical equations, which when written forx andn instead

of x and∇ϕ give (1.6a,b) with the additional term on the right hand side of (1.6a). The theorem is

proved.

Thus when condition (1.5) is satisfied, we have also derived the ray equations from the eikonal

(1.4) in the form
dxα

dt
= χα, (1.6a)

dnα

dt
= −nβnγ

(
∂

∂ηα
β

)
χγ ≡ ψα, say (1.6b)

where

∂

∂ηα
β

= nβ
∂

∂xα
− nα

∂

∂xβ
. (1.7)

The derivatives
∂

∂ηα
β

represent tangential derivatives on the surfaceΩt. We may be tempted to

ask a question: does a ray defined by (16a,b) starting from one pointP0 ∈ IRm to another point

P1 ∈ IRm chooses a path such that the time of transit is stationary with respect to small variations in

the path? What we are asking is equivalence of rays given by (16a,b) to the rays satisfying Fermat’s

Principle. It is easy to see this equivalence (PP-§ 3.2.5) for an isotropic propagation of a wavefront

Ωt, in which case

χ = n C (1.8)

whereC is independent ofn. In this case (1.5) is automatically satisfied. It will be interesting to

prove this equivalence for a general ray velocityχ satisfying (1.5).

An important class of waves, called hyperbolic waves, appear in a medium governed by a hy-

perbolic system of partial differential equations. In this case every signal in the medium propagates

with finite speed in a very strict sense: if the state of the system is perturbed at any time in a closed

bounded domain, then the effect of the perturbation at any later time is not felt outside another

closed bounded domain. The signal in such a domain may travel with a shock ray velocityχ when

the governing hyperbolic system is derived from a system of conservation laws. In the case of a

curved solitary wave mentioned above, the crest line does represent a wave front propagating with a

finite speed but the solitary wave is not a hyperbolic wave [5]. It is governed by the KdV equation.

Consider a hyperbolic system ofn first order partial differential equations inm+1 independent

variables(x, t):

A(u,x, t)ut + B(α)(u,x, t)uxα + C(u,x, t) = 0 (1.9)

whereu ∈ IRn, A ∈ IRn×n, B(α) ∈ Rn×n andC ∈ IRn. Then the velocityC of a wavefront

Ωt, across whichu is continuous, is equal to an eigenvaluec of (1.9) andΩt is the projection on

x-space of a section of the characteristic surfaceΩ by at = constant plane. Note thatΩ is a surface
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in space time i.e(x, t) - space. This follows from the high frequency approximation (PP-§4.2 ,

§4.3) without the small amplitude assumption. Thus, we substituteu = u(x, t,
φ(x, t)

ε
), whereε is

a small quantity, in the equation (1.9) and equate the leading order terms i.e. other terms of the order

1/ε equal to zero. This gives the characteristics partial differential equation of (1.9) as the eikonal

equation and the result follows. The ray velocity componentsχα corresponding to the eigenvaluec

are given by the lemma on bicharacteristics [7]

χα = lB(α)r
lAr (1.10)

wherel andr are left and right null vectors satisfying

l(nαB(α) − cA) = 0, (nαB(α) − cA)r = 0 (1.11)

and

C = c = nαχα = l(nαB(α))r
lAr (1.12)

Theorem2 — If χ be a given by(1.10) the compatibility condition(1.5) is satisfied and the

rays are given by

dxα

dt
= (lB(α)r)/(lAr) = χα (1.13)

dnα

dt
= − 1

lAr
l

{
nβ

(
nγ

∂B(γ)

∂ηα
β

− c
∂A

∂ηα
β

)}
r = ψα, say. (1.14)

Further, the system(1.9) implies a compatibility condition on a characteristic surfaceΩ of

hyperbolic system in the form

lA
du
dt

+ l(B(α) − χαA)
∂u
∂xα

+ lC = 0. (1.15)

Note: The theorem in this form was first stated in[17], see also(PP-§ 2.4). We give here a

complete proof.

PROOF: Post (pre) multiplying the first (second) result in (1.11) byr (l) and usingc = −φt/| 5φ |
andn = 5φ/| 5φ |, we get the eikonal equation (1.4) , whereχ is given by (1.10).

We note thatl andr (and henceχ) depend onn butA andB(α) do not. Hence

nγ
∂χγ

∂nα
= nγ

∂

∂nα

(
lB(γ)r
lAr

)

=
l

(lAr)2

[
nγ

(
∂

∂nα
(l)

){(
B(γ)r

)
(lAr) − (Ar)

(
lB(γ)r

)}]

+
nγ

(lAr)2

[{(
lB(γ)

)
(lAr)− (lA)

(
lB(γ)r

)}(
∂

∂nα
(r)

)]

=
l

(lAr)

[(
∂

∂nα
(l)

)(
nγB(γ) − cA

)
r + l

(
nγB(γ) − cA

)(
∂

∂nα
(r)

)]
= 0.

(1.16)
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Replacingα by β , we also getnγ
∂

∂nβ
χγ = 0. Therefore, the condition (1.5) is satisfied and

(1.13) is proved .

In the equation (1.6b), the derivatives
∂

∂ηα
β

and hence
∂

∂xα
operate onχα , which is a very

complicated expression inx andn . In the original Charpit equations from which (1.6b) has been

derived involves differentiation with respect toxα keepingφt and5φ fixed i.e.,n fixed in (1.6b).

We use this information to simplify the right hand of (1.6b) in such a way that derivtives
∂

∂xα
appear

only onA andB(γ) . To do this we follow the producer of differentiation in (1.16), now with respect

to xα instead ofnα and finally we get

nγ
∂χγ

∂xα
=

1
lAr

l

[
nγ

∂B(γ)

∂xα
− c

∂A

∂xα

]
r. (1.17)

This leads to (1.14). A proof of the third part i.e., (1.15) of the theorem is available in PP-§2.4.

The derivatives in the compatibility condition (1.15) on a characteristics surfaceΩ are so grouped

that each group represents a tangential derivative onΩ. The derivative
d

dt
=

∂

∂t
+ χα

∂

∂xα
along

a ray is the time derivative along a bicharacteristics i.e., tangential toΩ. It can also be shown (PP-

§ 2.4) that each of the derivatives̃∂j = `i

(
B

(α)
ij − χαAij

) ∂

∂xα
(j = 1, 2, · · · , n) operating on

uj in the second term represents tangential derivatives not only onΩ but also onΩt. We note that

| nα | = 0 so that onlym − 1 components ofn are independent and we can show that onlym− 1
equations in (1.14) are independent. For a linear hyperbolic system, the ray equations (1.13) and

(1.14) decouple from (1.15) and hence can be solved to give rays. For a quasilinear system (1.9), the

matricesA andB(α) depend onu and hence the terms on the right sides of (1.13) and (1.14), when

evaluated, would containu and
∂u
∂ηα

β

. In this case the system (1.13)-(1.15) in2m + n quantitiesx,

n, u is an under-determined unlessn = 1. Therefore, this system is of limited use forn > 1 unless

high frequency approximation is made leading to the weakly nonlinear ray theory (WNLRT) or the

shock ray theory discussed in the next two sections. However, one important use is in development

of numerical methods, namely characteristic Galerkin method [12], a topic of very active research

today.

2. A WEAKLY NONLINEAR RAY THEORY (WNLRT)

The high frequency approximation, mentioned in the end of the last section, when applied to a

hyperbolic system of partial differential equations, gives (PP - Chapter 4) a representation of the

solution in terms of a wave amplitudew and a phase functionφ. The high frequency approximation

further implies that

(i) the functionφ satisfies an eikonal equation, with the help of which we can define rays,

(ii ) all components of the state variablesu of the system are expressed in terms of the an ampli-

tudew and the unit normaln of the wavefrontΩt : φ(x, t) = constant, and in addition
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(iii ) when the expression foru in terms ofw is substituted in (1.15) we get a transport equation

for the amplitudew along the rays.

Thus, the high frequency approximation reduces the problems of finding the successive posi-

tions of a wavefront and the amplitude distribution on it to the integration of a closed system of

equations consisting of the ray equations and a transport equation. The ray equations and the trans-

port equations are decoupled for a linear hyperbolic system and coupled for a quasi-linear system.

When the amplitude of the wave is a small perturbation over a known stateu0, the relation between

u− u0 andw is linear. This leads to a simple weekly nonlinear ray theory (WNLRT) in which the

equations can be integrated numerically, at least in theory. We review these important results below.

The high frequency approximation was first applied in 1911 [26] to the wave equation

utt − a2
0∆u = 0, ∆ =

m∑

α=1

∂2

∂x2
α

(2.1)

wherea0 is the constant sound velocity in the uniform medium. We shall briefly review the results

of high frequency approximation for the most general case as given in [PP - chapter 4], but in order

that the theory is clear we shall first present here the simplest case i.e. the case of the wave equation

(2.1). Small amplitude high frequency approximation of a perturbation of a constant basic state

u = 0 consists of assuming a solution of (2.1) in the form

u = εu1(x, t, θ) + ε2u2(x, t, θ) + · · · (2.2)

whereε is small,

θ =
1
ε

φ(x, t) (2.3)

andφ is the phase function. Substituting (2.2) in (2.1) and equating the first two order terms inε on

both sides, we get

(φ2
t − a2

0| 5 φ|2)u1θθ = 0 (2.4)

and

(φ2
t − a2

0| 5 φ|2)u2θθ + 2(φtu1tθ − a2
0φxαu1xαθ) + (φtt − a2

0φxαxα)u1θ = 0 (2.5)

For a nonzero perturbation of orderε, u1θθ 6= 0 so that (2.4) gives the eikonal equation

φ2
t − a2

0|∇φ|2 = 0 (2.6)

and consequently the ray equations

dx
dt

= na0,
dn
dt

= 0 (2.7)

(2.7) shows that the set of all rays of the wave equation from a pointx∗ starting at timet0 are straight

lines emanating fromx∗:

x = x∗ + n(t− t0), |n| = 1 (2.8)
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wheren is constant. Time rate of change along a bicharecteristic or ray is given by

d

dt
=

∂

∂t
+

dxα

dt

∂

∂xα
=

∂

∂t
+ a0nα

∂

∂xα

= − 1
a0|∇φ|

(
φt

∂

∂t
− a2

0φx
∂

∂x

)
(2.9)

usingφt = −a0 | ∇φ | for a wave moving in the direction ofn. There are two important quantities,

which frequently appear in the propagation of a curved wavefrontΩt. They are the mean curvature

Ω (not to be confused with the characteristic surfaceΩ, which is not in italics) and the ray tube area

A (PP-§ 2.2.3) related to the divergence of the unit normaln of Ωt and the derivatives ofφ by

Ω = − 1
2a0A

dA

dt
= −1

2
div(n)

=
1

2a2
0|∇φ|

(
φtt − a0∇2φ

)
. (2.10)

Using (2.6), (2.9) and (2.10), we deduce from (2.5) the transport equation foru1θ

du1θ

dt
= a0Ωu1θ = − 1

2A

dA

dt
u1θ. (2.11)

We integrate this equation with respect to the fast variableθ and assuming that the amplitude is

non-zero only in anε neighbourhood ofφ = 0 (i.e. θ = 0), so that in this integration we may treat

Ω andA to be constant, we get

du1

dt
= a0Ωu1 = − 1

2A

dA

dt
u1 (2.12)

showing that the amplitudeu1 satisfies

u1 = u10/A
1/2, u10 = constant. (2.13)

This is an example of a linear theory of wave propagation where the high frequency approxi-

mation (geometrical optics) gives a value of the leading termu1 of the amplitude which tends to

infinity asA → 0 i.e., as a focus or a caustic is approached. The small amplitude approximation

implied in the expansion (2.2) breaks down asA → 0. In reality, the amplitude of the wave when

evaluated more accurately does remain finite [6, 11]. We shall see later that the genuine nonlinear-

ity present in the mode of propagation in consideration would prevent even the leading termu1 of

perturbation to remain finite and of the same order as the order of its initial value. This is because

the nonlinearity avoids formation of a caustic, which is replaced by a new type of singularity called

kink (PP-§ 3.3.3). The WNLRT remains valid in the caustic region of the linear theory.

The basis of the weekly nonlinear ray theory applied to the system (1.9) for a wave in a mode

having genuine nonlinearity is to capture the wave amplitudew̃ (= u1 of (2.2)) in the eikonal equa-

tion itself. One way to achieve this is to modify the expansion (2.3) by (PP-§4.4 or [20]).
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u(x, t, ε) = u0 + εṽ(x, t,
φ (x, t, ε)

ε
, ε) (2.14)

ṽ(x, t, θ, ε) = ṽ0(x, t, θ, ε) + εṽ(x, t, θ, ε), θ =
φ

ε
(2.15)

for a perturbation of a basic solutionu = u0 of (1.9). It is possible to derive the WNLRT for

the general hyperbolic system (1.9), but in order to keep the derivation simpler, we consider the

reducible system (PP - p77)

A (u)ut + B(α)(u)uxα = 0. (2.16)

Now we substitute (2.14) and (2.15) in it and go through a long mathematical steps (PP -§ 4.4)

carefully collecting terms up to orderε2. This leads to a derivation of equations of WNLRT with

long expressions of terms in the ray and transport equations. We write these equations for the Euler

equations of a polytropic gas

ρt + 〈q,∇〉ρ + ρ〈∇,q〉 = 0 (2.17)

qt + 〈q,∇〉q +
1
ρ
∇p = 0 (2.18)

pt + 〈q,∇〉p + ρa2〈∇,q〉 = 0 (2.19)

whereu = (ρ,q = (q1, q2, q3), p)T is a vector whose components are mass densityρ, fluid velocity

q and gas pressurep, anda is the local sound velocity

a2 = γp/%. (2.20)

We take the basic constant solution to be a constant equilibrium stateu0 = (ρ0,q = 0, p0),
then the leading order perturbationṽ0 is given by,

ṽ10 = ρ− ρ0 = ερ0

a0
w̃, (ṽ20, ṽ30, ṽ40) = εnw̃, ṽ50 = p− p0 = ερ0a0w̃ . (2.21)

The ray equations and the transport equation of the WNLRT are given by

dx
dt

=
(

a0 + ε
γ + 1

2
w̃

)
n,

dn
dt

= −ε
γ + 1

2
L w̃ (2.22)

and
dw̃

dt
≡

{
∂

∂t
+ (a0 + ε

γ + 1
2

w̃)〈n,∇〉
}

w̃ = Ωa0 w̃ (2.23)

where

L = ∇− n〈n,∇〉 (2.24)

andΩ is now the mean curvature of the nonlinear wavefrontΩt. Note that the symbolsΩt andΩ
represents respectively a surface inIRm (herem= 3) and mean curvature ofΩt. The components of
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the operatorL represents tangential derivatives on the surfaceΩt. Lα can be expressed as a linear

combination of the operators
∂

∂ηα
β

(PP - p73).

The equation (2.23) is a true generalization of the one dimensional Burgers’ equationut′ +
uuξ′ , = 0 to multidimensions. This can be seen from the fact that in one dimensionn = (1, 0, 0)

so thatΩ = 0,
d

dt
=

∂

∂t
+ (a0 + ε

γ + 1
2

w̃)
∂

∂x
and then (3.23) reduces to the Burger’s equation in

(ξ′, t′) coordinates(ξ′ = x − a0t, t
′ = t) for the variableu = ε

γ + 1
2

w̃. The coupled system of

6 equations (2.22) and (2.23) (note that only two component ofn are independent) describe com-

pletely a new property (not observed before WNLRT was formulated): interaction of three indepen-

dent phenomenon (i) stretching of rays due to nonlinearity, (ii) diffraction of rays due to the gradient

of the wave amplitude on the wavefront and (iii) geometric amplification due to convergence of rays

(PP-pages 206-7).

3. SHOCK RAY THEORY (SRT)

When the moving surfaceΩt is a shockfront, special care is required in the definition of a shock ray

[16]. The shock ray velocity in a gas is unambiguously defined by

χ = qr + N A (3.1)

whereqr is the fluid velocity ahead of the shock,N the unit normal to the shock front andA is the

normal speed of the shock relative to the gas ahead of it. If we represent the shock surfaceΩt at any

time bys(x, t) = 0, then the eikonal equation or what we call a shock manifold partial differential

equation (SME), appropriately interpreted in [16], is

st + 〈qr,∇〉s + A|∇s| = 0. (3.2)

When we try to derive (3.2) from the jump relations or Rankine-Hugoniot (RH) conditions,

we run into difficulty. There are many other jump relations, which can be derived from the RH

conditions and each one of them would lead to an SME. For example, the well known Prandtl

relation for a curved shock, when expressed in terms ofs, is

{st + 〈ql,∇〉s} {st + 〈qr,∇〉s} − a2
∗|∇s|2 = 0 (3.3)

wherea∗ is the common critical speed on the two sides of the shock

a2
∗ = (pr − pl) / (ρr − ρl) . (3.4)

The ray velocity obtained from (3.3) gives a different expression for the shock ray velocityχ.

The question arises: ”are the shock ray velocities (or more precisely, shock ray equations) obtained

from different SMEs the same?”

The concept of a SME and their equivalence in the above sense was first discussed in [16].

Making further use of the RH conditions, it was shown that the shock ray equations given by the

two SMEs (3.2) and (3.3) are equivalent. This result was generalized in [24] for almost all SMEs.
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Since the high frequency approximation is satisfied exactly on a shock front, the derivation of

the eikonal equation and definition of a shock ray does not require any approximation. The next step

i.e., the derivation of the compatibility condition along a shock ray was done in 1978 independently

by Grinfeld [8] and Maslov [13]. The compatibility conditions form an infinite system and their

derivation involves extremely difficult mathematical steps. Hence we first write down these com-

patibility conditions in the case of one space dimensional problem and that too for a conservation

law from Burgers’ equation

ut +
(

1
2
u2

)

x

= 0. (3.5)

Consider a shock along a curveΩ : x = X(t) in (x, t)-plane, then

dX(t)
dt

=
1
2

(ul + ur) = C, say (3.6)

whereul andur are states on the left and right of the shock. The state onx < X(t) satisfies

ut + uux = 0 which we write as,

ut +
1
2

(u + ur) ux = −1
2

(u− ur) ux. (3.7)

Taking the limitx → X(t)−, we get

dul

dt
= −1

2
(ul − ur) (ux)l,

d

dt
=

∂

∂t
+

1
2

(ul + ur)
∂

∂x
. (3.8)

Differentiatingut + uux = 0 with respect tox we get,

(ux)t + u (ux)x = −u2
x

which we write as

(ux)t +
1
2

(u + ur) (ux)x = −1
2

(u− ur) (ux)x − u2
x (3.9)

and taking the limit asx → X(t)−, we get

d(ux)l

dt
= −1

2
(ul − ur) (uxx)l − ((ux)l)

2 (3.10)

where again

d

dt
=

∂

∂t
+ C

∂

∂x
(3.11)

represents the rate of change as we move with the shock. This way, an infinite system of compati-

bility conditions can be derived.

We define the limiting value of the ith derivative ofu on the left of the shock divided byi! by

vi(t) i.e.,
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vi(t) =
1
i

lim
x→X(t)−

∂iu

∂xi
, i = 1, 2, 3, · · · (3.12)

and introducev0(t) = ul(t). The equation (3.6) and the infinite system of compatibility conditions

alongΩ are (PP-§ 7.1)

dX

dt
=

1
2

(u0 + ur) (3.13)

du0

dt
= −1

2
(u0 − ur) v1 (3.14)

dvi

dt
= − i + 1

2
(u0 − ur) vi+1 − i + 1

2

i∑

j=1

vjvi−j+1, i = 1, 2, 3, · · · (3.15)

Given an initial valueu(x, 0) = φ(x) for (3.5) with a single shock atX0, we can derive initial

values ofX(t), u0(t), vi(t), i = 1, 2, 3, · · · in the form

X(0) = X0, u0(0) = u00,

vi(0) = vi0, i = 1, 2, 3, · · · (3.16)

However, we face new problems (PP -§7.2):

• The solution of an infinite dimensional problem (3.13) - (3.16) is more difficult than the

Cauchy problem for the original conservation law (3.5).

• For an analytic initial valueφ(x) for (3.5) in a neighbourhood ofx = X0, the analytic solution

of the problem (3.13)–(3.16) is unique and give a functionu(x, t) by

u(x, t) = u0(t) +
∞∑

i=1

vi(t)(x−X(t))i (3.17)

which tends in a neighbourhood ofx = X(t) to the analytic solution of the initial value

problem for (3.5) for small time.

• For a more general non-analytic initial data, the solution of initial value problem (3.13)–(3.16)

is non-unique.

Ravindran and Prasad [24] proposed a new theory of shock dynamics by settingvn+1 = 0 in

the nth equation in (3.15) so that the firstn+1 equations in (3.14) and (3.15) form a closed system.

Then the first (n+2) equations in (3.13)-(3.15) form a system of ordinary differential equations,

which can be easily integrated numerically with initial data (the firstn + 2 in (3.16)). The new

theory of shock dynamic gives excellent results for the case whenφ′(x) > 0 behind the shock at

x = X0. There are many open mathematical questions to be answered but this method has been

very successful for many practical problems in multi-dimensions - we shall mention these later on.
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Derivation of the compatibility conditions from Euler’s equations (2.17)–(2.19) along a shock

ray given by the shock ray velocity (3.1) requires extremely complex calculations (in fact it is

complex even in one-dimension) (PP -§ 8.2). Hence we present a derivation for a weak shock from

the equations (2.22)–(2.23) of the WNLRT (PP -§10.1 or [14]) - this was first proposed in 1993

[17]. For such a shock we have a theorem, first stated in [16] in 1982 (Theorem 9.2.1, PP - p267),

which states

Theorem3 — For a weak shock, the shock ray velocity components are equal to the mean of the

bicharacteristic velocity components just ahead and just behind the the shock, provided we take the

wavefronts generating the characteristic surface ahead and behind to be instantaneously coincident

with the shock surface. Similarly, the rate of turning of the shock front is also equal to the mean of

the rates of turning of such wavefronts just ahead and just behind the shock.

Consider a shock front propagating into a polytropic gas at rest ahead of it. Then the shock will

be followed by a one parameter family of nonlinear wavefronts belonging to the same characteristic

field (or mode). Each one of these wavefronts will catch up with the shock, interact with it and

then disappear. A nonlinear wavefront, while interacting with the shock will be instantaneously

coincident with it due to the short wave assumption. The ray equations of the WNLRT in three-

space-dimensions for a particular nonlinear wavefront are (2.22). We denote the unit normal to the

shock front byN. For the linear wavefront just ahead of the shock and instantaneously coincident

with it (this is actually a linear wavefront moving with the ray velocity:N multiplied by the local

sound velocitya0), w̃ = 0 and the bicharacteristic velocity isNa0. For the nonlinear wavefront just

behind the shock and instantaneously coincident with it, we denote the amplitudew̃ by aoµ. Then

εµ is a non-dimensional shock amplitude of the weak shock under consideration. Using the above

theorem and the results (2.22) withn = N, we find that a pointX on the shock ray satisfies

dX
dT

=
1
2

{
a0N + Na0

(
1 + ε

γ + 1
2

µ

)}
= Na0

(
1 + ε

γ + 1
4

µ

)
(3.18)

dN
dT

= −1
2

{
0 + ε

γ + 1
2

a0Lµ

}
= −ε

γ + 1
4

a0Lµ (3.19)

whereT is the time measured while moving along a shock ray. We takew̃ = aoµ andn = N in

(2.23) and write it as

dµ

dT
≡

{
∂

∂t
+ a0

(
1 + ε

γ + 1
4

µ

)
〈N,∇〉

}
µ

= −1
2
a0〈∇,N〉µ− ε

γ + 1
4

µ〈N,∇〉w̃ (3.20)

where we note that sinceµ is defined only on the shock front (and also on the instantaneously

coincident nonlinear wavefront behind it but not on the other members of the one parameter family

of wavefronts following it), the normal derivative〈N,∇〉µ dose not make sense. We introduce new
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variables, defined on the shock front:

V = ε {〈N,∇〉w̃} |shock front, µ2 = ε2
{〈N,∇〉2w̃} |shock front (3.21)

where powers ofε appears to make bothV andµ2 of O(1) since variation ofw̃ with respect to the

fast variableθ (introduced in (2.15)) is of the order of1 and hence< N,∇ > w̃ = O

(
1
ε

)
and

< N,∇ >2 w̃ = O

(
1
ε2

)
. The equation (3.20) leads to the first compatibility condition along a

shock ray
dµ

dT
= a0Ωsµ− γ + 1

4
µV (3.22)

where

Ωs = −1
2
〈∇, N〉 (3.23)

is the value of the mean curvature of the shock. To find the second compatibility condition along a

shock, we differentiate (2.23) in the direction ofn but on the length scale over whichθ varies. On

this length scale,n is constant and we get, after rearranging some terms,

{
∂

∂t
+

(
a0 + ε

γ + 1
4

w̃

)
〈n,∇〉

}
〈n,∇〉 w̃ = −1

2
a0〈∇,n〉〈n,∇〉w̃

−ε
γ + 1

4
{〈n,∇〉w̃}2 − ε

γ + 1
4

w̃ 〈n,∇〉2 w̃. (3.24)

Writing this equation on the wavefront instantaneously coincident with the shock, multiplying

it by ε we get

dV

dT
= a0ΩsV − γ + 1

4
V 2 − γ + 1

4
µµ2 (3.25)

which is the second compatibility condition along shock rays given by (3.18) and (3.19). Similarly,

higher order compatibility conditions can be derived.

Thus, for the Euler’s equations, we have derived the infinite system of compatibility conditions

for a weak shock just from the dominant terms of WNLRT. As we have already mentioned, the

shock ray theory is an exact theory (weak shock assumption is another independent assumption)

but since there are infinite number of compatibility conditions on it, it is impossible to use it for

computing shock propagation. We now use the new theory of shock dynamics (NTSD) according

to which the system of equations (3.18), (3.19), (3.22) and (3.25) can be closed by dropping the

term containingµ2 in the equation (3.25). This step is justified in the caseV > 0, which occurs

very frequently in a applications such as a blast wave. But for multidimensional problems, dropping

µµ2 gives excellent results in all cases [3]. When we consider propagation of even stronger shocks

in gas dynamics, the results of [PP - chapter 8] shows that neglecting the termµµ2 in the second

compatibility condition gives good results for one space dimensions not only whenV > 0 but also

whenV < 0 (as exemplified by the accelerating piston problem after an initial push of the piston).
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4. K INEMATICAL CONSERVATION LAWS IN TWO SPACE DIMENSIONS

Kinematical conservation laws (KCL) are equations of evolution of a moving(m− 1)-dimensional

surfaceΩt in IRm. These equations are in conservation form in a special coordinate system, namely

the ray coordinate system(ξ1, ξ2....ξm−1, t). Since we have been able to make many important

applications of KCL only in two space dimensions, we restrict our discussion only to two space

dimensions. We denote the spatial coordinates byx andy. The unit normal(n1, n2) is expressed in

terms ofθ by n1 = cos θ, n2 = sin θ. Let us assume that the motion ofΩt is governed by its points

moving along rays according to
dx

dt
= χ1,

dy

dt
= χ2 (4.1)

where the ray velocity fieldχ depends on the nature ofΩt. We define a ray coordinate system(ξ, t)
such thatξ = constant is a ray andt= constant is the wavefrontΩt at timet. Let g be the metric

associated withξ i.e.,gdξ is an element of length alongΩt, then

g =
√

x2
ξ + y2

ξ and
∂

g∂ξ
=

(
−sin θ

∂

∂x
+ cos θ

∂

∂y

)
. (4.2)

The normal and tangential components ofχ, denoted byC andT respectively, are

C = n1χ1 + n2χ2, T = −n2χ1 + n1χ2. (4.3)

If P (x, y) be a point onΩt andQ(x + dx, y + dy) be an arbitrary point onΩt+dt, then we can

reachQ from P by moving along the ray (Cdt along the normal toΩt from P andTdt along the

tangent toΩt+dt) and then moving alongΩt+dt by gd ξ (see [19] and PP -§3.3.2). This gives the

differential relation between (dx, dy) and (dξ, dt) from which we can derive,

(
xξ xt

yξ yt

)
=

(
−g sin θ C cos θ − T sin θ

g cos θ C sin θ + T cos θ

)
. (4.4)

For a smooth curveΩt and smooth ray velocityχ, the resultsxξt = xtξ andyξt = ytξ give the

required pair of kinematical conservation laws:

(gsinθ)t + (Ccos θ − Tsin θ)ξ = 0 (4.5)

(gcos θ)t − (Csin θ + Tcos θ)ξ = 0. (4.6)

In two dimensions, the ray equations (1.6) reduce to

dx

dt
= χ1,

dy

dt
= χ2,

dθ

dt
= −1

g

(
n1

∂χ1

∂ξ
+ n2

∂χ2

∂ξ

)
. (4.7)

Theorem4 — Let χ be a smooth function ofx, y, t and n, and satisfy(1.5). Then the ray

equations(4.7) for the propagation of a smooth curveΩt are equivalent to the KCL(4.5)and(4.6).
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PROOF: The proof that the ray equations imply KCL is too simple. Givenχ as a function of

x, y, t andθ, and an arbitrarily prescribedΩ0, we can construct the rays and the family of curves

Ωt. Then we choose a variableξ and construct the ray coordinate system(ξ, t). g is given by (4.2).

As long as a singularity does not appear onΩt, the mapping from(x, y) plane to(ξ, t) - plane for

a givenΩt is well defined and one to one. Now we can derive KCL in just few steps (as shown

above). Alternately, we shall show that it is simple to deduce the differential from of KCL

θt = −1
g
Cξ +

1
g
Tθξ, gt = Cθξ + Tξ (4.8)

from the ray equations (4.7). Usingχ1 = n1C − n2T andχ2 = n2C + n1T and noting thatd/dt

becomes∂/∂t in (ξ, t)-plane, we find that the third equation in (4.7) reduces to the first equation in

(4.8). We now differentiate the relationg2 = x2
ξ + y2

ξ with respect tot and usen1 = yξ/g, n2 =
−xξ/g and also usext = χ1, yt = χ2 to get the second equation in (4.8).

To prove the converse, we note that (4.5) and (4.6) imply existence of two functionsx(ξ, t), y(ξ, t)
satisfying (4.4). The mapping from(ξ, t) to (x, y)-plane is one to one as long as the Jacobian

∂(x, y)
∂(ξ, t)

= −gC (4.9)

does not vanish and remain finite. Image of a linet = constant in(ξ, t)-plane is a curve, let us

denote it byΩt, along whichξ-varies. The first column of (4.4) givesxξ = −g sin θ, yξ = g cos θ,

which show thatg is the metric associated withξ and the normal toΩt makes an angleθ with the

x-axis. Propagation of the curveΩt in (x, y)-plane is governed according to the second column

of (4.4) with a ray velocityχ = (χ1, χ2) := (C cos θ − T sin θ, C sin θ + T cos θ). This shows

thatC andT satisfy (4.3) and so they are the normal and tangential components of the ray velocity

χ. Using this relation between(χ1, χ2) and (C, T ) we get the third equation in (4.7) from the

first equation in (4.8). Thus, we have derived the ray equations from KCL. However, the quantities

C andT appearing in KCL must satisfy the consistency condition (1.5) throughχ1 andχ2. This

completes the proof of the theorem.

We note that KCL is equivalent to the ray equations only for smooth frontsΩt. However, when

we numerically integrate the equations of WNLRT,Ωt ceases to be smooth after sometc > o even

thoughΩo is smooth. After the timetc, the differential equations of the WNLRT in§ 2 cease to be

valid. It was this situation, when we were forced to look for conservation forms of the ray equations

and we discovered KCL for the case whenχ is orthogonal toΩt [15]. The KCL gives a new type of

singularity onΩt, namely kinks (PP-§ 3.33). It turned out KCL represent conservation of distance

in two independent directions for non-smooth solutions and hence are physically realistic.

5. CONSERVATION FORMS OFTWO RAY THEORIES: WEAKLY NONLINEAR RAY THEORY

(WNLRT) AND SHOCK RAY THEORY (SRT) IN A POLYTROPIC GAS

KCL, being only two equations in four quantitiesg, θ, C andT , is an under determined system.

This is expected as KCL is a purely mathematical result and the dynamics of a particular moving
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curve has not been taken into account in their derivation. We describe here two sets of closure

equations. Both of these belong to the case of an isotropic wave, whereT = 0 i.e., the rays are

normal to the front. When a small amplitude curved wave front (across which the physical variables

are continuous) or a shock front propagates into a medium at rest and in equilibrium with density

ρ = ρ0, fluid velocityq = 0 and gas pressurep = p0, the perturbation on the wavefront or behind

the shock front is given by (2.21), wherẽw has dimension of velocity.

Non-Dimesionalization— In this and the subsequent sections we shall use non-dimensional

form of space and time coordinates:x̄ = x/L, and t = a0 t/L, whereL is an appropriate

length scale. After making the non-dimensionalization, we remove bar fromx̄ and t̄ so that the

non-dimensional variables are denoted byx andt. The Mach numbersm of a weakly nonlinear

wavefront and M of a shock front are given by

m = 1 +
γ + 1

2
εw̃

a0
, M = 1 +

γ + 1
4

εw̃|s
a0

(5.1)

wherew̃|s is the value ofw̃ on a suitable side of the shock (behind a shock for a shock propagating

in to the constant state(ρ0,q = 0, p0) and ahead of a shock which joins a constant state behind it

to the disturbed state ahead of it). The non-dimensional value ofC in (4.3) ism or M as the case

may be.

The KCL ofΩt when it is a weakly nonlinear wavefront, are

(g sin θ)t + (m cos θ)ξ = 0, (g cos θ)t − (m sin θ)ξ = 0. (5.2)

The closure equation of this under-determined system is obtained from (2.23), where we note

that the rate of change ofddt along a ray becomes the partial derivative∂
∂t in ray coordinates(ξ, t).

An expression for the non-dimensional mean curvatureΩ in 2-D isΩ =
1
2

(θx sin θ − θy cos θ) =
−(1/2g)θξ. Now it is simple to deduce (following the derivation of the equation (6.19) in PP -§6.1)

the following conservation form of the equation (2.23)
{

g(m− 1)2 e2(m−1)
}

t
= 0 (5.3)

. A general procedure for the derivation of a conservation form of a transport equation is avail-

able in [3]. (5.2) and (5.3) form the equations of the weakly nonlinear ray theory (WNLRT). The

mapping from(ξ, t)-plane to(x , y)-plane is given by the equations (4.4), say byxt = m cos θ,

yt = m sin θ.

Next we chooseΩt to be a shock front. By taking the shock to be weak and by truncating the in-

finite system (i.e., by dropping the last term on the right of (3.25)) we can construct an approximate

shock ray theory, which forms an efficient system of equations for calculation of successive posi-

tions of a curved shock front in two space dimensions [PP -§10.2]. We represent the unit normal to

the shock frontΩt in 2-D asN = (cosΘ, sinΘ). A system of conservation form of the equations

for a weak shockΩt, are two KCL and two additional closure equations [3]:
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(G sinΘ)t + (M cosΘ)ξ = 0, (G cosΘ)t − (M sinΘ)ξ = 0, (5.4)

(G(M − 1)2e2(M−1))t + 2M(M − 1)2e2(M−1)GV = 0, (5.5)

(GV 2e2(M−1))t + GV 3(M + 1)e2(M−1) = 0, (5.6)

whereG is the metric associated with the variableξ and
d

dT
, defined by (3.20), becomes the partial

derivative
∂

∂t
in the ray coordinate system(ξ t). The normal derivative〈N,∇〉w̃ in (3.20) is first

obtained in the region behind the shock if the shock is moving into the undisturbed region and

then the limit is taken as we approach the shock. The mapping from(ξ, t)-plane to(x , y)-plane

can be obtained by integrating the first part (3.18) of the shock ray equations i.e.,xt = M cosΘ,

yt = M sin Θ.

(5.4)–(5.6) form the equations of SRT, which is ideally suited in dealing with many practical

problems involving propagation of a curved shock since (i) it has been shown that it gives results

which agree well with known exact solutions and experimental results, [10], (ii) it gives sharp

geometry of the shock and many finer details of geometrical features of the shock ([10], [14] and

PP -§ 10), (iii) results obtained by it agree well with those obtained by numerical solutions of full

Euler’s equations, [2] and [10], (iv) it takes considerably less computational time (say less than

10%) compared to the Euler’s numerical solution and (v) for a problem like sonic boom [4], where

it is difficult to get information in a long narrow region away from the aircraft by Euler’s numerical

solution, and SRT and WNLRT are most suited.

We mention two important results obtained by WNLRT and SRT: (i) the genuine nonlinearity

in the original system causes a strong nonlinear diffraction of the rays and does not allow rays from

a converging wavefront to form a caustic so that the caustic is resolved ([3], [14], [23], and PP -

§6 and§10) and (ii) again the genuine nonlinearity significantly accelerates a non-circular shock to

evolve into a circular shock [3].

This article will remain incomplete unless we present a nontrivial application of WNLRT and

SRT. Therefore, in the next section we take up their application to a new formulation of a very

interesting physical problem: finding geometry and signature of a sonic boom, which is a very

difficult problem for a maneuvering aircraft.

6. FORMULATION OF THE PROBLEM OF SONIC BOOM BY A MANEUVERING AEROFOIL AS A

ONE PARAMETER FAMILY OF CAUCHY PROBLEMS

For details of the results in this section, please refer to [4]. Consider a two dimensional unsteady

flow produced by a thin maneuvering aerofoil moving with a supersonic velocity along a curved

path. The aerofoil moves in a uniform polytropic gas at rest. We are interested in calculating the

sonic boom produced by the aerofoil, the point of observation being far away, say at a distance

L, from the aerofoil. We use coordinatesx, y and timet nondimensionalized byL and the sound
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velocitya0 in the ambient medium. In a local rectangular coordinate system(x′, y′) with origin O′

at the nose of the aerofoil andO′x′ axis tangential to the path of the nose, which moves along a

curve(X0(t), Y0(t)), let the upper and lower surfaces of the aerofoil be given by

(
x′ = ζ, y′ = bu(ζ)

)
and

(
x ′ = ζ, y ′ = bl (ζ)

)
, −d < ζ < 0 (6.1)

respectively. Hered is the non-dimensional camber length. We assume thatb′u(−d) > 0, b′u(0) <

0, b′l(−d) < 0 andb′l(0) > 0, so that the nose and the tail of the aerofoil are not blunt. We further

assume that

d =
d̄

L
= O(ε), O

{
max−d<ζ<0 bu(ζ)

d

}

= O

{
max−d<ζ<0(−bl(ζ))

d

}
= O(ε) (6.2)

whereε is a small positive number. Then the nondimensional amplitudew = εw̃/a0 of the pertur-

bation in the sonic boom also satisfiesw = O(ε).

In Fig. 1, we show the geometry of the aerofoil and the sonic boom produced by it at a time

t. The sonic boom produced either by the upper or lower surface consists of a leading shock LS:

Ω(0)
t and a trailing shock TS:Ω(−d)

t and (since high frequency approximation is satisfied by the flow

between the two shocks) a one parameter family of nonlinear wavefrontsΩ(ζ)
t (−d < ζ < 0, ζ 6= G)

originating from the pointsPζ on the aerofoil in between the two shocks. The nonlinear wavefronts

produced from points on the front part of the aerofoil start interacting with the LSΩ(0)
t and those

from the points near the trailing edge do so with the TSΩ(−d)
t , and after the interaction they keep

on disappearing continuously from the flow. These two sets, one interacting with LS and another

interacting with TS are separated by a linear wavefrontΩ(G)
t , which originates from a pointPG

where the functionbu(ξ)(bl(ξ)) is maximum (minimum). Fig. 2 shows an enlarged version of the

upper part of the Fig. 1 near the aerofoil. This is simply an enlarged version of Fig. 1, the high

frequency approximation is not valid near the aerofoil.

Let us introduce a ray coordinate system(ξ, t) for Ω(ζ)
t . The frontΩ(ζ)

t at a given timet can be

obtained as locus of the tip of the rays (at time t ) in (x,y)-plane starting from all positionsPζ|η of

Pζ at timesη < t shown in Fig. 3. Therefore, a value ofη, η ≤ t identifies a ray and we choose

ξ = −η, η ≤ t (6.3)

for Ω(ζ)
t from the upper surface (for lower surface we shall chooseξ = η, η ≤ t).

Whenξ ≡ −η = −t, the pointsA,B andC in the Fig. 3 coincide. Hence the base pointPζ of

Ω(ζ)
t , which lies on the upper surface of the aerofoil, corresponds to a point on the lineξ + t = 0 in

the(ξ, t)-plane.

The nonlinear wavefrontΩ(ζ)
t ,(−d < ζ < 0, ζ 6= G) satisfies the system (5.2)–(5.3). The Cauchy

data onξ + t = 0 for our sonic boom problem can be determined from the inviscid flow condition
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FIG. 1: Sonic boom produced by the upper and lower surfaces:y′ = bu(x′) andy′ = bl(x′) respectively.

The boom produced by either surface consists of a one parameter family of nonlinear wavefronts bounded

by leading and trailing shocks.

on the surface of the aerofoil. Retaining only the leading order terms, this is [4]

m(ξ,−ξ) = m0(ξ) := 1− (γ + 1)(Ẋ2
0 + Ẏ 2

0 )b′u(ξ)

2(Ẋ2
0 + Ẏ 2

0 − 1)
1
2

(6.4)

g(ξ,−ξ) = g0(ξ) := (Ẋ2
0 + Ẏ 2

0 − 1)
1
2 (6.5)

θ(ξ,−ξ) = θ0(ξ) :=
π

2
+ ψ − sin−1{1/(Ẋ2

0 + Ẏ 2
0 )

1
2 } (6.6)

whereψ = tan−1
{

Ẏ0/Ẋ0

}
. Sinceb′u(ζ) < 0 for G < ζ ≤ 0 andb′u(ζ) > 0 for −d ≤ ζ < G,

m0 > 1 onPζ for G < ζ ≤ 0 andm0 < 1 onPζ for −d ≤ ζ < G. This can be used to argue that

m > 1 on Ω(ζ), for G < ζ ≤ 0 and m < 1 on Ω(ζ), for− d ≤ ζ < G. (6.7)
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FIG. 2: An enlarged version of the upper part of the Figure 1 near the aerofoil.

FIG. 3: A formulation of the ray coordinate system (ξ, t) for Ω(ζ)
t . AB represents the path of a fixed pointPζ

on the aerofoil. A and B are the positions ofPζ at timesη andt respectively,η < t.

Since the eigenvalues of the system (5.2)–(5.3) are

λ1 = −
√

(m− 1)/(2g2), λ2 = 0, λ3 =
√

(m− 1)/(2g2) (6.8)

we get a Cauchy problem for a hyperbolic system (5.2)–(5.3) forΩ(ζ)
t for eachζ satisfyingG <

ζ < 0 and an elliptic system forΩ(ζ)
t for eachζ satisfying−d < ζ < G (we call it elliptic even
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thoughλ2 = 0 is real).

The derivation of the Cauchy data onξ+t = 0 for the system (5.4)–(5.6) governing the evolution

of the leading and trailing shock fronts is far more complex. We quote from [4] the leading order

terms in this Cauchy data forΩ(−d)
t

M(ξ,−ξ) = M0(ξ) := 1− (γ + 1)(Ẋ2
0 + Ẏ 2

0 )b′u(ξ)

4(Ẋ2
0 + Ẏ 2

0 − 1)
1
2

(6.9)

G(ξ,−ξ) = G0(ξ) := (Ẋ2
0 + Ẏ 2

0 − 1)
1
2 (6.10)

Θ(ξ,−ξ) = Θ0(ξ) :=
π

2
+ ψ − sin−1{1/(Ẋ2

0 + Ẏ 2
0 )

1
2 } (6.11)

V (ξ,−ξ) = V0(ξ) :=
γ + 1

4
{Ωp(−d)

w0 (ξ)−F(−d , t)} (6.12)

wherew0(ξ) is related toM0(ξ) by M0(ξ) = 1 + γ+1
4 w0(ξ),

ΩP(−d)
=

(Ẋ0Ẍ0 + Ẏ0Ÿ0)
2g0(Ẋ2

0 + Ẏ 2
0 )(Ẋ2

0 + Ẏ 2
0 − 1)1/2

+
Ẋ0Ÿ0 − Ẏ0Ẍ0

g0Ẍ2
0

F(ζ, t) =
(Ẋ2

0 + Ẏ 2
0 )b′′u(ζ)

(Ẋ2
0 + Ẏ 2

0 − 1)1/2
{Ẋ0(t)} − (Ẋ2

0 + Ẏ 2
0 − 2)(Ẋ0Ẍ0 + Ẏ Ÿ0)

(Ẋ2
0 + Ẏ 2

0 − 1)3/2
b′u(ζ)

X = X0 cosψ + Y0 sinψ.

AgainM > 1 onΩ(0)
t andM < 1 onΩ(−d)

t so that the two eigenvaluesΛ1 =
√

(M − 1)/2G2,

Λ2 = −
√

(M − 1)/2G2 of (5.4)–(5.6) are real forΩ(0)
t and purely imaginary forΩ(−d)

t . The other

two eigenvalues areΛ11 = 0, Λ12 = 0. Thus, for the LS we get a Cauchy problem for a system

which is hyperbolic and for the TS we get it for a system which has elliptic nature.

We have numerically solved the system (5.2)–(5.3) for a nonlinear wavefront with Cauchy data

(6.4)-(6.6) forζ = 0 for two cases. This nonlinear wavefront from the leading edge is immediately

annihilated by the shockΩ(0)
t . The first case is for an accelerating aerofoil in a straight path and

the second one is for an aerofoil moving with a constant speed but on a curved path. We have also

solved the system (5.4)–(5.6) with data (6.9)–(6.12) for the same paths and same geometry of the

aerofoil. We present some results in Fig. 4 and Fig. 5.

For an accelerating aerofoil along a straight line we note that the linear wavefront from the nose

develops fold in the caustic region but the nonlinear wavefront does not fold and instead has a pair of

kinks. For a supersonic aerofoil moving on a highly curved path (curved downwards), the nonlinear

wavefront from the upper surface is smooth but from the lower surface has a pair of kinks. The most

interesting result seen from our new formulation of the sonic boom problem is the elliptic nature of

the equations governingΩ(−d)
t . This implies that whatever may be the flight path and acceleration
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FIG. 4: Sonic boom wavefront att = 2 from the leading edge of an accelerating aerofoil moving in a

straight path. Kinks on the nonlinear wavefront are shown by dots. The initial Mach number is 1.8 and the

acceleration is 10 in the time interval (0,1/2) andb′u(0) = −0.01.

FIG. 5: Successive position of the nonlinear wavefront from the leading edge of an aerofoil moving with a

constant Mach number 5 along a path concave downwards withb′u(0) = −0.01
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of the aerofoil, the trailing shockΩ(−d)
t must be free from kinks. All these features, which we obtain

from our theory are seen in the Euler’s numerical solution in [9], discussed also in [4].

We also have some results for the leading shock LS from the SRT (see a paper by Baskar and

Prasad in the Proc. International Symposium on Nonlinear Acoustics including International Sonic

Boom Forum, Pennsylvania State University, 18-22 July, 2005). We find that though the geometric

shape of nonlinear wavefront is not only topologically same as that ofΩ(0)
t , it is very close to it.

Hence the nonlinear wavefront from the leading edge gives valuable information about the shape

and the position ofΩ(0)
t .
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