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ABSTRACT

Among the numerical procedures to solve a hyperbolic system of partial
differential equation. in 3-independent variables. method of bicharacteristics occupies an
important position from the point of view of the accuracy of the solution. All bichar-
acteristic method developed so far employed the compatibility r!')lations along, at the most,
four bicharacteristics. We have presented in this paper a procedure for linear problems,
takin~: as many bicharacteristics as poss ble and also have derived Butler's method as its
particular case. Furthermore, stability criteria for these methods have been discussed. The
present method is consistent and has second order accuracy at every time cycle and allows
a timestep which is larger than that of Butler's method. A boundary method consistent
with the present method has been derived. The present method has been illustrated by
solving an initial-boundary value problem and a purely initial value problem, numerically
and the results are compared with those of Butler's and Strang's schemes. Although
Strang's scheme allows time step larger than those of bicharacteristic schemes, the bicharac-
teristic schemes are more accurate than Strang's scheme.

I. Introduction

f

The theory of characteristics for hyperbolic partial differential equations
in two and more independent variables is well developed (Courant and Hilbert,
1962). The theory can also be used for the numerical solution of the equations.
Massau gave the basic principles for such a numerical method for the case of
2 independent variables as early as 1900. Following the developments of the
techniques by Busemann (1929) and Guderley (1940), the numerical method
of solution following the compatibility conditions along the characteristic
curves was extensively used in compressible flow problems (Meyer (1953),
Shapiro (1954), Vol. I).

Unlike the case of two independent variables, where the compatibility
condition along a characteristic curve contains only derivatives along
the curve and fr,om which finite-difference schemes for step-by-step
integration can be easily written down, the compatibility conditions
along a characteristic surface for three independent interior
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directions and hence do not lead quickly to a suitable finite-difference scheme.
In the latter case however, one of the interior derivatives can be chosen in the
direction of the bicharacteristic curves, which form an one parameter family of
curves generating the characteristic surface. Attempts were made in 1947
(Coburn and Dolph (1949), Thornhill (1948) to develop numerical schemes
for the solution using the compatibility conditions along bicharacteristic curves.
Out of all the methods developed so far, the one by Butler (1960) seems to be
most natural, from the point of view of taking into account the boundary
conditions (Cline and Hoffman (J972) and Zucrowand Hoffman (1977)), and
also most accurate. Moreover, for a class of hyperbolic equations, Buter gives
a theory for deriving a difference scheme using integration over the base curve
(The curve of intersection of the characteristic cone and the initial space like
surface where the Cauchy data is known). This way, he could, in principle,
take{'into account the conditions of all the infinite bicharacteristic curves passing
through the soluti'on point i. e, the point where the solution is to be found
(see also the method developed by Chu and his collaborators (1967, 1975, 1976).
However, in practicdl applications presented by him, he has used only four
bicharacteristics to obtain the difference scheme.

The purpose of this paper is to develop a finite difference scheme taking
all or as many bicharacteristic curves as possible, passing through the solution
point by performing the integration over the characteristic conoid and to see
whether inclusion of more bicharacteristics gives more accura te results We
have shown that by employing a suitable bivariate interpolation formula for
evaluating the values of the dependent variables on the base curve in the initial
plane, it is possible to derive different difference schemes (the difference in the
different schemes arises due to different number of bicharacteristic curves
involved in the derivation of the schemes) in each of which the value at the
solution point can be obtained in terms of the nine mesh points in the initial
plane. Since nine points in the initial plane are also involved in Butler's
method, the computational time involved in our method is approximately same
as that in the Butler's method The numerical results show that our difference
schemes are more accurate, because of relaxation of the stability requirement.

Our aim in this paper is to develop more accurate numerkal schemes and
compare our results with tbose obtained from the Butler's scheme and also
with the exact sollltion. Hence we have taken only a first order system of
three equations equivalent to the wave equation. It seems appropriate to
comment here on the other finite-difference methods, such as those developed
by Von Neumann and Richtmyer (1952), Lax and Wendroff (1960, 1964), and

1!

.;!



/"!'.

v.

~

~

~

'"

Numerical solution of hyperbolic equations 577

Strang (1963) in which the derivatives are directly approximated by finite~
differences. These methods are not so easily adoptable to the boundary value
problems and they are far less accurate than bicharacteristic methods
(Ravindran (1979»), also shown by our comparison with Strang's scheme.

2. Basic equations and integral (or integra-differential) equations
formulation of the initial value problems

An initial value problem associated with a first order system of three
equations equivalent to the wave equation in two-space dimensions is given by

CPt - c(ux + Vy) '"" 0 (2.1)

Ut - ccpx = 0 (2.2)

'\I, - cCPy = 0 (2.3)
.th C

WI I

,,(x, y, 0) = 'Po(x, y), u(x, y, G) = uo(x, y), vex, y, 0) = vo(x, y). (2.4)

The parametric representation of the characteristic cone passing through a
point (;, 7],-r) in space-time is

r: x = ; + c(-r - t') cos 0, y = n + c(-r - t') sin 0, t = t' (2.5)

where t' and () are the two parameters. For a constant value of 8, the
equations (2.5), when t' varies, represent a straight line which is a bichar-
acteristic curve of the system (2.1) - (2.3). The bicharacteristic curves through
p form a one parameter family and generate the characteristic cone (2.5).

Fol1owing the procedure given by Prasad and Ravindran (1980) (or multi-
plying (2.2) by cos 0 and (2.3) by sin 0 and adding them to (2.1), we can write
the compatibility relation on the characteristic cone as

dcp du. dv
~ + cos 8 - + sm 8 - = S
du du du

where

(2.6)

s = crux sin2O - (Uy+ vx) sino cosO + Vycos20] (2.7)

and d: denotes differentiation in the bicharacteristic direction and" is given by

d {) {). {)- = - - cosO - - smO-
~ 8t oX ~

The surface of the cone r is described by two independent parameters ['
and D. (see (2.5». The relation (2.6) is valid on the cone, where all quantities

(2.8)
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", U,v and 8 can be regarded as functions of t' and 0 only. We also note that
on r, the functions u(t'; 0), v\t', 0), ,,(t', 0) and their derivatives are all inde-
pendent of whent' ::.: 'to To show that on r, 8 contains only interior deri-
vatives of Uand v, we transform the coordinate system from (x, y, t) to (e, t', '1')
with the help of

x =- E+ ['t ... t') tan '1']cosO,
y - 1J + ['t - t') tan '1']sine, t' ... t

and then set tp = tan-Ie. This gives

8 = ~ (- sinOu, + cosOVI)''t - t

Butler did not pay any attention to this form of 8.

~u]tiplying (2.6) by unity, cosO and sinO, separately and integrating with
respect to the parameter t' ( .. u) we get the following set of integro-differencial
equations

D

(2.9)
..

(2.10)

2n

,,(P) = 217(.S [rp(Q) + u(Q) cosO + v(Q) sinO]dO
0

't 27(.

+ 2~ S S 8(t', 0) d8 de'
t=O 0

27(.

u (P) = ~S [rp (Q) cos 0 + u (Q) cos '0 + v (Q) cos 0 sin"O]dJ
t 27(.

+ ~ S S 8 (t', 8) cos 0 de dt'
t'=o 0

(2.11)

(2.12)

~

and
,27(.

v (P) .. ~J [rp(Q)sin 8 + u(Q) cos 8 sin 0 + v(Q) sin 10]dO
0
't 27(.

+ ~ S S 8 (t', 0) sin 0 d8 dt'
t' =0 0

'"

(2.13)

1 - - - - -~ -~~~-~~--- --
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The above system of integro-differential equations can be reduced to the
following system of singular integral equations by making use of the expression
(2.10) for S and performing integration by parts with respect to 0 :

271:

tp (P) = ~ \[II' (Q) + u (Q) cos 0 + v (Q) sin 0]dO271: ....

0

'T' 2n:

+ ~ s S ~ [u (t', 0) cos 0 + v (t', (Q) sin 0] d(Jdt'271: 't - t
to=0 0

(2.14)

271:

U (f) = + S [tp (Q) cos 0 + u (Q) cos 20 + v (Q) cos 0 sin 0] dO
\' 0I

t 211:

+ ~r
S 1 I [u(t',O)COSO + v(t',(J) sin 20] d8 dt'

1t J -r-t
t' = 0 0

(2.15)

and

271:

V (P) = --.!... S
[tp (Q) sin 0 + u (Q) cos 0 sin 0 + v (Q) sin 20]dO

:It '
0

1:

++S
t' ~ 0

211:

S ~, [u (t', D) sin 28 --v (t', 0) cos 20] dOdt'1: - t
0

(2.16)

Care should be taken in the interpretation of the double integrals in
(2.14) - (2.16) and also in the equations (2.11) - (2.13) when the expression
(2.10) instead of (2.7) is used for S. All these singular integrals, with a
singularity at t' = 1:, are interpreted as limits, as £-+0, of the corresponding
integrals with the range of integration for t' given by t' = 0 to t' = 1: - £.

Every solution of the initial value problem (2.1) - (2.4) is also a solution
of the system of integro-differential equations (2.11) - (2.13) or its equivalent
system of singular integral equations (2.14) - (2.16). However, unlike the case
of two independent variables [see Courant and Hilbert (1962), 6 Chapter V] it
is hard to prove the equivalence of the initial value problem (2.1) - (2.4) and

10
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the system (2.11) - (2.13) or (2.14) - (2.16). A proof of this equivalence is
welcome. However, we shall, using integro-differential or integral equations,
derive a finite-difference scheme to determine uniquely rp(p),u(P) and v(P) in
terms of the initial values at t = 0 for small '1:. This will, therefore, give an
approximate finite-difference solution of the initial value problem.

3. The Finite-Difference Schemes ,

First Method: Let us first take up the integro-differential equations
(2.11) - (2.13), the last terms of which contain double integration with respect
to the bicharacteristic variable t' and another interior variable e. Following
Butler, we take '1: small and approximate the integration with respect to t' by
the trapezoidal rule. For example, the equation (211) gives

,I 211:
" 1

SI' 'PCP)= 211: [rp(Q) + u (Q) cos 8 + v(Q) sine] dO
0

211:

+ 4: S [S(P) + S(Q)]dO+ 0('1:3).
0

(3.1)

We note that the expression (2.10) does not define S at P since l' = 't at
this point and hence it is only the expression (2.7) which is to be used for S
in (3.1). When we do this note that the values of the 1I,v, rpand their deri-
vatives at p do not depend on e, we get

211:

rp(P) = 2~ S [rp(Q)+ u (Q) cosO + v(Q) sinO]dO
0

211:

+ ~ (1I"+ Vy) + 2. r S(Q) dO + 0\'1:')
4 411:J

0
(3.2)

Similarly, we can use (2.12) and (2.13) to find expressions for lI(P) and yep).
However, we note that the expressions for rp(P) contains unknown derivations
Uxand Vyat the solution point. Butler obtained a major success by eliminating
these derivatives at P by integrating the equations along a time-like (of course
non-bicharacteristic) curve. In this particular case, we integrate the equation
(2.1) along the axis 0' P of the cone (Fig. 1). .



T,

Numerical solution of hyperbolic equations 581

'%

"(P) = " (0') = ~T [uX + vy)p + (ux + VY)O' ] + 0 (TS).

Eliminating the derivatives at P from equations (3.2) and (3.3) we get
2n

,,(P) = -+ S [" (Q) + u (Q)cos 0 + v (Q) sin 0] dO
0

2n

+ -
2-~ fS(Q) dO - ,,(0') - CT. (ux + Vy)o' + 0 (TS).n ~ 2

0

(3.3)

I

, ~

(3.4)

Now,:;wewrite the result which can be obtained from (2.12) and (2.13):
:' 2n

u (P) = ~ f [" (Q) cos 0 + U(Q) cosiO + v (Q) sin 0 cos 0] do
0

2n

+ 2: S S (Q) cos e de + 0 (TS)
0

(3.5)

and

2n

v (P) = f J' [q:>(Q) sin e t- u (Q) cos 0 sin 0 + v (Q) sin SO]dO
0

~

2n

+ 2: .r S (Q) sin e dO+ 0 (1:S).
0

13.6)

The equations (34) - (3.6) explicitly give the values of ", u and vat a point
P (;, 'TJ,T) in terms of the initial values in the plane t = 0 and these formulae
are correct upto o( 'to), the error being o( TS) or less. These expressions can be
deduced as a particular case of Butler's general theory given in the section '3
of this paper. We proceed now to derive from these equations a sequence of
finite-difference schemes by replacing the integration with respect to by a
suitable numerical quadrature formula anp by using an appropriate bivariate
interpolation formula to determine the values of q:>,u, v and their derivatives
at the points of the base curve in terms of the nine mesh points in the initial
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p

plane or in a parallel plane as shown in the Fig 2. For example, if we wish
to replace the integration with respect to 8 in (3.4) by Simpson's one-third
quadrature formula by taking N (= 8) equal divisions of the interval [0, 211]by

the points 2~r (r "" 0, 1, 2, ..., 7) and nothing that values of all quantities
for r = 0 (i. e. () = 0) and r ... N (i. e. 8 "" 2:n:)coincide, we get

1
~ (P) = 12 [2 {Q.) + cP(QI) + cP(Qs) + cP(Q.)} + 4 {cp (Q.)

+ cP(Qe) + cP(Q7) + cP(Q8)} + 2 {u (Q.) - u (Qs) }

~

I'
,

S :n: 3:n: 511: 711:)
;- 4 l u (Q.) cos "4 + u (Qe) cos "4 + u (Q7) cos 4+ U(Q8)cosT 5

+ 2 { v (QI) - v (Q.) H + 4 [v (Q.) sin ~ + v (Qe)sin 3;

+ v (Q7)sin 5; + v (Q8)sin' ~:n: } ]
+ ~: [2 {S(Q;) + S(Q,) + S(Qa) + S (Q.)}

+ 4{S(Q.) + S(Qe) + S(Q7) + S(Q8)}] - cP(0')

c6.t
( ) (

I . h- ~ Ux + vy OJ + 0 ( 6.1) ), Wit N = 8. (3.7)

The formula (3.7) involves the values of the dependent variables and their
derivatives at the non-grid points. We evaluate these by the use of the follow-
ing bivariate interpolation formula involving only niIle points in the in itia
plane as shown in the Fig. 2

1 1

{(x,y)... 2: 2: Pi+p (x) QJ+q (Y) f(Xi+P' YHq) + O«6.X)3)
p = - 1 q = - 1 PHp (Xi+;) QJ+q (YHq) (3.8)

where

- (1 ,---
PlTP (x) = -{ II (x - Xi+P)~I.(X - Xi+P)

Lp = - 1 J
(3.9)

and

- -- -
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~ ( 1 I IQJ+q(y) = -1 n (y- YJ+q) ~ {(y - YJ+q).
lq= -1 )

When we differentiate (3.8) to get the derivatives of lex, y), the result has an
error 0(61)1. However, we shall notice that all the terms in (3.7) which contain
derivatives are already multiplied by 61. Therefore using (3.8) for the deri-
vatives at all points and for the functions f', u and v at the non-grid points,
we get

(3.10)

1

tpn+\, j "" 2 (a(l)i+p, j+p tpniTp, j+q + bP)I+p, jtq Unl+p,j+q
p,q = - 1

.\, + cP)I+P,HqVnl+P,J+q) + 0({6t)S) (3.11)
Similatly

1

Un+lI, j = 2 (a(I)I+P' J.t-q tpnl+p,j+q + b(I);+p, J+q UnItP, j+q

p,q = - 1

+ C(8)t+p, J+q Vnl+p, J+q) + 0(6W) (3.12)
and

1

vn+l;, j = 2 (a(S)I+p,j+q tpni+p, J-t-q + b(3)i+p, j+q unl+P, J+q
p,q = - 1

+ C(S)i+p, J+q Vnl+p, Hq) + 0((6t)S). (3.13)

where the coefficients in the case of N = 8 for the first method are given in
Table 1.

The method described above for N = 8 is applicable to any even value of
N. We call the differences schemes obtained from the integro-differential
equations in this manner as Method 1. Table 1 gives the values of the coeffi-

cients corresponding to different values of N in terms of a parameter R ... ~
6X

introduced in the next section. It is also simple to prove that as N-,,>-= all
the 81 coefficients tend to definite limits (see Appendix A).

We note that irrespective of number of bicharacteristics used; the error is
of 0((61)3). In what way does the number of bicharacteristics involved in the
scheme affect the actual computation, is investigated.

~
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A simple derivation of Butler's scheme: Butler's scheme can also be obtain-
by the above method by approximating the integration with respect to 8 by

trapezoidal rule, taking the values on the base curve at () = 0, 3t2' n, 3; and
In, which coincide with the grid points Q" Q2, Qso Q. and QI respectively.
~Equatjon (3.4) with the expression (2.7) for S, gives

tp (P) = - tp (O') + 1/2 { tp(Q,) + tp (Q2) + tp (Q.) + tp (Q.) }

+ 1/2 {u (Q,) - u(Qa) + v (Q2) - v(Q.)} + c 6. t/4 f(~ ) Q°Y I

.j

+ (!!!-) + (~ ) + (~ ) } - c 6.t/2 (ux + vy) ,
oX Q. ay Qs aX Q. 0

{' + 0 ( (6. t) s ) (3.14)

Similarly we can use (3.5) and (3.6) for u (P) and v (P) respectively. We note
that the values of tp, u and v and their derivatives appearing here are only
those at the grid points and are such that they can be approximated by a
central difference formula with the help of the nine points shown in the Fig. 2.
We get the difference scheme same as (3.11) - (3.13), with the values of
the coefficients given in Table 1. One of the main points to be noted in
Butler's scheme is that the term (Uy -+ vx) sin 8 cos /J in the expression (2.7) for
(2.7) for S does not contributed to the scheme.

However, Butler's scheme gives fairly good result since the four bicharac-
teristic relations used by Butler in his derivation are equivalent to the original
equations (2.1) - (2.3).

Second Method: Our second set of difference schemes are derived from
the singular integral equations (2.14) - (2.16). Tn the derivation of these, there
is little more complication due to the presence of the singubrity at l' = 'L.
However, we get exactly the same scheme by starting from the equations
(3.4) - (3.6) with the expression (2.10) for S and then by getting rid of the
derivatives of u and v with respect to 8 by integration by parts. This gives

2n 271:
1 r 3 r

tp(p) = - tp(O') + ;- J tp (Q) d 0 + 2 J (u coso + v sinO) de
0 0

- c6t (ux + Vy)I + 0«6.t)")
2 0 (3.1 5)
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and similar expressions for u(P) and v(P). The only derivatives which appear
here are those at 0', which can be immediately replaced by central finite-
differences. The bivariate interpolation formula (3.8) is to be used for
evaluating the values of 'P, u and v at non-grid points. Therefore, this method
(call it Method 2) also gives a finite-difference scheme'of the form (311) - (3.13)
with values of a's, b's and c's depending on N, the number of equal sub-
intervals of (0, 2n) used for numerical quadrature with respect to 8.

We note that in this case also as N--+-= all the coefficients tend to constant
values and these limiting values are the same as the corresponding limiting
values as N --+-= in the first method. Because of this reason, we have concen-
tra ted only one Method 1 in the rest of this paper.

4. Corisistency of the difference scheme
{'

We write the equations (2.1) - (2.3) in the form Ut + Bt Ux + B'},Uy = 0,
where U = (t:>,u, v)' and Bt and B2 are 3 x 3 matrics, and the difference scheme
in the form

1

U(x,y, t + 6t) = 2:: Cij U(x+i 6x,y+j 6Y, t)
i, j = - 1

where Cij are 3 x 3 matrices independent of 6t. We assume that 6.t and 6.t
6. x .6.y

(4.1)

are constants such that 6 x = 6y = 6 t / R.

In order that, in the limit as t--+-O,the solution of difference equation
satisfy tbe differential equation, it is sufficient for us to show that the scheme
is consistent and stable (Lax and Richtmyer (1956). The stability will be
discussed in the next section. Here we shall consider the consistency of th~
scheme, which means that the solution of the differential equation must be
approximate solution of the difference equation with an error 0(6t)2.

We expand both sides of (4.2) into Taylor series, one with respect to 6 t
and the other with respect to 6 x and 6y and get

U + 6 t Ut + (6 t)' Utt + 0(.6. t)22

C [ u . A [1 +
. U (i .6.x)2 U

= ij + I L.;X x J.6.Y y + 2 xx

+ ij 6.X 6y fJxy+ (j~y)2 Uyy] + 0(6t)2
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Substituting for Ut from the differential equation (4.2) and equating the
coefficients of U, UXJUy, Uxx,Uxy and Uyy, we obtain the consistency conditions:

~Cu ... 1, 2:.iC il = - B1R, "'2.jCij = - Bs R

"'2.i'Cij = B1RI, "'2.ij - 8, HI -t; BsB1RI,

"'2.pCi} = BI RI

where ~ indicates summation over both i and j.

It is easy to verify that these relations are satisfied for all the three
schemes indicating that all the three are consistent second order schemes.

5. Stability

.;To study the stability of the difference schemes, the dependent variables
are ;written as a double Further series and its each component is examined
as to its growth with time. i. e.,

U (jt::;.x, kb"y, nt::;.t) = Uno exp {i (ocj ~ X + (Jk b" Y)}

and the same quantity at an advanced level (n + 1) t,

U (j b. x, k b. y, (n + 1) t::;.t} = Uon'r-lexp { i (ocj b" X + {Jk t::;.y}} (5.2)
where U = (9', u, v)' and ocand (3are the wave numbers associated with x and y
coordinates.

(5.1)

Substituting the values in a difference scheme, we get

Un+l -A (oc.6X, (3t::;.y,b"t) Uon

where A is amplification matrix of the scheme.
The amplification matrices corresponding to different schemes discussed

earlier are given below. Here B - cb.t t::;.x = t::;.y, l; = oc6X, '1} = (Jt::;.y.
D.X

(5.3)

Butler's scheme

RI(cosl; - 1) iR sin l; X iR sin '1} X

RI (cos '1}- 1) + 1 [~' (cos '1}- 1 + 1]

R.
[ 1~(cos l; - 1) + 1]

A=
iEt sin l; [R2(cos l; - 1)+ 1 RI sin l; sin 7J-2

- iR sin 7J
I -

R1. .
- T SID l; SID 7J

R2 (cos 7J- 1) + 1
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Method 1 when N ==8:

A == (AIj, i = 1,2,3; j = 1,2,3)
R4

All = T (cos~ - 1) ~os" - 1):+ Rt (cos~ - 1) + Rt (cos?]- 1)+ 1

All ==iR sin~[Rt (2 C~S1}=3) + 1]

All .. iR sin?] [ Rt (2 c~s~ - 3) + 1]
Ail ==iR sin~ [~!- (cos?] - 1)+ 1]

R
Au ==-t(cos~ - 1) (cos?]-I)+R! (cos; - 1) + 1

A :'. R!. .
as{i= - - sm~ SIn?]

j 2

[
R!

JAsl = iR sin?} 6 (cos~ - 1) + 1

A R!..
31 = - - sm~ SIn1J2

R4

Ass == """6 (cos; - 1) (COS1J - 1) + R! (COS1J - 1) + 1

1:

~

Method 1 when N = 16:
R4

All ==- (cos; -1) (COS1J-1) R' (cos~ -1) +Rs (cas?) -1)+ 14

Ala = iR sin; [3:2 (CDS?]- 1) -+1]

A,s==iR sin1J[3:9 (COS;- 1) + 1]
1) + 1]A21 = iR sin; [~2 (cos1J -

Au = R4 (CDS; - 1) (COS?] - 1) + R2 (cos; - 1) + 18

A Rt. .
U = - - SIn; SIn1J2

Asl == iR sin?][~2 (CDS;- 1) + 1 ]
11

587
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A R2..
32 = - "2 SID; SID')]

Ri

Ass = 8" (cos~ - 1) (cos')] - 1) + R2(COS'YJ- 1) + 1

Although it is very difficult to obtain the eigen-values of these matrics in
their general form, the consideration of various particular choices of; and ')]
revealed that the matrices possess the largest eigen-values in the absolute value,
when; = ')] = n.

For this ..::hoice, the eigenvalues of the amplification matrix for Butler's
scheme are

.1 - 2R2, 1 - 2R', 1 - 4R2 (5.4)
,i

;Therefore the stability criterion is\
:R < 1/J2 = 0.7071068 (5.S)

For the same choice of ; and ')], the eigenvalues of the amplification matrix
for the scheme in Method 1 when N = 8 are

4/3 Ri - 4R2 + 1, 2/3 Ri - 2R2 + 1, 2/3 Ri - 2R2 + 1 (5.6)

The graphs of the eigenvalues for the three schemes have been shown in
Fig. 3, 4 and 5 respectively and it follows that the stability criterion in the
case, is

- 4/3 Ri + 4R2 - 1 < 1.

This is satisfied if R2 ;;. 3/2(1 + 1/,J3) or R2 .;;; 3/2(1- 1/,J3). But CFL con-
dition restricts that R < 1. Therefore the stability criterion is

R < ,J3/2 (1 - 1/,J3) = 0.7962252 (5.7)

Again for ~ = ')] = n, the eigenvalues of the amplification matrix for the
scheme in Method 1 when N = 16, are

Ri - 4R2 + 1, Ri/2 - 2R2 + I, R4/2 - 2R2 + I (5.8)

By the same argument as above, the stability criterion is

R < ,J(2- ..;2)~ 0.7653669 (5.9)

We observe from (5.5), (5.7) and (5.9) that, using the schemes in~ Method
I, we can march faster along [-axis than when Butler's scheme is used, without
facing instabilities. We call the values of R in (5.5), (5.7) and (5.9) as the
critical values of R for corresponding schemes. .

....
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t

J

I
I

6. Numerical Results and Discussion

".

The first problem that we consider is the initial boundary value problem for
the system of equations (2.1) - (2.3) in the domain 0 <;x. y <;1. t;;. O. with initial
conditions given by

,,(x. y, 0) ==O. u(x, y, 0) ... n COSnX sin ny

vex. y, 0) - n sin nX cos :ny,0 <;x, y <:1

and the boundary conditions given by

,,== O.v ==Oonx ==Oandx ==1,0~y"'l,t;;;.0

and" = O,u ==Oony = 0 andy - 1,0~x<;l,t;;.0

On each of the boundaries only one dependent variable is not known. We
first pre~ent a method of computing this variable.i,
Solution. at boundary points

Butler's scheme as a boundary method has been discussed and compared
with several boundary methods by Bramley and Sloan (1977). We present here
a method for computing the values of the dependent variables on the boundaries
suitable for Method 1.

The unknown dependent variable is calculated using the finite-difference

,,(F) - ,,(Q) + COg[u(P) - u(Q») t sin[v(P)- v(Q)]

==C,0,t [S(P) + S(Q)]2 . (6.1)

of the compatibility relation along a bicharacteristic. This finite-difference form
is integrated with respect to over an appropriate interval. Along the boundary
y = 0, i. e. x-axis, the boundry conditions are 'P (x, 0, t) ==0 ==u (x, 0, t) for

0 ~ x < I, t ~ O. In this case the appropriate intervel for 0 is [0, n]. Integrat-
ing (6.1) with respect to 8, from 0 to 'It, we get.

'"

n

2v (P) -S ['P (Q) + cos (} u (Q) + sin (} v (Q) + C ~ t S (Q) ] d 0
0

- nl2 'P(0') n c6 t/4 (ux + VY)o' (6.2)

Note that we have used the relation (3.3) in eliminating the derivatives of the
dependent variables at P.
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Proceeding in a similar way, we get the following results on other bounda-
ries : -
on x = 1:

2n

- 2v (P).. S [" (Q) + cos 0 u (Q) + sin 0 v (Q) + c (/::.t/2) S (Q) ] d 0
n

- n/2" (0') - n ct;:.t/4 (ux + vY)o' (6.3)
on y = 0:

n/2

2u (P) = S [" (Q) + cos 0 u (Q) + sin 0 v (Q) + c (/::.1/2) S (Q)] d ()- n/2

- n/2" (0') - c6,t/4 (ux + vY)o' (6.4 )I'
I

on y ... 1:

3n/2

- 2u(P} = S [" (Q) + cos 0 u (Q) + sin () v (Q) + c (t;:.t/2) S (Q)] d 0
n/2 ,

- n/2'P (0') - c t;:.t/4 (ux + "Y)o' (6.5)

The properties at the points Q are interpolated using the bivariate inter-
polation formula (3.8) mentioned earlier. The only difference is that the nine
points used here are not centered around the projection of the solUtion point
in the initial plane, but they have been taken on one side of 0' in order to have a
second order scheme.

The numerical solution is computed using the different schemes, taking
21 x 21 mesh points in the region 0 < x, y < I and the maximum absolute
error in the computed values are given in Table 2, using the exact solution, of
problem, viz..

,,(x. y. t) ... ..;2cn sin nX sin nJ' sin (.j2nct)
u(x, y, t) = n COSnX sin ny cos (.j2nct)

v(x,y, t) = n sin ;r,Xcos ny cos (,J2nct)
The value of c was chosen to be 1 in all the computations.

It was pointed out by Gourlay and Morris (1968) that the multistep for-
mulation of Strang's scheme is superior to two step Lax-Wendroff scheme,
Therefore, by way of comparison with the above three schemes, we also solved

(6.6)
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the problem using Strang's scheme, which makes use of one-dimensional two
step Lax-Wendroff schemes. Multistep Strang's scheme fpr the problem
U, + (F(U»x + (G(U»y = 0 is given by

Vn+l(tJ = fly Un - (P/2)oy Gn, Wn+I(I) = fIx Un - (P/2)8x Fn

Vnf-I(2) = Un - P 8y Gn+l(,), Wn+l(~) = Un - P 8x Fn+I(a)

Vn+l(s) = fIx Vn+\2) - (P/2) ax pn+l, Tyn+IIs)=fly wn+l(s)-(P/2)8.v Gn+I(Ia)

Vn+IW = Vn+l(sl - P 8x Fn+l(s), Wn+I(4) = Wn+l(s) - pay Gn+1

Un+! = (Vn+IC4) + Wn+I(4) )/2

where U = (Ult Uu Us), Fn = F(Un), Fn+1(,) = F( Un+l!ol),etc.

We note that we have Butler's boundary method for the Strang's scheme
here.

It

Table 2.1 gives the max mum errors in the computed values for R = 06
which is significantly less than the critical value of R required for all scheme.
The computations were carried out up to 300 time steps. Both Butler's scheme
as well as Method 1 give better results than those of Strang's scheme.

Table 2.2 gives the maximum absolute errors for R = 0.8. This value of R
is greater than the critical value of Butler's scheme for which the error
becomes very large for n > 70. Even for the scheme in Method 1 when
N = 16, this value of R is greater than the critical value. However, error
grows slowly and becomes very large only when n > 175. For the scheme in
Method 1 when N = 8, the value of R, namely 0.8, is slightly greater than
the critical value. The computations we carried out upto 400 time steps and
no instability was observed For Strang's scheme, this value of /J' is less than 'he
critical value. But at each step the maximum absolute error is greater than that
in Method 1 when N = 8.

We have also done some computations with a mixed difference scheme in
which the values at the interior points were calculated by our Method! (N = 8
and N = 16) and those at the boundaries, by Butler's boundary method. The
numerical results obtained by this are not as good as reported in Tables 2.1
and 2 2, showing that Butler's boundary method is not consistent with our
Method 1 for interior points~

The second problem that we consider is a purely initial value problem,
namely, the linear propagation of initial pressure distribution in a medium at
rest. Equations governing the motion are
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9'1+ c(ux + Vy) ... 0
u, + c 9'x= 0, - 00 <x, y < 00, t:> 0
V, + c 9'y= 0

with initial conditions

'P(x,y, 0) = I - Xl - y', if x' + y!! <; 1
... 0 otherwise

u(x,y,O) = v(x,y, 0) :; 0 - oo<x,y<oo

The exact integral solution of the initial value problem of the linear wave
equation in two-dimensions can be obtained by the Hadamard method of
descent. . The solution of the initial value problem:

\ 9'11 = cl('Px~+ '!Iyy) -oo<x,y<oot~O

~' 'P(x,y, 0) = tp(x, y) and 'P/(X,y, 0) = rex, y)
is '

'!I(x y t) = !... f J .SS tp{~, '1)d~ d'1 + ~ S S
p(~, '1) d~ d'1

}" at l2nc ,J(c' t' - r') 2n:c ,J(cl tl -r2)
r <.ct r:;;;.ct

where r' ... (X-~)I + (Y-'1)I. These integrals are calculated for the given initial
pressure distribution using Chebyshev and Gauss formulae.

The maximum absolute errors in the numerical computation, using different
schemes are given in Table 3. Butler's scheme is unstable for R = 0.8 and
gives less accurate results even for small time steps. Both the schemes in
Method I give better results than those of Strang's scheme. When R = 0.6
even Butler's gives better results than Strang's scheme.

We took this initial value problem with a view to compare our results with
those of Ravindran (1979) who has used a first order bicharacteristic method to
solve this problem. We find that here the scheme is stable for R :;;;.1. However,
when we plot our results in Fig. 5 in that paper for t = 1.6, we find that the
second order accurate Method 1 when N ... 8 gives much less error than the
first order bicharacteristic schemes and can hardly be distinguished on the
graph from the exact integral solution.

From the results of computations and stability analysis, we conclude that
Method 1 when N = 8 shows some improvement from the point of view of
accuracy and stability over the Butler's scheme using only 4 bicharacteristic.
The computation times are approximately same for the four schemes, at least
in the case of linear problems. But the bicharacteristic schemes are definitely
more accurate than Strang's scheme.
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'"

The following are the sets of 9 matrices which give the coefficients in

different schemes for arbitrary R = c fj.t
t::.x

-
Ak = [a(k)i+p,Hq],

Coefficients in Butler's Scheme

Bk = [b(k),+p, Hq],

( 0
1

AI = ~ RI12.
I 0
l :'.

Ii,

( R'/8
I

C, = ~ 0

I -, R3/8
l

I
I'

( 0
J

B2= ~ R2/2
[0
l

..

( 0
1
I

A3 = i 0
JO
l

I
I
I

I

(0
1

I
C3 = i 0

!O
l

R2/2

1- 2R2

R2/2

R(2 - R2)/4

0

- R(2 - R2)/4

0

1- R2

0

RI2

0

-R12

R2/2

l-R2

R~/2

0 1

R2/2 il-
I
I

)

R3/8 1
I
I
I-

R3/8 !

)

0

0

0 1
I

R212 ~

0 j
)

't)

0

0

0

0

0

Ck = [C(k)HP' Hq]

( - R3/8 0
I

BI'" ~ -R{2-R2/4 0

! - R3/8
l

( 0
I

A2 = ~ - RI2

!0
l

( -R3/8
I
10

°1- i
l R2/8
l

1 ( R3/8
I 1
I , 0
I- B2... 1

~! ! -RJ/8
) l

')
...:1

I
l-I
r

)

~

0

R318 ~ 1
I

R(2 - R2)/4 I
I-

R3/8 j
)

0 1
I

RI2 I
}-

0 r.
)

0

0

0

0

0

R!/8 1
I
I
}-

- R2/8 !
)

0

0

0

0

0

R2/8 1
I
I
I-

-.R2/8 !
)

0
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Coefficients in Method 1 when N .. 8

( R R'(3 - R2) R ") ( -RS
0

Rs ")

I 12 6 12 I I 12 n I
I I I I
I R'(3- R') R' R'(3- RI) I I - R(2-R') 0 R(2- R') I

A i --- - - aRt+ 1 }- B ' i .}- .
I=- 6 3 6 1- 4 4

I I I I
I R R'(3 -R') R' I I -RS RS I
I 12 6 - IT I I 12 0 12 I
L J L J
r Rs R(2 - R1) Rs ") ( -R'

0
R' ")

I 12 4 12 I I 12 12 I
I I I I
I I I - R( 3 -R2) 0 R(3 -R') I

C1 0 0 0 }- AI - i 6 6}-
t' I I I I
: I -RS - R(2 -R2) - RS I I -RS RS I

I 12
..

4 12
i I 12

0
12 I

L j L J
r B' - R' R' ") ( -RS 0 Rs ")

.1 24 24'" 24 I I 12 I
I I I I

I R'(6-RS) R4 R2+1 RS(6- RS) I 0 0 0 I
B2 = 12 "6 - 12}- C2 '""

}-

I , I I

I R' - R' R' I R2 0
- RI I

I 24 24' 24 I I 8" 8 I
L J L J

r RS R(3 - RI) RS ") ( - R, 0 R1 ")

I 12 6 12 I I -S 8" I
I I I I

As = i 0 0 0 }- Bs - -{ 0 0 0 }-

I I I I
I -RS - R(3 - RI) -RS

I I R1 -R' I
.

12 12
I I

""8
0 8

.

L 6 J L )

( R RS( 6 - R') R ")

I 24 12 24 I
I I
I -R - RI+l -R I

Cs= 12 6 12 }-
I I
I R' R'(6 - RS) R' I
I 24 12 24 I
l J
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Coefficients in Method 1 when N = 16:

( R' R2(4 - R2) R' ") ( - 3RS 0 3RS ")I 16 8 16 I 132 32. II I I I
":'

I RS(4-R2)R'-2Rs+IR2(4-R2) I I -R(8-3RS) OR{8-3RS)!
AI = p 8 4"" 8 BI = 16 16 r-

I I I II , , Ii R' R2(4 - R') R' I I - 3Rs 3Rs I
l 16" 8 16 j l 32 .0 32 j
( 3RS R(8 -3R2) 3RS ') ( - RS RS ')J 3f 16 TI I /16 0 16 rI I I II

0 0 0 I I - R(4 - R2) RI4-RS) ,C. = ,\ As = 8 0 8
!\I , I I
j: -.3Rs - R(8 - 3RS) - 3R' I I RS R2 I.

32 32
I I-=- 0

16 Il 16 J l 16 J
( R' - R' R2 ') ( - R'

0
Rs ")

I 32 16 32 I 1- "8 I
I . I I 8 I
I R2(8 - R2) R' S R2(8 - R') ' I i!

Bs= 16 gR +1 16 t Cs= 0 0 0 tI I I I
I R' - R' R' I I R -R' II

16
I J -- 0

-8-
I

l 32 32 J l 8 J
( Rs R(4 - R') R3 ') ( - RS 0

Rs ')J 16 8 16 i l-S "8 !
f

0 I I 0 0 0 j
As= 0 0 t Bs= tJ I j RS - R" J

I - RS - R( 4 - R'} - RS I 1- 0 r

l 1 16 J l 8 8 J
( R' R'(8 - R') R' I
I 32 16 32 I
I I
I - R'

R'R'+1 - R' I
Cs= i ---r6 8 16I I

I R' R'(8 - R') R"J I
l 32- 16 32 )
12



TABLE 2

Maximum absolute error in computed values
'1:J
CI:I Table 2.1 : R = 0 6CI>
CI:I
I-t

Time Butler's Scheme Method 1 when N = 8 Method 1 when N = 16 Strang's Schemec:
CI:I

"0 step n Interior Boundary Interior Boundary Interior Boundary Interior Boundary0

10 0.00974 0.00464 0.04904 0.00965 0.00821 0.00708 0.01038 0.00851
'1:Jc: 50 0.06169 0.00641 0.03146 0.03399 0.06799 0.00841 0.08922 0.00960CI:I

I-t 100 0.10800 0.04375 0.03318 0.03564 0.11770 0.05059 0.15743 0.06481CI:I

0 200 0.16588 0.16650 0.20360 0.20540 0.18790 0.18680 0.24630 0.24737'
E:: 300 0.23170 0.23340 0.27190 0.23920 0.24751 0.25167 0.34777 0.35030
d
> Table 2 2: R = 0.8
;:..

'1:J
Method 1 when N = 8 Method 1 when N = 16 Strang's'1:J Time Butler's Scheme Scheme0

CI:I step n Interior Boundary Interior Boundary Interior BouJ:ldary Interior BoundaryI-t
CI:I

10 0.00902 0.00307 0.00881 0.00625 0.00616 0.00532 0.01207 0.01009c:
CI:I
CI> 50 0.01407 0.01378 0.05100 0.01375 0.03112 0.02169 0.06736 0.04833CI:I
>.-

100 0.06455 0.06295 0.06259 0.06200 0.13525 0.13507tI.1 - -
-< 200 - - 0.13320 0.13670 19.50000 3,92400 0.30693 0.17617

300 - - 0.32540 0.00274 - - 0.54299 0.16887
\0 400 - - 0.27630 0.27330 - - 0.55095 0.555810"1to
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TABLE 3

Maximum abso.lute errors in the computed values

Table 3.1 : R = 0.8
;

Time
i step Butler's scheme Method 1 Method 1 Strang's

n when N = 8 when N = 16 Scheme

10 0.008998 0.007500 0.007505 0.007317

20 0.030200 0.012950 0.012707 0.020615

30 . 0.052859 0.037250 0.036450 0.055366

40 {' 0.353449 0.006910 0.006670 0.013650I

50 1.676160 0.006980 0.006931 0.018218

60 18.924250 0.005977 0.005901 0.012606

70 189.890000 0'.004520 0.004385 0.015040

TABLE 3.2: R = 06

Time
step Butler's scheme Method 1 Method 1 Strang's

n when N = 8 when N = 16 Scheme

10 0.00856 0.00849 0.00851 0.01050

20 0.01582 0.01623 0.01615 0.01735

'i 30 0.05071 0.05256 0.05211 0.05566

40 007165 007595 0.07495 0.08375

50 0.01873 0.01973 0.01949 0.03487

60 0.00914 0.00853 0.00869 0.02090

70 0.00833 0.00798 0.00807 0.01953
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Appendix - A

In the equations (3 4) - (3.6),if we replace integral by the Simpson's
one-third rule taking N points ot;!the base curve, and use the bivariate inter.
polation formula (3J~) to get the values of the dependent variables and their
derivatives at the non-grid points on the base curve, we get the equations (3.11)-
(3.13), in which the elements of the coefficient matrices depend on N.

Here we take a typical coefficient and show that it tend to a limit, as
N~=.

Consider a(l)i-" j--u which can be written as

NI2 N/2

';, ai-I, j-I = 3~ [~AII (2/ - 1) + 2 2: All (2/) ]
, /=1 1=1

(1)

where

All (l) = 1/2 cos (x(l) ) [cos (x(l» - 1] x 1/2 sin (xU» x [sin (xU» -1 ]

= 1/32 - 1/32 cos (4x(l» - 1/16 [sin (3x(l) ) + sin (x(l) ) ]

- 1/16 [ cos (x(l» - cos (2x(l) )], and

x(l) - 2n (l - 0/ N

(2)

We note that all the arguments of cos or sin are multiples of 2n/N.
Using following formulae

n-l

"sin (Gt + kP) = si.nnp/2 x sin (Gt+ (n - 1) P/2)L cos sm P/2 cos
k=O

and substituting the result (2) in (1), we see after some simplification that

a<IJ;_"i-I = 1/16 for all even N ;;. 8.
Similar treatment applies to all the other coefficients and we can also show that
for even N ;;. 12, they are independent of N.

(3)
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