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ABSTRACT

In this paper we discuss the propagation of plane non-linear waves governed by a system of
quasi-linear partial differential equations of first order with sm+1 independent variables
(t%15@2,---,2,). We create a disturbance on a given steady solution in the neighbourhood of
an arbitrary peint (»_*). Following the motion of the disturbance, we have shown that the
wave propagation is governed by a single quasi-linear differentjal equation of first order which
can be solved analytically and which is an approximation of the original system of equations
in the neighbourhood of a bicharacteristic curve. We can easily follow the change in the
shape of the wave form and thus discuss the formation of a shock wave in the interior of the
wave. The approximate equation assumes a simpler form when the wave front coincides with
the tangent plane of a characteristic surface of the corresponding steady equations and the
disturbance moves in the characteristic surface. When there are only two spatial coordinates
(21, ¢p) and the steady equations change their nature from an elliptic system to a hyperbolic
system while crossing a curve P, we have shown that a part of any disturbance created in

the neighbourhood of a point on the curve P will stay in the small neighbourhood of the

point for a time interval of the order of unity. This part of the disturbance is governed by

dw

P . ,
a simple equation %Jr (G;(”lj + C..(')w)5—— = Ko where C((”, €. and K are constants

depending on the steady solution. With the help of this equation we can discuss non-linear
wave propagation in the transonic region of a two dimensional or axi-symmetric flow of a

compressible fluid. In the last section we have discussed an example and shown that the two-

dimensional steady spiral flow of a polytropic gas is unstable if the sonic transition takes
from a supersonic state to a subsonic state and it is stable when the sonic transition is from

a subsonic state to a supersonic state.

1. INTRODUCTION
The fact that the direction of propagation of a disturbance in two and
three dimensions may be different from the normal direction of the wave front
* On leave from Indian Institute of Sciencs, Bungalsre, India.
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which bounds the region of the disturhbance makes the theory of wave propaga-
tion in multidimensional space much more complicated and interesting than
that in one-dimension. TIn the latter case, we get only two independent vari-
ables: t-time and z,-one spatial coordinate, the wave front is always per-
pendicular to the z, axis and the disturbance is carried along the characteristic
curves in (£, ;) plane. In multidimensional space we need to prescribe the
normal direction of the wave front in (z,, ,,...,2,) space and this determines
the speed J7 of the wave front [i.e. the orientation of the characteristic surface
in (¢, #,, #,...,7,) space] and also the velocity of propagation of disturbances
along the bicharacteristic curve lying in the characteristic surface [Courant &
Hilbert (1962), Varley & Cumberbatch (1965)]. In this paper we shall discuss
the propagation of plane non-linear waves with a given direction of the
normal of the wave front and governed by the system of quasi-linear

equations

n n

M
ou; D )
EA,-,- ;;’ +§ EB;,-(“>~—8%+C,-:O (1=1,2,...,n) Y
J

g1 i=1 g=1

where the elements of the matrices [4;;], [Bi;*’] and the column vector [C;] do
not depend on time ¢ explicitly. We shall assume the existence of a
steady solution w; =1y, (2,) of (1.1), create a disturbance on the steady state
in the neighbourhood of an arbitrary point (z.*) and then determine a
single and very simple equation governing the motion of the disturbance.
Whitham’s (1959) approximate equation in the form

%% .yl g 2
ot 2 ox ¥ (1.3

represents such an approximation for the case m =1 in the frame work of smail
amplitude linear waves assuming the steady solution to be a constant solution.
The approximate equation

oc ac
— 4 @ — = gc D2 13
5 ¢ 5 oc+ fa (1.3)

of Kulikovskii and Siobodkina (1967) and its generalisation by Bhatnagar and
Prasad (1971) also represents such an approximation when m=1 and when
the steady solution is an arbitrary steady solution,
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In the above approximations (1.2) and (1.3), it has been possible to express

all dependent variables u; in terms of a single variable p or ¢ and the equa-
tion represents the time rate of change of the variable as we move along a
' characteristic curve of the original system of equations. Naturally, in multi-

dimensional space, we still like to follow a disturbance and try to approximate
the system (1.1) by a single partial differential equation in the neighbourhood
of a bicharacteristic curve. Along with the effect of the terms of the first
order, the approximate equation, thus obtained, will also include the effect of
the lower order terms [i.e. the third term in (L.1)] on the waves governed by
some of the first two higher order terms. We find here that the effect of the
lower order terms is to introduce an exponential decay or amplification, a
result already known for one-dimensional waves [Whitham (1959), Prasad

(1967)].

Following exactly the same procedure as discussed in the following sec-
tions we can also obtain an approximate equation determining the effect of the
higher order terms. These approximate equations will be generalisations of
Burger and KdV type of equations [Taniuti & Wei (1968), Prasad & Tagare
(1971)] to two or three dimensions and they will be useful for discussing
internal structure of the waves [Lighthill (1956)]. However, we shall not
discuss these approximations here.

The system of equations (1.1) is sufficiently genearl to include the

lecquations of motion of fluid mechanics and elasticity as its particular

cases. Throughout this paper we use the convention that a repeated suffix in
any term will represent sum over the spectrum of the suffix. We assume the
spectrum of the suftixes ¢, jand & to be 1,2,...,n; of «and 8 to be I, 2,..., m
and of p, ¢ tobe 1, 2,..., m-1. According to this convention, the system (L.1)
of n equations with n dependent variables and m+ 1 independent variables can
be simply written as

8uj + 1)‘,']’“‘ (Hk,.,L’p) 0—{-t—j + C, (ll/“l]}g‘)ﬁo- (11)
ot ox

Aij (wp,xp)

2. HFORMULATION OF THE PROBLEM AND THE APPROXIMATE EQUATION

Let us consider a known solution

Ui =i, (117.) ('~)~1)

of the system of steady equations
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O
2

By (ltk,(lfﬂ)—g—lﬁj‘ + C; (uk,z5)=0. (2.2)
z

«

Let (2,%) be a fixed point in (z,,7,,...,7,) space. We define the value of a
quantity ¢ in the steady solution (2.1) at the point (x.*) by @*. Thus

W™ = wpo (2.%) and Ay* = Ay (v, (@) 2%} ete. (2.3)

Let us create a disturbance of sufficiently small amplitude and bounded by a
plane wave front in the neighbourhood of the point (z,*) and we assume that
at t=0 the point (z,*) lies on the wave front the unitnormal of which is
given by the vector (m,,n,,...,n,). The velocity V of the wave front is a solu-
tion of the characteristic equation.

[ng Bjj¥)—ad;;1=0. (2.4)

The equation (2.4) gives, in general, n-values of A which may be real or
complex. However, for physically realistic non-stationary processes governed
by the system (1.4), all the roots of the equation (2.4) are generally real. In
this case a real root may be zero, finite or infinite, Thus the system (1.4) 1s
generally hyperbolic or mixed parabolic and hyperbolic for the solution u;, (x.).
On the contrary the system of equations (2.2), governing the steady solutions
of (1.4), may be either hyperbolic or elliptic or even mixed type for the solution
i, (z.). As an example of such a situation, we may take the equations of
two-dimensional motion of a compressible fluid without any disipative
mechanism. In this case, we do get steady flows for which the steady equations
are elliptic in a region where the flow is subsonic and hyperbolic in a region
where the flow is supersonic and these two regions are separated by a sonic
curve where the equations are parabolic. In such cases the point (z.*), where
we wish to approximate the equations (1.4), may lie either in the hyperbolic
domain or in the elliptic domain or even on the surface separating these
domains.

To proceed further we assume that the root \ =1V (u;, x.) of the equation
(2.4) vs stmple and real.

This implies that the rank of the matrix
[’IZ«, 13”(,3) — VVA“'] (25)

is n—1 and there exist unique left and right eigen vectors 1=[l,,l,,...,,,] and
r=[r,, ;50:.,7,) sabisfying
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],' Ng Bij(‘): vV [,’ -:[ij and Ng _B,‘j(ﬂ) rj= lvijjj 7j- (26)

No other assumption has been made about the other roots of (2.4), They
may be real or complex. They may be zero or infinite. The assumption thag
I7is a simple root has been made in order toavoid the complications of the
general theory. In the case V is a multiple root of multiplicity s, we can easily
extend these results [see Bhatnagar & Prasad (1971)] provided the rank of the
matrix ia (2.5) is n —s.

We introduce a new set of independent variables (¢',&,79,,7,,...,7,-,) given by
th=t E=ng (p—2g%) = VFE, 9, = (rp—ug¥) (2.7)

where the matrix

(" S Moy
a,® @i, D
= (
N a,'? 7 a,'?
(2.8)
\ax(m_“ al(m—l) ..... .a"l(ln—l) J

is orthogonal. At ¢ =0 the surface £ =0 coincides with the wave front and
the 5, axis lies in the wave front. Also £¢=0 is the tangent plane at the point
(=0, r.=xz,%) to a characteristic surface [in (¢,z,)—space] of the system (1.4).
In terms of the new independent variables, the system (1.4) reduces to

duj ou; > o ;
Ai—2L + By — - + Dy —L + ;=0 2.9
ij Bt’ /i 35 il 377,, 1 ( )
where Bijj=n. B, — JE A;; and D,-,»“’) =a.'? By, (2.10)

_ The coefficients 4;;, B;;, D;;?’ and C; ave no longer independent of ¢'.
However, they depend on ¢ and ¢’ only in the combination g+ V¥t'.

The velocity e(u;, z.) of the wave front in new coordinate system is
given by

e (u;, 2) =V (g, x.)—V*, (2.11)

¢ is a simple root of the equation
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| Bij—edi | =0
and g fugs (™), =10 (2.12)
The bhehaviour of perturbations
U = Up (s B)— e () - (2 Lg)

of the steady solution is described by the system

ov;j ov; ov
Ay (g, 2 )—L + By (g, &) = L4+ Dy (ug, 2,) =L+ F;= 2, 1
11( A )3[1 lj( k 65 ( k )07],; ( J)
where
Fy={By () + VA (e} 2590 4 Do) (ugwa) 200 104 (g, ) (2.15)
&g 07},,

and we assuine vy to be a small quantity of the order of 4.

The steady equations (2.2) give us

5 it - o, v ]
{Bij (/I'[/\'Uv ll‘m) + ) * (“’\u m)} é’g’j -l)ij(p) Ugos 'l'a) - 22, o (“f (Nl\m "’a) =0, (—‘)l‘;)
(/7//,

With the help of (2.16), we can write (2.15) in the form
Fi=Fy, v, +0(8?) ‘ - 2.17)

where
Iﬂiv, - [ 73 ],))i/ )* s V:E: _@_A’{)f 7% ) + aDl “7) o % N -+ ?g ) (j.lb‘)
k L\ 2wy o, ok duy om, duy) -

With a given normal direction (ng) of the wave front, the velocity of pro-
pagation is the whole set of vn]ue% given by the equation (2:4). However, we
are interested only in a part of the wave for which the “velocity of the wave
frontis V. Thus we wish to retain the most dominant terms in (2.14) keeping
in view that we wish to study only those waves remain in the neighbourhood
of the plane £ =0 in (g,7,)-space for a time interval of the order of unity
Therefore, if we congider v;to be a small quantity of the ovder of 8, we need
to approximate the system (2.14) over a domain in which £¢=0(8) and each of
t', n, is of the order of unity.
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We write (2.14) in the form

dv; L ov; ov;j .
- Bijj— 4 D'+ F;=0, 2.19
'j i}{’ 5 ij aé:’ I 87)p ( 1 )
|
where &= 5 . (2.20)
Substituting
V=00 +8 v+ (2.21)

in (2.19), expanding various coefticients and equating the terms of the first two
ordersin é we get,

I .(0)
Bu*az;, =0 (2.22)

ov i 0 :
By* 5;’:3 + Adi* -é; S ABy ;’; o+ D <~>*a;’; + iy, *v,=0  (2.28)
p

where " By (gt vk, ) —Bi* = A By +0 (8?) (2.24)

The velocity ¢ vanishes at (¢'=0, =0, 5,=0) so that the expansion for
¢ is of the form

c=cW+e® 84 .iiiiiiiiiniiinnnn, . (2.25)

Expanding both sides of the relation

Z,' L’U '(‘l,’ x‘,'j (.326)
and multiplying the resultant by »;* we can easily show that
(“)‘; (AL”) . (2.27)

]l ’fj Xy ¥
The general solution of the equations (2.22) is

‘pj(o),‘( ( E 77[’) { i ( 77/:) (22(%)
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where w and g; are arbitrary functions of their arguments. Substituting (2.28)
in (2.23), multiplying the resultant by ;* and dividing by 4* 4;* »;*, we get

lw | 0w ;e , Bz
ez gt O } [ ) :I T f ) :.),2(1
o 1O gy Ve gy, T Re S ) 1
R Ap)se . 5% I A ¥, %
where FALSL "ok M COR. ] TN (2.33)
0 Ae* r* L* A% ry*
,‘:5( i o B a4 j ' k
G A‘Iij'é%,’ + 7 Dij“’)'%;;i + U* Fiyxg; (8 1
f (t,‘ 7),)): - B %7 —;2—: B (.‘-"'31)
l,“ A,‘j' I'j'
From (2.24) and (2.27) we get
e =, (g+ V¥ t')+0-,,“) 2t eV wto (', 9,) (2.32)

where

1 oBi;\* | (eBi; \*[ou,\*
W= = | * shmad s ) TS ij Oy
i L* Ay "j*I: {( ot ) ( oy ) ( ok )

} 7.j*], (2.33)
I

1 0B;:\*  [8;B:\*[ou,\*
()= = I* e=d b . iDj gUy . 5
Ca, I* A 7','*[ i {( 81;,,) T (81(,\. ) (377,;) r; :', (2.34)
1 OB \*

(1) = 1.* ij )"y % % ’
- hi* Ay* 7',-*,: ! ( Dty ) R A ] (2.85)

/ 1 oB;; \* , " ‘
) =g 5 s [I'*( vuj) gu (& m,) 7 ] (2.36)

i L I oty

The equation (2.28) shows that in the neighbourhood of the n-dimensional
characteristic surface whose tangent plane is &= 0, the n-dependent variables
can be expressed in terms of the arbitrary functions wand g; of which
only o varies significantly with g The values of the functions g¢; can
be determined by the knowledge of the unsteady solution lying outside the
small neighbourhood of the plane §¢=0. The history of the wave which
remains in the neighbourhood of the characteristic surface 1is given,
essentially, by a single variable o which satisfies a simple first order quasi-
linear partial differential equation (2.29) depending on two arbitrary functions
g and fof ¢" and 5,. These two arbitrary functions represent the influence on
the wave of the disturbance outside the neighbourhood of the characteristic
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manifold. If ‘we are interested only in those waves for which the disturbance
outside the neighbourhood of £¢=0 does not depend on t’ and %, (this is true in
the particular case when the []isturlmnpe 15 prgsenb only in the neighbourhood
of £=0), the functions p(¢', 5,) an1 f(¢’, 3,) can he taken to zero. For such
waves, the equation (2.29) reduces (o

Zt +{c V) 5* )+ pu) np+ eV w}fa}; n Vi’*"g;; K &, (2.97)
To explain the significance of putting the functions ¢ and fequal to zevo,
we point out one simple example in a slightly different situation. While dis-
cussing the effects of second order viscous terms on the sound waves, we-can
get Burgers’ equation by substituting the arbitrary functions ¢; and f; equal to
zero in the equation (6) of Taniuti & Wei (1968). This step is valid if we
wish to study the structure of the wave when one weak shock is overtaking
another weak shock, both moving approximately with the velocity of sound in
the undisturbed medium ahead of the shocks [Lighthill (1956)]. In this case,
the state ahead of and behind the two shocks is constant so that the distur-
bance is independent of % for points where || is large.

By the lemma on bicharacteristic directions [Courant & Hilbert (1962)
page 597], the components 7, of the velocity in z, direction, obtained by moving
along a bicharacteristic lying in the n-dimensional characteristic manifold
whose tangent plane is given by £=0, are given by

l; By 'y

k=
l‘ Al} T

(2.38)

The equation (2.37) expresses the fact that the time rate of change of the
quantity @ when we move with velocity (¢, V,,*)in (¢, 5,) space is K times
the quantity @. The component of this velocity in z, direction in (z,) space is

e (V*+cN+a, VS E=x*+n,cM) (2.39)
and the differential equation (2.37) reduces to

dw « Jw
—+ (X *+n, cV)—
ety e

=K o (2.40)
If we are interested only in the qualitative behaviour of the wave front

and not in its finer structure over-a length scale of the order of & in the direc-
12
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tion of the normal of the front. we may neglect n, ¢’ in comparison with
Z,* and we get a lincar equation

Go L gate g, (241)
@f 2‘1’1

The equation (2.41), giving the time rate of change of » as we move along a
bicharacteristic curve, is a generalisation of Whitham’s result (1.2) for one-
dimensional waves. The quantity ¢*’ is the component of the excess A X, of
the bicharacteristic velocity in dircetion (n.) i.e.

e =n AX. . (2.42)
We can easily verify that, in general,
A . En, 00 (2.43)

The equation (2.37) is valid only in a small neighbourhood of the point
(t=0, 2. =2z,*) where we can use the expansion of the coefficients of (1.4) in
power series in £+ V* ¢' and 7,

The time rate of change of the position as well as the amplitude of any
wave governed by the equation (2.37) is given by the characteristic equations

d

_d%:Kw , (2.44)

Fdé =e, M (£+V* )+ ¢y M) g+ e, w, (2.45)
[t »

@Q _® 2.46
dtr —“Vﬁ . ( )

The general solution of equations (2.44)—(2.46) is

M= V,,*f"! Noo s (2.47)
w=w, exrp (Kt') (2.48)
(z(l)I7*+C (1) lv'* 1) V*+C (1) V*-'c 1) (1)
E=g, eap foe ¢yt T e R gy 7 W TOy ¢ U
celt) (cetM)?

)
X (exp (e t')—1)+ IC,—"“%(MP (Kt —exp(celr t')) (2.49)
PAvy K—ocf ,
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where w,, £, and 7,, arve the initial values of », £ and 5,. The equations (2.47)—
(2.49) give the magnitude w of the disturbance at the position (g, 5,) at any
time ¢'. The disturbance moves with a constant velocity in 7, direction and
its amplitude increases or decreases according as K>0 or K<0. Due to the
presence of the linear as well as non-linear terms, its behaviour with respect
to & coordinate is complicated. To discuss the change in the shape of the wave,
we first notice that its initial shape is given by o,=w, (&). At any fixed point
t" and for fixed values of 7,,, we may regard the shape to be given by w=w (£)
in the parametric form w=w (&) and £=¢ (&) from the equations (2.48) and
(2.49). Assuming 7,, to be constants we can determine the gradient dew/ds at
any given instant (i.e. ¢’ being taken to be a parameter giving different
profiles at different times) in terms of dw,/dé,.

We get

de _ 0 : (2.50)

d » l)_, i @;(l) dw,, i o T,,’,
E C;E_l) (Cf( t )'* (RW Ci;(ewp(Kt ) e]’l) (Cf( )t ))

Due to the non-zero velocity components V,* in 5, directions the dis-
turbance stays in the neighbourhood of (¢=0, %,=0) only for a time interval
of the order 8. Also the equation (2.37) is valid only in the neighbourhood of
this point (£=0, ,-0) as we have expanded the coefficients of (2.9) about
£+ V*' =0, 9,=0, yy=u;*. Therefore, the equation (2.50) is valid only for
sufficiently small values of ¢' and we get

do d"-’o I ( > dwo) I}
o do, [ (g oo g mdo), .
d  de | ST, (2.51)

which shows that the wave form tends to become more steep or less steep
according as K—c ) —c.") (dw,/dt,) 2 0.

In the case the coefficients 4yj, By;'* and C; are independent of the spatial
coordinates z, (which is generally the case in fluid mechanics) and the steady
solution is a constant solution satisfying C; (u,, ) =0, we have

ceM =0, c'p(l)?o (2.52)

and equation (2.57) reduces to
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" o . D
[2X0] ow [0} - K (
4 ¢ (1) [oR += I p — —No. . (

2:59)

51” (C’é 8"7],
The equation (2.53), valid in the neighbourhood of the plane wave front, gives
the history of the disturbance over a time interval of the order of unity.and
during this period it moves through a distance of the order of unity. In this
case K is given by a simple expression

ad; \* _ .
e (s i .k
e ( 3”1') K ,

K=- MRS (2.54)
,i~ A”,,. ).j.,.
The general solution of the characteristic equations of (2.53) is
©=w, crp (Kt")
Np=Tpo+ Vp* t'
(1)
§=¢go + 20— (emp (Kt')—1) (2.55)

where ¢', can take any finite value. The disturbance ultimately dies if K<0
and grows without bounds as time increases if K>0. ‘

3. APPROXIMATION VALID IN THE NEIGHBOURHOOD OF A CHARACTERISTIC
MANIFOLD OF THE STEADY EQUAT'IO.\'S“

In this section we discuss - a particular case by assuming that the steady
equation (2.2) is hyperbolic or more precisely, it has at least one real characte-
ristic surface S of multiplicity one for the solution w;, (z.). If (m.) represent
the direction cosines of the normal at an arbitrary point of the characteristic
manifold S, the matrix (m. By;*) is singular and of rank (n-1) at every pointof S,
Let, (z.%) be a point on S. We consider a disturbance fOJ which the normal to
the wave front is (m.*) Therefore, we substitute 2, = m,* in the previous results.
The veloclt\ I/ ~given by - LR B

I'In,* B,’j(.) (”[\.,,, ;l'ﬂ) = l”,, A” (W gas ‘Tﬂ)l 0 E ’ (;])
vanishes at the point (2.*). Thus : ‘“the point.where the characteristic velo-

city V vanishes in  the steady solution, the normal to the wave front coincides
with the normal to a characteristic surface S of the steady equations’. Since a
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characteristic manifold S can be regarded as a singular surface of the steady
equations in the sense that different steady solutions can be joined along this
surface, we can regard the above result as a generalisation of the following
result of Kulikovskii and Slobodkina for m =1: “the point where a characteris-
tic velocity vanishes is a singular point of the ordinary differential equations
governing the steady solutions.”

Since V* =0, time does not appear in the transformation
E=ng (Lg—as"), N, =0 (xp—x,*) (3.2)
of the spatial coordinates. Now we may replace t" by ¢, By; is defined by
By =n. By, (3.9)

D;;» by the same expression as that in (2.10) and equation (2.37)
reduces to

dw Jw Jw
—teMgte, Ny, +eVw)— + V,*— =Ko. 3.4
of e ET e w) o y; 377,; w ( )
We also have
cW=cgM grcy Nyt el w. (3.5)

The coefficients ¢, c.,p"), ¢, V,*and K are given by the same expressions
(2.33), (2.84), (2.35) and (2.30) with V*=0 in the expression (2.18) for
L]

3
Fi,*.

Since the velocity V* given by (3.1) is zero at an arbitrary point (z,*) of
S, it follows that if the wave front of an infinitely weak disturbance initially
coincides with a characteristic surface S of the steady equations then, as the
disturbance propagates, the wave front will remain coincident with S. How-
ever, if the initial wave front is not tangential to S, the disturbance initially
at some point (#,%) of S will, in general, move away from S due to a non-zero
component of the bicharacteristic velocity in a direction normal to S. To
prove the latter statement, it is sufficient to give the following example in
which we consider two-dimensional supersonic flow of a polytropic gas
[Courant & Friedricks (1948)] without any dissipative mechanism. The
equations of motion is given by (1.4) where n=3, m =2 and
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{
{ ", \ 1 0 0 | w, 0 ©
» [ p
|
U:; My |, AIVI 0 1 T BYM= 0 -wu, 0 |,
| |
P o0 1| P00
[ u, 0 0 | 0 (
|
(2)_' a*
B —i 0w, o | and C=|"0 ’ , (5.6)
| 0 P —u, 0 |

uy and u, are the components of the particle velocity, p mass density and a the
local sound speed related to the density by

@® = constant X P71, (3.7
The three roots of (2.4) are
WUy N0y gy e, ta
and we select
V=ngw, +n, uy,—a. (3.8)

19 S ] T
T'he normal direction (m,, m,) of a characteristic curve S of the steady
equations satisfics

[ my BO+m, BO|=0. (3.9)
This gives three possible values

m, U, ura {u+u2—a}r?
n, i, ar—1u,?
If we assume that the components u,, u, of the particle velocity are
positive, the values of m, and m, for which V vanishes at (#,* 2,%) when u, = m,
and n, = m,, should be taken to be

51

5 211 /2
- e ([ — {( 2 })12 . Ill U, l’ {7( -{Illz'!‘ 1(22'_a2} ! ( 10)
1 ) i . : )
S, oy {u o u— gt @iy — Uy {U, 2+ uy2—a,} 12
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For a given normal (n,,n,) to the wave front, the components of the hich-
aracteristic velocity are (Varley & Cumberbatch (1965)

Xy =, —an, , X,=U,—an, . (8:11)

If we take n,=m,, n,=—m, so that the wave front is normal to the
characteristic curve S, the components of the bicharacteristic velocity (x,, %,)
in (m,,m,) direction is

my L Emy, L, =a (3.12)

which is non-zero. This proves our assertion.

Since the characteristic equations of (3.4) form an autonomous system of
ordinary differential equations in (&,7,,0) space, we may be tempted to discuss
the wave propagation in the phase-plane of these equations [Kulikovskii &
Slobodkina (1967), Bhatnagar & Prasad (1971)]. However, this method will
not be very useful due to non-zero velocity component V,* in 5, direction.
The disturbance moves away from the small neighbourhood of the point (z,*)
in a time interval of the order of § and the equation (3.4) ceases to be valid.
Fortunately, there is one happy situation where these components vanish and
the wave stays in the neighbourhood of (2.*) for a time interval of the order
of unity. This forms the subject of our discussion in the next section.

4, EQUILIBRIUM OF STEADY FLOWS OF TRANSONIC TYPE (m =2)

In this section, we wish to discuss the wave propagation in the neigh-
bourhood of a m—1 dimensional manifold P across which the system of steady
equations changes its nature from a hyperbolic system to an elliptic system.
More precisely, we wish to approximate the system (1.4) in the neighbourhood
of a point (#,*) of the manifold P such that one family of characteristic sur-
faces S is real on oneside of P and complex on the other side. Due to a com-
plicated nature of the characteristic equation |m, B;;"*)| =0, it seems necessary
to restrict to the case of steady solutions in two-dimensional space i, e. m =2,
In this particular case, the characteristic equation reduces to a n'* degree
algebraic equation

l I},j(l) (”I\'ny .l'a) + ]C B”(Z) (,Nkn’a’m) l = O (4'1)

in a single unknown % =m,/m,. For a given real steady solution, all the coeffi-
cients of this equ&tion are real,
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We assume that a root & of the equation (4.1) is real in some region H o
(z,, #;) plane.  We further assume that the region H is bounded by a curve [
which separates H from another region [ at every point of which the root 7
is complex. Let (#,*) be an arbitrary point of the curve P. In the neigh-
bourhood of the point (r,*), the direction ratios of the normal to the characte-
ristic curve S, which meets the curve P at (2.*), can be written as (1,k*4¢€); e
is real at a point in H, complex at point in E and as (z,, z,) tends to (z,*, »,%),
€ tends to zero. Since complex roots of an algebraic equation with real
coefficients always occur in pairs, there exists another root k* + e of (4.1) giving
the direction ratios (1, k*+e¢) of another real characteristic curve S’ in H
meeting P at the point (z,*, z,*). Here € is the complex conjugate of e. The
two characteristic curves S and S’ belong to two different families, both meet
at the point (z,*) and have a common tangent at this point with direction
ratios (k*,—1). The two roots #* +e and %*+ < of the equation (4.1) coincide at
the pointsof P. This implies that 6 =%* is a double root of the equation

lBij"l)*+ OB,'J'(Z)* I:O. (—1-‘2.)

The matrix [B;;"* + k* By;*] or [B;;*] will be, in general, of rank n—1
and we assume this to be so. Then, the left and right eigen-vectors /;* and »;*
are uniquely determined except for common multiplying factors.

From | By;*| =0, we get

Bi* by*=0
(4.2)
Bji* by* -0 (for all values of j and k)
where b;;* is the cofactor of the element B;;* in the determinant | By;*|.
We can write equation (4.2) also in the form
| Byj* +m,* (6 —k*) By P*[=0 (4.4)
and 6--K* - 0 isa double root. This implies that
B'_j(z)* l);i* =, (45)

From (4.3) and (4.5) we get

By i* by* = 0. (4.6)
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From (4.3) it follows that

[)U"':. ["* ]j* (:{7)
where the non-zero constant z is independent of ¢ and j.

From (4.5)—(4.7) we get two important results
],"‘ B,‘j“)* )’j* = ]i* B,‘j“)* I'j*:o, (48)

Therefore, at any point (¢,*,2,*) of the curve P across which the root k&
changes from real values to complex values, the components ¥, * and 7,* of
the velocity of a disturbance moving along the bicharacteristic curve vanish
provided we select the wave front tobe coincident with the tangent line to the
characteristic curve at (z,*,2,*). Now V,*=0 and the equation (3.4) reduces to

%’«+(c;("§+c,l“) " w)—Z?ZIx’w. 4.9)

If we create a small arbitrary disturbance in the neighbourhood of a point
on the critical curve P, we can easily obtain the local ray cone which is the
locus of the points reached by the disturbance in (¢,z,,%z,) space. However, a
part of the disturbance will remain in the neighbourhood of the point (z,*,z,*)
for a time interval of the order of unity. The propagation and modification
in the wave form of this disturbance over a finite time will be governed by the
equation (4.9). If the magnitude | w | tends to infinity as ¢ tends to infinity, the
steady solution will be unstable due to the growth of the perturbations at the
point (z,*,2,*). In the case |w| tends to zero as ¢t tends to infinity, we get only
local stability. The steady solution may still be unstable due to a source of
instability away from the points of the critical curve P.

The function w, appearing in the equation (4.9) depends also on the
varviable ;. However, one of the characteristic equations is

&
=
Il
o

|

(4.10)

&

which shows that as the disturbance propagates, %, remains constant. In this
case we can always assume 7, to be zero by a suitable choice of the origin in

(&,m)) plane. Thus, it is sufficient to discuss the equation
13
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»80)_((,;",” £4 eV w) iai =Ko (4.11)

ot T
where w is regarded as a [unction of two variables g and ¢ only. We have
reduced the whole problem tothe discussion of an equation (4.11) governing one-
dimensional waves. In fact, the equation (4.11) is exactly the same as the
equation (9) of Kulikovskil & Slobodkina (1967). e may be tempted to elimi-
nate the values (0u;/02.)* of the derivatives of the dependent variables appear-
ing in the coefficients ¢,(") and K by a suitable transformation [Bhatnagar &
Prasad (1971)] in order to get an approximate equation valid for the perturbations
of an arbitrary steady solution. However, such a transformation seems to be
difficult as K depends not only on (0u;/og)* but also on (0u;/o7,)*.

The characteristic equations of (4.11) are

do _ g, (4.12)
dt
d
d_‘i:ofm E+e w. (4.13)

For given values of ¢,V/K and ¢,")/K, the phase-plane of (4.12) and (4.13)
remains unchanged under a transformation w=(1/8)wand £=(1/8) &, which
shows that while drawing the phase—plane we may assume ¢ and » to be of the
order of unity. The propagation of waves governed by (4.11) can be easily discus-
sed in this phase-plane [Kulikovskii & Slobodkina (1967),Prasad (1971)]. We shall
not go into detail of drawing the phase-plane and discuss the individual parti-
cular cases for different vlaues of the constants ¢,')/K and c¢,V/K, as we just
need to follow the method of Kulikovskii and Slobodkina for a different system
of equations (4.12) and (4.13) with the exception that the steady solution is
w=0. At a given time the gradient do/d¢ of the wave form is related to its
initial value dw,/dg, by the same relation (2.50), which can also be written in
the form

s
,{Zci o S DU Nl : (TZZEQ e "'**"4*———7— (4]1)
YU vap ((ed—E)1) + oAl erp (e~ K")}('d?
o lE 0

where the constants appear only in two combinations ¢,/(K—e ) and
(K—cgh). A discontinuity in the wave form appears whenever the value of ¢
given by

[t e ce =
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l( 770,3(7’7) ) dw, 1

]. é] (IJ-—J( d&

s oo Iwd O 80 T

,t ce— K n{l L o dw, r (4.15)
L ce—K dg, J

is real and positive. If a shock wave does not appear, the limiting value of
doldg is zero when (¢ —K)>0 and (I{--c¢V)[c, when ¢, — K <0.
5. EXAMPLE: STABILITY 0F A SPIRAL FLOW IN A COMPRESSIBLI FLUID
IN THE NEIGHBOURHOOD OF THE SONIC CIRCLE

The theory presented in the previous section will be useful for discussing
the non-linear stability of any two-dimensional or axi-symmetric transonic flow,
calculated either by a numerical solution of the equations of gas dynamics or
by approximate solution of the equations. 1In thiscase, we just need to evaluate
the two constants ¢, aud K approximately. The value of the third constant
co!) can always be obtained exactly from the coefficients of the equations of
motion. The method provides us not only with stability criteria but also gives
us the full history of an arbitrary disturbance which stays in the transonic ve-
gion. We consider here a two dimensional steady flow of a polytropic gas with
a sonic curve P in the flow. The equations of motion are (1.4) where U, 4, B*
and C are given by (3.6). If we denote the fluid speed by ¢, then g¢*=u,*+ u,?
and at every point of the sonic line

g=a=a". (5.1)

The two families of characteristic curves, having a common tangent at the
points of the sonic, are given by

My Uy, ta {(]2‘—“2}”2

m, a?—u,?

and at the point (£¥*, y*) on the sonic line we have

o & w,*
{om, ™ oms*) = =L (5.2)
a*
The expressions for ¢,"), ¢,(") and K are given by
% |
w,™ (o, \* x
galibis L [21 )" (5.3)
a* \ 9¢
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c.,'”:’-'f,la* (5.4)
=~ (2] (5.5)

When we transform the derivatives with respect to & into the derivatives
with respect to x, and z, and use the steady equations, we get

- v+1 « { 2P \* f op \* AT
K= = 1oyt 4= ™ B . 5.6
‘ 2p* ] (3931) g (&Lz)] (bl

The expressions (5.4) and (5.6) are valid for any steady flow which may o
may not be irrotational, an assumption generally made while calculating a

transonic flow.

In order to discuss the first application of the theory, we consider a steady
spiral flow [Courant & Friedrichs (1948), § L04] where we can get a simple
exact solution. The flow is supersonic in the interior of two circles 7, <r=
(2,2 +2,)'*<r, and subsonic for r>r.. With the help of hodograph transfor-
mation, we get the solution of the problem in the form

oy =(=ky Uy t+ Kk, Py o) 7%, Ty =(ky wyo+ Ky Po™" 150) € 2. (5.7)
With the help of the relations

Oy, _ . Oy, Oy _ . 0y OUyy . O, Atz v BT "
n o) == = laae e gien e g y =22 =g, —~  (5.8)
ox, ou,y Ox, O,y O, Oy, ox, Dty
. 0wy, Ou, duyy ou
where P e Mo~ B | R

ox, OJx, oz, oz,

the relations (5.7) give us

Oy b = k, 1 2( 1 2 ) Ak, 14, 1(20:] .

Ouy _ D L= 2\ Tt e ] 9
oy Jo WK { i P 7. (5.9)
LT jn[_k,lz_(l i Q_?Lzzgi)_’b‘zﬁ:_o_zezo(}?_i)], (5.10)
dx, Qo 9o Ps o @, qo”

f&o_ _— /o[ /‘.'2(1 . 2“‘:’2 ) + A'1 Uyo Vlfzor( 7{} — %)], (-P)ll)
Jx, o 9o Po 40 \ay® g,

Qthgg _ R 1 1 2 ) 2k, Uy Ugg S
—20 = - + _—— i B 5.12
dx, Jol:Po 70 { . (afo2 10° * 7o' e
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From Bernoulli equation we get

Do = g by hi—rn by | (5.19)

Ly et dy

aa_i"_ —. —-(1 Jl:t ’I:PO o Kyt Uy /.'2]. (5.14)
2 0 [}

We can easily verify that the expressions (5.9)—(5.14) giving the deriva-
tives of the dependent variables satisfy the equations of motion. (2%,5*) isany
point on the sonic cirele r=r.. Irom the relation

Jo= 1= o™ + 12 P72 107 (@32 — ¢4 72)]"! (5.15)
[Courant & Iriedriches (1948), §104] we get
jo*= —;’l4 (5.16)
Equations (5.6), (5.13) and (5.14) give us
E=—cn=t1)a® &, (5.17)

'.3 P* ]1',2

The component of the fluid velocity in radial direction at any point of the
flow is

fl-' & N'z; _ky (5.18)

showing that when k,>0 the fluid particles move outwards i.e. from the
supersonic region to the subsonic region and when %, <0 they move from the
subsonic to the supersonic region.

The amplitude of the disturbance increases to infinity as ¢ tends to infinity
if K>0 and it ultimately tends to zero if K<0. The spiral flow is, therefore,
unstable if the sonic transition takes from a supersonic state to a subsonic state.
In the case the sonic transition is from a subsonic state to a supersonic state,
the tlow is stable in the neighbourhood of the sonic line.

The perturbations in the two components of velocity and the density can
be expressed in terms of w as

0,V=u* 0w, 1;V0=u,* 0 and v,=—pP*w (5.19)
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and ¢ increasing dircetion coincides with the veetor (u*/a*, u,*[a™), i.e. the
direction of the tangent to the streamline. Thus the wave front is normal to
the stream lines. dw,/dEy>0 (ov dw,/dt,<0) corresponds to that part of the
disturbance where the excess density or pressure due to the disturbance
decreases (or increases) in the direction of motion of the fluid particles.
To discuss the change in the shape of the disturbance duc to nonlinearity,
we use the equation (4.14) which reduces to

dw,
(L. (] o
T (5.20)
A epp (—2K1) { 1 P I do, l P—]l—L it
! - ill*/ﬁz flg,,J : V175 i ]vz (Lz;‘r)

Case 1 : When the sonic transition is froma supersonic state to a subsonic

m

state a discontinuity appears at a finite time 7" only in that part of the wave

where dw,/dt, <0 and it is given by
P:i: /1'12 'Zf‘)n
‘3]2 ’]fn min

[
T=— n § ——— —
)]\ <I 1 = * ] ((Zcu,,
L I Z‘/ (ZE(/ IH]II
where (dw,/dt,)mn represents the minimum value of dw,/dt, in the given

pulse. Thus a continuous disturbance always ends in a shock wave before its
amplitude increases’ to infinity.

‘1
l} (5.21)

Case 2: When the sonic transition is from a subsonic state to a supersonic
state, a discontinuity appears at a finite time 7' again in that part of the wave
where dw,/dg, <0 provided the initial shape is sufficiently steep so that the
condition

LP" ](,,2 l(la)”' ;
g > 1 (5.22)
| % | ‘ dg, ‘ ‘

can be satisfied. In this case

{ P:E: ].',“ |(//a) ) i 1'

m 1 2 a” ]/lz“ d£s ) min.

S Wb 8 (R L i 5o
AR o*hS ’(d%) —1 1 (5.23)

dg, J

il |
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